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Abstract

In this paper we establish existence and multiplicity solutions for a class of Choquard-Kirchhoff
type equations with variable exponents and critical reaction. Because of the critical reaction, we
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are also based on the combination of the mountain pass theorem and the Hardy-Littlewood-Sobolev
inequality for variable exponents. And we discuss the results in non-degenerate and degenerate cases.
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1 Introduction

In this paper we deal with the following critical nonlocal Choquard equations with variable exponents
of the form: M(Tp(x)(u))((−∆)p(x)u+ V (x)|u|p(x)−2u) = λ

(∫
RN

F (y,u(y))

|x−y|α(x,y)dy
)
f(x, u) + |u|p∗(x)−2u in RN ,

u ∈W 1,p(x)
V (RN ),

(1.1) e1.1

where
Tp(x)(u) =

∫
RN

1
p(x)

(|∇u|p(x) + V (x)|u|p(x))dx,

M is the Kirchhoff function, V ∈ C
(
RN ,R+

)
, α : RN ×RN 7→ R and α > 0, f is a continuous function,

λ is a real parameter, p: RN 7→ R is a function and p∗(x) = Np(x)
N−p(x) is the critical Sobolev exponent.

In the sequel, if h1, h2 ∈ C
(
RN
)
, we say that h1 � h2 if inf {h2(x)− h1(x) : x ∈ RN

}
> 0. And

in the paper, C may denote a positive constant and the same C may represent different constants.
Throughout this paper, we consider the following hypotheses:

(P) p : RN → R is continuous such that

1 < p− := inf
x∈RN

p(x) ≤ p(x) 6 p+ := sup
x∈RN

p(x) < N.

∗ E-mail address: 15733133979@163.com(L. Tao), 17549650739m@sina.cn(R. He), liangsihua@163.com(S. Liang).
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(V) V ∈ C(RN ,R) satisfies inf
x∈RN

V (x) ≥ V0 > 0, with V0 being a positive constant. Moreover, for any

D > 0, meas{x ∈ RN : V (x) ≤ D} <∞, where meas(·) denotes the Lebesgue measure in RN .

(M) (M1) M : R+
0 → R+ is continuous and there exists m0 > 0 such that inft≥0M(t) = m0.

(M2) There exists σ ∈ [1, p∗(x)/2p+) satisfying σM (t) ≥ M(t)t for all t ≥ 0, where M (t) =∫ t
0 M(s)ds.

(M3) There exists m1 > 0 such that M(t) ≥ m1t
σ−1 for all t ∈ R+ and M(0) = 0.

(F) (f1) f : RN × R → R is a Carathéodory function such that f is odd with respect to the second
variable.

(f2) There exist nonnegative functions r, a, with r ∈ C(RN ), p� rq− ≤ rq+ � p∗ such that

|f(x, t)| ≤ a(x)|t|r(x)−2t for a.e. x ∈ RN and t ∈ R,

where

0 ≤ a ∈ L∞(RN ) ∩ L
p∗(x)q+

p∗(x)−r(x)q+ (RN ) ∩ L
p∗(x)q−

p∗(x)−r(x)q− (RN )

and
1

q(x)
+
α(x, y)
N

+
1
q(y)

= 2 for all x, y ∈ RN

and
0 < α− := inf

x,y∈RN
α(x, y) ≤ λ+ := sup

x,y∈RN

α(x, y) < N.

(f3) there exists θ, with p+/σ < θ < p∗(x) such that 0 < θF (x, t) ≤ 2f(x, t)t for all t ∈ R+, where
F (x, t) =

∫ t
0 f(x, s)ds.

rem1.1 Remark 1.1. A typical example of M is given by M(t) = a+ b tσ−1 for t ∈ R+
0 , where a ∈ R+

0 , b ∈ R+
0

and a + b > 0. When M is of this type, problem (1.1) is said to be non–degenerate if a > 0, while
it is called degenerate if a = 0. Clearly, assumptions (M1)–(M2) cover the non–degenerate case and
(M2)–(M3) are automatic in the non–degenerate case.

