References
1. Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C.
Structural basis for ligand-regulated oligomerization of AraC.Science . 1997;276:421–425. DOI:10.1126/science.276.5311.421.
2. Weldon JE, Rodgers ME, Larkin C, Schleif RF. Structure and Properties
of a Truly Apo Form of AraC Dimerization Domain. PROTEINS:
Structure, Function, and Bioinformatics 2007;66:646–654.
3.
Rodgers
ME, Schleif
R. Solution structure of the DNA binding domain of AraC protein.Proteins 2009;77: 202-208.
4. Schleif R. AraC protein, regulation of the L-arabinose operon inEscherichia coli and the light switch mechanism of AraC action.FEMS 2010;34:779-796. DOI:10.1111/j.1574-6976.2010.00226.x
5. Lobell R and Schleif RF. DNA Looping and Unlooping by AraC Protein.Science 1990;250:528-532.
6. Carra JH, Schleif RF. Variation of half-site organization and DNA
looping by AraC protein. The EMBO Journal 1993;12(1):35-44.
7. Saviola B, Seabold RR, Schleif RF. DNA Bending by AraC: a Negative
Mutant. J. Bacteriology 1998;180 (16):4227-4232.
8. Brunelle A, Schleif R. Determining residue-base interactions between
AraC protein and araI DNA. J. Mol. Biol. 1989;209:607-622.
9. Schleif R. 2021. A Career’s Work, the L-Arabinose Operon: How it
functions and how we learned it. EcoSal Plus 2021.
https://doi.org/10.1128/ecosalplus.ESP-0012-2021
10. Greenfield L, Boone T, Wilcox G. DNA sequence of the araBAD promoter
in Escherichia coli B/r. Proc. Nati. Acad. Sci. USA1978;75(10):4724-4728.
11. Main KHS, Provan JI, Haynes PJ, Wells G, Hartley JA, Pyne ALP.
Atomic force microscopy—A tool for structural and translational DNA
research. APL Bioeng. 2021:5:031504.
DOI:10.1063/5.0054294
12. Rivetti C, Guthold M, Bustamante C. Scanning Force Microscopy of DNA
Deposited onto Mica: Equilibration versus Kinetic Trapping Studied by
Statistical Polymer Chain Analysis. J. Mol. Biol.1996;264:919–932.
13. Tessmer I, Yang Y, Zhai J, Du C, Hsieh P, Hingorani MM, Erie DA.
Mechanism of MutS Searching for DNA Mismatches and Signaling Repair.J. Biological Chemistry 2008;283(52):36646–36654.
14. Erie, DA, Yang G, Schultz HC, Bustamante C. DNA Bending by Cro
Protein in Specific and Nonspecific Complexes: Implications for Protein
Site Recognition and Specificity. Science 1994;266:1562-1566.
15. Mysiak, ME, Wyman C, Holthuizen PE, van der Vliet PC. NFI and Oct-1
bend the Ad5 origin in the same direction leading to optimal DNA
replication. Nucl. Acids Res. 2004;32:6218-6225.
16. Dutta S, Rivetti C, Gassman NR, Young CG, Jones BT, Scarpinato K,
Guthold M. Analysis of single, cisplatin-induced DNA bends by atomic
force microscopy and simulations. Journal of Molecular
Recognition 2018; 31(10):e32731, 11 pages total, DOI: 10.1002/jmr.2731
17. Yan Y, Tao H, He J, Huang S-Y. The HDOCK server for integrated
protein–protein docking. Nat. Protoc. 2020;15:1829-1852.
DOI:10.1038/s41596-020-0312-x
18. Rodgers ME, Schleif R. Heterodimers reveal that two arabinose
molecules are required for the normal arabinose response of AraC.Biochemistry 2012;51:8085−8091.
19. Pastre D, Pietrement O, Fusil S, Landousy F, Jeusset J, David MO,
Hamon L, Le Cam E, Zozime A. Adsorption of DNA to Mica Mediated by
Divalent Counterions: A Theoretical and Experimental Study.Biophysical Journal 2003;85:2507–2518.