The paper was motivated by some works appeared in recent years. From the point of view of
mathematical theory, the study of the p(·)-Laplacian is a natural extension of the p-Laplacian, which
itself is also a natural extension of the Laplacian (p = 2). Lebesgue spaces with variable exponents
appeared in the literature in 1931 in the paper by Orlicz [39], since then Zhikov [50] started a new
direction of investigation, which created the relationship between spaces with variable exponents and
variational integrals with nonstandard growth conditions. From the point of application, variable
exponents problem has many applications, for examples, in image processing [12] and electrorheological
fluids [45]. For these reasons, many authors have begun to study the existence of solutions to variable
exponents problem. For instance, various parametric boundary value problems with variable exponents
can be found in the book of Rădulescu-Repovs̆ [44] and also one can refer to the book by Diening
et al. [14] for the properties of such operator and associated variable exponent Lebesgue spaces and
variable exponent Sobolev spaces. For the critical problem, it was initially studied in the seminal paper
of Brézis and Nirenberg [9], which treated Laplace equations, and then there have been extensions
of [9] in many directions. Elliptic equations involving critical growth are delicate due to the lack
of compactness arising in connection with the variational approach. To overcome this difficulty, the
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concentration-compactness principles introduced by P.L. Lions in [30, 31] and its variants at infinity
[6, 7, 11] have played a decisive role in showing that a minimizing sequence or a Palais-Smale sequence
is precompact. In the last decade, many authors have extended the results for p-Laplacian involving
critical Sobolev exponents to variable exponents case. The variable exponents version of the second
concentration-compactness principles for a bounded domain was independently obtained in [17] and
[8]. Moreover, much more results regarding p(x)-Laplace equations and variable-order fractional p(x)-
Laplace equations are in progress, for example, we refer to [1, 18, 25, 26] and [22, 33, 27] , respectively.

On the other hand, the study of the Choquard equation begin with Fröhlich [19] and Pekar [40], they
dealt with the modeling of quantum polaron:

−∆u+ u =
(

1
|x|

∗ |u|2
)
u in R3. (1.2) e1.2

Then in the theory of Bose-Einstein condensation, there is a significant Choquard equation:

−∆u+ V (x)u =
(∫

RN

|u|p

|x− y|λ

)
|u|p−2u in RN , (1.3) e1.3

where N ≥ 3, 0 < λ < N . Next, when N = 3, p = 2 and λ = 1, Lieb in [28] use problem (1.3) to get
the approximation to Hartree-Fock theory of one-component plasma. As is known to all, the Choquard
equation is famous as the Schrödinger-Newton equation. And Penrose in[35, 41] applied equation (1.3)
as a model of self-gravitating matter. Recently, more and more works have studied the existence and
multiplicity of solutions for problem (1.3). We cite [36, 37, 38] for the work of Choquard type equations
over the whole domain RN . For critical case, Gao and Yang [20] studied the Brezis-Nirenberg type
existence results for the following critical Choquard problem in bounded domains Ω:

−∆u = λu+

(∫
Ω

|u(y)|2∗µ
|x− y|µ

dy

)
|u|2∗µ−2u in Ω, u = 0 on ∂Ω,

where λ > 0, 0 < µ < N . Later in [21] author used variational methods to prove the existence and
multiplicity of positive solutions for equations involving convex and convex-concave type nonlinearities.
Once we turn our attention to the Choquard problem with variable exponents, we immediately see that
the literature is relatively scarce. In this case, we call attention to [32], the authors firstly considered
the nonhomongeneous Choquard equation with p(x)-Laplacian operator and obtained the existence of
a weak solution by using variational methods. Secondly, by using truncation arguments and Krasnosel-
skii’s genus, they also showed a multiplicity of solutions for the p(x)-Laplacian Choquard equation with
non-degenerate Kirchhoff term. In [46], the authors investigated a class of nonhomogeneous Choquard
equations involving p-Laplacian, the existence of at least two nontrivial solutions is obtained by using
of Nehari manifold and minimax methods.

Recently, Alves and Tavares [2] in which work the authors considered the following quasilinear
Choquard equations involving variable exponent:

(−∆)p(x)u+ V (x)|u|p(x)−2u =
∫

RN

F (y, u(y))
|x− y|α(x,y)

dyf(x, u) in RN ,

u ∈W 1,p(x)(RN ),
(1.4) e1.4

where V, p : RN → R, α : RN → R and f : RN × R → R are continuous functions, F (x, t) is the
primitive of f(x, t). The existence of solution for this problem are obtained by using the Hardy-
Littlewood-Sobolev type inequality for variable exponents together with variational methods.
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Zhang etc. in [49] considered the following Choquard problem with variable exponents and critical
reaction: 