20. Hsueh C, Chen H, Gimzewski JK, Reed J, Abdel-Fattah TM. Localized
Nanoscopic Surface Measurements of Nickel-Modified Mica for Single
Molecule DNA Sequence Sampling. ACS Appl. Mater. Interfaces2010;2(11): 3249–3256. DOI:10.1021/am100697z
21. Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data
analysis. Cent. Eur. J. Phys. 2012;10(1):181-188. Also see
http://gwyddion.net/ .
22. Margeat E, Le Grimellec C, Royer CA. Visualization of trp Repressor
and its Complexes with DNA by Atomic Force Microscopy. Biophysical
Journal 1998;75:2712-2720.
23. Li S, Olson WK, Lu XJ. Web 3DNA 2.0 for the analysis, visualization,
and modeling of 3D nucleic acid structures. Nucleic Acids Research
2019;47:W26-W34. DOI: 10.1093/nar/gkz394
24.
Calladine
CR, Drew
H, Luisi
B, Travers
A. Understanding DNA: The Molecule and How it Works. New York: Elsevier
Academic Press; 2004. 72-78 p.
25. Stefl R, Wu H, Ravindranathan S, Sklenář V, Feigon J. DNA A-tract
bending in three dimensions: Solving the
dA4T4 vs.
dT4A4 conundrum. Proc. Natl. Acad.
Sci. 2004;101(5):1177-1182.
DOI:10.1073/pnas.0308143100
26. Huang S-Y, Zou X. A knowledge-based scoring function for protein-RNA
interactions derived from a statistical mechanics-based iterative
method. Nucleic Acids Research 2014;42(7):e55.
DOI:10.1093/nar/gku077
27. Hendrickson W, Schleif RF. Regulation of the Escherichiu coli
L-Arabinose Operon Studied by Gel Electrophoresis DNA Binding Assay.J. Mol. Biol. 1984;174:611-628.
28. Perez-Martin J, Espinosa M. Protein-induced Bending as a
Transcriptional Switch. Science 1993;260(5109):805-807.
29. Zhang X, Reeder T, Schleif R. Transcription Activation Parameters atara pBAD . J. Mol. Biol. 1996;258:14–24.
30. Zhang X, Schleif R. Catabolite gene activator protein mutations
affecting activity of the araBAD Promoter. J Bacteriology1998;180:195-200.
31. Benoff B, Yang H, Lawson CL, Parkinson G, Liu J, Blatter E, Ebright
YW, Berman HM, Ebright RH. Structural Basis of Transcription Activation:
The CAP-αCTD-DNA Complex. Science 2002;297(5586):1562-1566.
32. Glyde R, Ye F, Jovanovic M, Kotta-Loizou I, Buck M, Zhang X.
Structures of Bacterial RNA Polymerase Complexes Reveal the Mechanism of
DNA Loading and Transcription Initiation. Molecular Cell 2018;70:
1111–1120. DOI:10.1016/j.molcel.2018.05.021
33. Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction-The
Driving Force of Gene Expression and the Target for Drug Action.Front. Mol. Biosci. , 2016;3:73. DOI: 10.3389/fmolb.2016.00073
34. Wang JC. Helical repeat of DNA in solution. Proc. Natl. Acad.
Sci. 1979;76(1):200-203.
35. Lee D, Schleif R. In vivo DNA Loops in araCBAD : Size Limit
and Helical Repeat. Proc. Nat. Acad. Sci. 1989;86:476-480.
36. He J, Tao H, Huang SY. Protein-ensemble–RNA docking by efficient
consideration of protein flexibility through homology models.Bioinformatics 2019; 35(23):4994–5002.
37. Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug
Discovery. Int. J. Mol. Sci. 2019;20: 4331. DOI:10.3390/ijms20184331
38. Pagadala NS, Syed K, Tuszynski J. oftware for molecular docking: a
review. Biophys Rev 2017;9:91–102. DOI 10.1007/s12551-016-0247-1
39. Sanchez-Sevilla A, Thimonier J, Marilley M, Rocca-Serra J, Barbet J.
Accuracy of AFM measurements of the contour length of DNA fragments
adsorbed on mica in air and in aqueous buffer. Ultramicroscopy2002;92:151–158.
40. Japaridze, A., Vobornik D, Lipiec E, Cerreta A, Szczerbinski J,
Zenobi R, Dietler G. Toward an Effective Control of DNA’s Submolecular
Conformation on a Surface. Macromolecules 2016;49:643−652. DOI:
10.1021/acs.macromol.5b01827