−∆p(x)u+ µ|u|p(x)−2u =
∫

RN

F (y, u(y))
|x− y|α(x,y)

dyf(x, u) + β(x)|u|p∗(x)−2u in RN ,

u ∈W 1,p(x)(RN ),
(1.5) e1.5

where α : RN → R, f : RN × R → R and β : RN → R are continuous functions, and p : RN → R is a
Lipschitz radially symmetric function, p∗(x) = Np(x)/(N − p(x)) denote the critical Sobolev exponent
and assume that µ > 0. The existence of infinitely many solutions for problem (1.5) are obtained
by variational and analytic methods, including the Hardy-Littlewood-Sobolev inequality for variable
exponents and the concentration-compactness principle for problems with variable growth. To the best
of our knowledge, the existence and multiplicity of solutions for the critical Choquard-Kirchhoff type
equations with variable exponents (1.1) has not yielded any results, especially for the degenerate cases.

The goal of this research is to complete and improve the study of the critical Choquard-Kirchhoff
type equations with variable exponents. And we discuss the results in non-degenerate and degenerate
cases. It is worth mentioning that the degenerate and non-degenerate case are rather interesting and
are treated in well-known papers in Kirchhoff theory [13]. From a physical point of view, the fact that
M(0) = 0 means that the base tension of the string is zero, a very realistic model. Very recently, there
are also some authors working on the degenerate Kirchhoff problem. For example, Wang et al. [48]
dealt with the existence and multiplicity of solutions for critical Kirchhoff-type p-Laplacian problems
in the degenerate case by using the mountain pass theorem and an abstract critical point theorem
based on the cohomological index. Song and Shi [47] obtained the existence of infinitely many solutions
for a class of degenerate p-fractional Kirchhoff equations with critical Hardy-Sobolev nonlinearities by
means of the Kajikiya’s new version of the symmetric mountain pass lemma. Subsequently, Liang et.
al. [24] were concerned with the existence and multiplicity of solutions for Kirchhoff problem with the
fractional Choquard-type in the degenerate Kirchhoff case. On some interesting results recovering the
degenerate case of Kirchhoff–type problems, we refer to [5, 10, 34, 42] and the references therein for
more details in bounded domains and in the whole space.

Then the main theorems are the following in this paper.

the1.1 Theorem 1.1. Assume (P) and (V) hold. If M satisfies (M1)–(M2) and f verifies (f1)–(f3), then
there exists λ1 > 0 such that for any λ ≥ λ1 problem (1.1) has a nontrivial solution in W

1,p(x)
V (RN ).

the1.2 Theorem 1.2. Assume (P) and(V) hold. If M satisfies (M1)–(M2), f verifies (f1)–(f3) and suppose
one of the following conditions holds:
(i) there exists a constant m∗ > 0 such that for each m0 > m∗ and λ > 0;
(ii) there exists a constant λ2 > 0 such that, for all λ > λ2 and m0 > 0.
Then, problem (1.1) has at least n pairs of nontrivial weak solutions in W

1,p(x)
V (RN ).

We also obtain the following existence results for equation(1.1) in the degenerate case.

the1.3 Theorem 1.3. Assume (P) and (V) hold. If M satisfies (M2)–(M3) and f verifies (f1)–(f3), then
there exists λ3 > 0 such that for any λ ≥ λ3 problem (1.1) has a nontrivial solution in W

1,p(x)
V (RN ).

the1.4 Theorem 1.4. Assume (P) and (V) hold. If M satisfies (M2)–(M3), f verifies (f1)–(f3) and suppose
one of the following conditions holds:
(i) there exists a constant m∗ > 0 such that for each m1 > m∗ and λ > 0;
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(ii) there exists a constant λ4 > 0 such that, for all λ > λ4 and m1 > 0.
Then, problem (1.1) has at least n pairs of nontrivial weak solutions in W

1,p(x)
V (RN ).

The paper is organized as follows. Section 2 contains some properties of the Lebesgue spaces with
variable exponents and the Sobolev spaces with variable exponents. In Section 3, we give the proof of
the Palais-Smale condition at some special conditions by using the concentration-compactness principles
for Sobolev spaces with variable exponents. Section 4 proves the existence and multiplicity result for
problem (1.1) in the non–degenerate case. Finally in Section 5, we give the proof of Theorems 1.3 and
1.4, which present the proof of existence and multiplicity of solutions for problem (1.1) in the degenerate
case.

2 Preliminaries
sec2

In this section, we review some basic definitions on the Lebesgue spaces with variable exponents and
the Sobolev spaces with variable exponents. We refer to the [14, 15, 16] for more details.

Set Ω be a bounded domain of RN , and

C+(Ω̄) = {h ∈ C(Ω̄) : h(x) > 1 for all x ∈ Ω̄}.

For any h ∈ C+(Ω̄), we define
h− = min

x∈Ω̄
h(x), h+ = max

x∈Ω̄
h(x).

For any p ∈ C+(Ω̄), we define the variable exponent Lebesgue space as

Lp(x)(Ω) = {u : Ω → R | u is measurable and
∫

Ω
|u(x)|p(x)dx < +∞

}
which endowed with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)λ
∣∣∣∣p(x)

dx ≤ 1

}
.

The Lebesgue-Sobolev space with variable exponents W 1,p(x)
(
RN
)

is defined by:

W 1,p(x)
(
RN
)

=
{
u ∈ Lp(x)

(
RN
)
; |∇u|p(x) ∈ Lp(x)

(
RN
)}
,

with the norm
‖u‖W 1,p(x)(RN ) = |u|p(x) + |∇u|p(x).

For problem (1.1) , the appropriate Sobolev space is W 1,p(x)
V

(
RN
)
, which defined as the completion of

C∞
0

(
RN
)

with the norm

‖u‖
W

1,p(x)
V (RN )

= ‖∇u‖Lp(x)(RN ) + ‖u‖
L

p(x)
V (RN )

where

‖u‖
L

p(x)
V (RN )

= inf

{
η > 0 :

∫
RN

V (x)
∣∣∣∣uη
∣∣∣∣p(x)

dx ≤ 1

}
.
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pro2.1 Proposition 2.1 (see [16]). (1) Denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω) with 1
p(x) + 1

p′(x) =
1, ∫

Ω
|uv|dx ≤

(
1
p−

+
1

(p′)−

)
|u|p(x)|v|p′(x), u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω)

holds.
(2) Define mapping ρ : Lp(x)(Ω) → R by ρ(u) =

∫
Ω |u|

p(x)dx, then the following relations hold

|u|p(x) < 1(= 1, > 1) ⇔ ρ(u) < 1(= 1, > 1),

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x),

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

Then we give the Hardy-Littlewood-Sobolev inequality for variable exponents, see [2].

pro2.2 Proposition 2.2. Let p, q ∈ C+
(
RN
)
, h ∈ Lp+ (RN

)
∩Lp−

(
RN
)
, g ∈ Lq+ (RN

)
∩Lq−

(
RN
)

, and α :
RN ×RN → R be a continuous function such that 0 < α− := infx∈RN α(x) ≤ α+ := supx∈RN α(x) < N

and 1
p(x) + α(x,y)

N + 1
q(y) = 2, for ∀x, y ∈ RN .

Then, we have∣∣∣∣∫∫
R2N

h(x)g(y)
|x− y|α(x,y)

dxdy

∣∣∣∣ ≤ C
(
|h|

Lp+ (RN )
|g|

Lq+ (RN )
+ |h|

Lp− (RN )
|g|

Lq− (RN )

)
where C > 0 is a constant that does not depend on h and g.

cor2.1 Corollary 2.1. In particular for h(x) = g(x) = |u(x)|β(x) ∈ Lr+
(RN ) ∩ Lr−(RN ), we have∣∣∣∣∣

∫∫
RN×RN

|u(x)|β(x)|u(y)|β(y)

|x− y|α(x, y)
dxdy

∣∣∣∣∣ ≤ C

(∣∣∣|u|β(·)
∣∣∣2
Lr+ (RN )

+
∣∣∣|u|β(·)

∣∣∣2
Lr− (RN )

)
,

where β, r ∈ C+(RN ) such that 1 < β−r− ≤ β(x)r− ≤ β(x)r+ < p∗(x) for all x ∈ RN , C > 0 is a
constant that does not depend on r.

rem2.1 Remark 2.1. If (P) and (V) hold, then the Sobolev embedding

W
1,p(x)
V

(
RN
)
↪→ Ls(x)

(
RN
)

is compact for all s ∈ C+
(
RN
)

and p(x) ≤ s(x) ≤ p∗(x),∀x ∈ RN . Hence, it is obvious that

‖u‖
W

1,p(x)
V (RN )

≤ S|u|Ls(x)(RN ),

where S is the best Sobolev constant.

rem2.2 Remark 2.2. We can find that there exists a constant b > 0 such that∫
RN

(
|∇u|p(x) + V (x)|u|p(x)

)
dx ≥ b

(∫
RN

(
|∇u|p(x) + |u|p(x)

)
dx

)
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3 Verification of (PS)c condition
sec3

Let’s first recall the definition of the (PS)c condition. Given c ∈ R, we say the functional Jλ satisfies
the Palais-Smale condition at level c if any sequence (un)n ⊂ W

1,p(x)
V

(
RN
)

such that Jλ(un) → c and
J ′λ(un) → 0 has a convergent subsequence. In this paper, we will prove the functional Jλ satisfies the
(PS)c condition at special levels c.

We say that u ∈W 1,p(x)
V

(
RN
)

is a weak solution of problem (1.1) if

M(Tp(x)(u))
∫

RN

(
|∇u|p(x)−2∇u∇v + V (x)|u|p(x)−2uv

)
dx

= λ

∫
RN

∫
RN

F (y, u(y))f(x, u(x))v(x)
|x− y|α(x,y)

dxdy +
∫

RN

|u|p∗(x)−2uvdx

(3.1) e3.1

for all v ∈W 1,p(x)
V

(
RN
)
.

The energy functional Jλ : W 1,p(x)
V (RN ) → R associated to problem (1.1) is given by

Jλ(u) = M
(
Tp(x)(u)

)
− λΦ(u)−

∫
RN

1
p∗(x)

|u|p∗(x)dx, (3.2) e3.2

where
Φ(u) =

1
2

∫
RN

∫
RN

F (x, u(x))F (y, u(y))
|x− y|λ(x,y)

dxdy

and M (t) =
∫ t
0 M(s)ds and F (x, t) =

∫ t
0 f(x, s)ds. It is obvious that Jλ ∈ C1(W 1,p(x)

V (RN )). Moreover,
for all u, v ∈W 1,p(x)

V (RN ), we deduce that

〈J ′λ(u), v〉 =M(Tp(x)(u))
∫

RN

(
|∇u|p(x)−2∇u∇v + V (x)|u|p(x)−2uv

)
dx

− λ

∫
RN

∫
RN

F (y, u(y))f(x, u(x))v(x)
|x− y|α(x,y)

dxdy −
∫

RN

|u|p∗(x)−2uvdx.

(3.3) e3.3

Hence, the weak solutions of problem (1.1) are the critical points of the functional Jλ.

lem3.1 Lemma 3.1. Assume (P), (V), (F) and (M1)–(M2) hold. Let (un)n ⊂W
1,p(x)
V (RN ) be a Palais-Smale

sequence of functional Jλ, then

Jλ(un) → cλ and J ′λ(un) → 0 in (W 1,p(x)
V (RN ))′ (3.4) e3.4

as n→∞, where (W 1,p(x)
V (RN ))′ is the dual of W 1,p(x)

V (RN ). If

cλ <

(
1
θ
− 1
p∗

)
min

{(
m0S

p+
)τ+

,
(
m0S

p+
)τ−

}
, (3.5)

where τ(x) = p∗(x)
p∗(x)−p+ and S is defined as in Remark 2.1, then there exists a subsequence of (un)n

strongly convergent in W
1,p(x)
V (RN ).
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Proof. First, We claim that (un)n is bounded in W 1,p(x)
V (RN ).

Let (un)n be a (PS)cλ
sequence for Jλ, with cλ satisfying (3.5). Then, from (f3), we can deduce that

cλ + 1 + o(1)‖un‖ = Jλ(un)− 1
θ
〈J ′λ(un), un〉

= M
(
Tp(x)(un)

)
− 1
θ
M
(
Tp(x)(un)

) [∫
RN

|∇un|p(x) + V (x)|un|p(x)dx

]
+
∫

RN

(
1
θ
− 1
p∗(x)

)
|un|p

∗(x)dx+ λ

∫∫
RN

F (y, un(y))
|x− y|α(x,y)

(
f(x, un)un

θ
− F (x, un)

2

)
dxdy

≥
(

1
σ
− p+

θ

)
m0

p+

[∫
RN

|∇un|p(x) + V (x)|un|p(x)dx

]
+
∫

RN

(
1
θ
− 1
p∗

)
|un|p

∗
dx

≥
(

1
σ
− p+

θ

)
m0

p+
‖un‖p− . (3.6) e3.6

This fact implies that sequence (un)n is bounded in W 1,p(x)
V (RN ).

Next, we prove that 〈
Φ′ (un)− Φ′(u), un − u

〉
→ 0 as n→∞.

Since un → u weakly in W 1,p(x)
V

(
RN
)

as n→∞, when Φ′(u) ∈
(
W

1,p(x)
V

(
RN
))′

, we can yield that〈
Φ′(u), un − u

〉
→ 0 as n→∞.

So we only need to prove that 〈
Φ′ (un) , un − u

〉
→ 0 as n→∞.

In view of Proposition 2.2, we deduce that∣∣〈Φ′ (un) , un − u
〉∣∣ ≤C ‖F (x, un)‖

Lp+ (RN )
‖f (x, un) (un − u)‖

Lq+ (RN )

+ C ‖F (x, un)‖
Lp− (RN )

‖f (x, un) (un − u)‖
Lq− (RN )

.
(3.7) e3.7

Combining (f2) and the boundedness of (un)n in W 1,p(x)
V

(
RN
)
, we can get that

‖F (x, un)‖
Lp+

(RN )
≤C

(∫
RN

(
|un|p

+r(x)
)
dx

) 1
p+

≤Cmax
{
‖un‖r+

Lp+r(x)(RN )
, ‖un‖r−

Lp+r(x)(RN )

}
≤C

(3.8) e3.8

and
‖F (x, un)‖

Lp− (RN )
≤Cmax

{
‖un‖r+

Lp−r(x)(RN )
, ‖un‖r−

Lp−r(x)(RN )

}
≤C.

(3.9) e3.9
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According to (f2), Remark 2.1 and the boundedness of (un)n in W 1,p(x)
V

(
RN
)
, we can yield that

‖f (x, un) (un − u)‖q+

Lq+ (RN )

≤C
∥∥∥|un|q

+(r(x)−1)
∥∥∥

L
r(x)

r(x)−1 (RN )

∥∥∥|un − u|q
+
∥∥∥

Lr(x)(RN )

≤Cmax

{
‖un − u‖q+

Lq+r(x)(RN )
, ‖un − u‖

q+r−

r+

Lq+r(x)(RN )

}

+ Cmax

{
‖un − u‖

q+r+

r−

Lq+r(x)(RN )
, ‖un − u‖q+

Lq+r(x)(RN )

}
=on(1) as n→∞

(3.10) e3.10

and
‖f (·, un) (un − u)‖q−

Lq− (RN )

≤C
∥∥∥|un|q

−(r(·)−1)
∥∥∥

L
r(x)

r(x)−1 (RN )

∥∥∥|un − u|q
−
∥∥∥

Lr(x)(RN )

≤Cmax

{
‖un − u‖q−

Lq−r(x)(RN )
, ‖un − u‖

q−r−

r+

Lq−r(x)(RN )

}

+ Cmax

{
‖un − u‖

q−r+

r−

Lq−r(x)(RN )
, ‖un − u‖q−

Lq−r(x)(RN )

}
=on(1) as n→∞.

(3.11) e3.11

Combining (3.7)-(3.11), we can obtain 〈Φ′ (un) , un − u〉 → 0 as n→∞. So we deduce that〈
Φ′ (un)− Φ′(u), un − u

〉
→ 0, as n→∞.

Then, in view of the concentration-compactness principle for variable exponents in [23], we get

un → u a.e. in RN ,

un ⇀ u in W
1,p(x)
V (RN ),

Un(x) ∗
⇀ µ ≥ U(x) +

∑
i∈I

δxiµi,

|un|p
∗(x) ∗

⇀ ν = |u|p∗ +
∑
i∈I

δxiνi,

Sν
1

p∗(x)

i ≤ µ
1

p(x)

i for i ∈ I,

(3.12) e3.12

where
Un(x) := |∇un(x)|p(x) + V (x)|un(x)|p(x)

and
U(x) := |∇u(x)|p(x) + V (x)|u(x)|p(x).

9



Furthermore, we yield that

lim sup
n→∞

∫
RN

Un(x)dx = µ(RN ) + µ∞,

lim sup
n→∞

∫
RN

|un|p
∗(x)dx = ν(RN ) + ν∞,

Sν1/p∗∞∞ ≤ µ1/p∞
∞ ,

(3.13) e3.13

where
µ∞ = lim

R→∞
lim sup

n→∞

∫
{|x|>R}

(|∇un(x)|p(x) + V (x)|un(x)|p(x))dx,

ν∞ = lim
R→∞

lim sup
n→∞

∫
{|x|>R}

|un|p
∗(x)dx,

p∞ = lim
|x|→∞

p(x) and p∗∞ = lim
|x|→∞

p∗(x).

Now we claim that
I = ∅ and ν∞ = 0.

We assume that I 6= ∅. For any i ∈ I and any ε > 0 small, we define a smooth cut-off function φε,i

centered at zi such that

0 ≤ φε,i(x) ≤ 1, φε,i(x) = 1 in B2ε(zi), φε,i(x) = 0 in Bε(zi)c, |∇φε,i(x)| ≤ 2/ε.

Combining the boundedness of (unφε,i)n in W 1,p(x)
V (RN ) with 〈J ′λ(un), unφε,i〉 → 0, we deduce that

M(Tp(x)(un))
∫

RN

(
|∇un|p(x)φε,i + V (x)|un|p(x)φε,i + |∇un|p(x)−2∇un∇φε,iun

)
dx

= λ

∫
RN

∫
RN

F (y, un(y))f(x, un(x))unφε,i

|x− y|α(x,y)
dxdy +

∫
RN

|un|p
∗(x)φε,idx+ on(1).

(3.14) e3.14

Since un → u in Lp(x) (B2ε(zi)) , we get that

‖∇φε,iun‖Lp(x)(RN ) → ‖∇φε,iu‖Lp(x)(RN ) as n→∞.

Then we have

lim
n→∞

∣∣∣∣∫
RN

|∇un|p(x)−2∇un∇φε,iundx

∣∣∣∣
≤ lim sup

n→∞

∫
RN

|∇un|p(x)−1|∇φε,iun|dx

≤ lim sup
n→∞

C
∥∥∥|∇un|p(x)−1

∥∥∥
L

p(x)
p(x)−1 (RN )

‖∇φε,iun‖Lp(x)(RN )

≤ C‖∇φε,iu‖Lp(x)(RN )

(3.15) e3.15
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and ∫
RN

|∇φε,iu|p(x)dx

=
∫

B2ε(zi)
|∇φε,iu|p(x)dx ≤ C

∥∥∥|∇φε,i|p(x)
∥∥∥

L
p∗(x)

p∗(x)−p(x) (B2ε(zi))

∥∥∥|u|p(x)
∥∥∥

L
p∗(x)
p(x) (B2ε(zi))

≤ Cmax


(∫

B2ε(zi)
|∇φε,i|Ndx

) p+

N

,

(∫
B2ε(zi)

|∇φε,i|Ndx

) p−
N


∥∥∥|u|p(x)

∥∥∥
L

p∗(x)
p(x) (B2ε(zi))

≤ Cmax


(

4NwN

N

) p+

N

,

(
4NwN

N

) p−
N

∥∥∥|u|p(x)
∥∥∥

L
p∗(x)
p(x) (B2ε(zi))

= oε(1) as ε→ 0,

(3.16) e3.16

where wN is the surface area of the unit sphere in RN .
Next, we prove that∫

RN

∫
RN

F (y, un(y))f(x, un(x))unφε,i

|x− y|α(x,y)
dxdy =

〈
Φ′ (un) , unφε,i

〉
→
∫

RN

∫
RN

F (y, u(y))f(x, u(x))u(x)φε,i(x)
|x− y|α(x,y)

dxdy =
〈
Φ′(u), uφε,i

〉
as n→∞.

According to Proposition 2.2, the boundedness of (un)n in W
1,p(x)
V (RN ) and the Lebesgue dominated

convergence theorem, we obtain∣∣〈Φ′ (un) , unφε,i

〉
−
〈
Φ′(u), uφε,i

〉∣∣
≤
∣∣∣∣∫

RN

∫
RN

F (y, un(y)) (f (x, un(x))un(x)− f(x, u(x))u(x))
|x− y|α(x,y)

dxdy

∣∣∣∣
+
∣∣∣∣∫

RN

∫
RN

(F (y, un(y))− F (y, u(y))) f(x, u(x))u(x)
|x− y|α(x,y)

dxdy

∣∣∣∣
≤ C ‖F (x, un)‖

Lp+ (RN )
‖f (x, un)un − f(x, u)u‖

Lq+ (RN )

+ C ‖F (x, un)‖
Lp− (RN )

‖f (x, un)un − f(x, u)u‖
Lq− (RN )

+ C ‖F (x, un)− F (x, u)‖
Lp+

(RN )
‖f(x, u)u‖

Lq+
(RN )

+ C ‖F (x, un)− F (x, u)‖
Lp− (RN )

‖f(x, u)u‖
Lq− (RN )

≤ C ‖f (x, un)u− f(x, u)u‖
Lq+

(RN )
+ C ‖f (x, un)u− f(x, u)u‖

Lq− (RN )

+ Cu ‖F (x, un)− F (x, u)u‖
Lp+

(RN )
+ Cu ‖F (x, un)− F (x, u)u‖

Lp− (RN )

= on(1) as n→∞,

(3.17) e3.17
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where Cu is a positive constant. And∣∣〈Φ′(u), uφε,i

〉∣∣ ≤ C‖F (x, u)‖
Lp+ (RN )

‖f(x, u)uφε,i‖Lq+ (RN )

+ C‖F (x, u)‖
Lp− (RN )

‖f(x, u)uφε,i‖Lq− (RN )

≤ C‖f(x, u)uφε,i‖Lq+ (RN )
+ C‖f(x, u)uφε,i‖Lq− (RN )

≤ C

(∫
B2ε(zi)

a(x)q+ |u|r(x)q+
dx

) 1
q+

+ C

(∫
B2ε(zi)

a(x)q− |u|r(x)q−dx

) 1
q−

≤ C

(∫
B2ε(zi)

|u|r(x)q+
dx

) 1
q+

+ C

(∫
B2ε(zi)

|u|r(x)q−dx

) 1
q−

= oε(1) as ε→ 0.

(3.18) e3.18

Combining (3.14)-(3.18), we deduce that

M(Tp(x)(un))
∫

RN

(
|∇un|p(x)φε,i + V (x)|un|p(x)unφε,i

)
dx =

∫
RN

|un|p
∗(x)φε,idx+ on(1). (3.19) e3.19

Since φε,i has compact support and (M1), choosing n→∞ and ε→ 0 in (3.19), we get

m0µi ≤ νi.

In view of (3.12), we yield that

νi ≥
(
m0S

p+
) p∗(zi)

p∗(zi)−p+ ≥ min
{(

m0S
p+
)τ+

,
(
m0S

p+
)τ−

}
, (3.20) e3.20

where τ(x) = p∗

p∗−p+ . According to Jλ(un) → cλ and J ′λ(un) → 0 as n→∞, we obtain from (3.20) and
(3.5) that

cλ = lim
n→∞

Jλ(un) = lim
n→∞

(
Jλ(un)− 1

θ
〈J ′λ(un), un〉

)
≥
∫

RN

(
1
θ
− 1
p∗(x)

)
|un|p

∗(x)dx

≥
(

1
θ
− 1
p+

)∫
RN

|un|p
∗(x)φε,idx ≥

(
1
θ
− 1
p+

)
νi

≥
(

1
θ
− 1
p+

)
min

{(
m0S

p+
)τ+

,
(
m0S

p+
)τ−

}
> cλ.

(3.21) e3.21

We get a contradiction, so I = ∅.
Then we show that ν∞ = 0. We suppose that ν∞ > 0. Similarly, we define a cut off function

φR ∈ C∞
0 (RN ) such that φR(x) = 0 in BR and φR(x) = 1 in Bc

R+1. According to the boundedness of

(unφR)n in W 1,p(x)
V (RN ) and 〈J ′λ(un), unφR〉 → 0 as n→∞, we deduce that

M(Tp(x)(un))
∫

RN

(
|∇un|p(x)φR + V (x)|un|p(x)unφR + |∇un|p(x)−2∇un∇φRun

)
dx

= λ

∫
RN

∫
RN

F (y, un(y))f(x, un(x))unφR

|x− y|α(x,y)
dxdy +

∫
RN

|un|p
∗(x)φRdx+ on(1).

(3.22) e3.22
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Similarly, we can prove that

lim
R→∞

lim sup
n→∞

∣∣∣∣∫
RN

|∇un|p(x)−2∇un∇φRundx

∣∣∣∣ = 0

and
lim

R→∞
lim sup

n→∞

∫
RN

∫
RN

F (y, un(y))f(x, un(x))unφR

|x− y|α(x,y)
dxdy =

〈
Φ′ (un) , unφR

〉
= 0.

So we get

M(Tp(x)(un))
∫

RN

(
|∇un|p(x)φR + V (x)|un|p(x)unφR

)
dx =

∫
RN

|un|p
∗(x)φRdx+ on(1). (3.23) e3.23

Letting R→∞ in (3.23), we deduce
m0µ∞ ≤ ν∞. (3.24) e3.24

According to (3.13) and (3.24), we can also infer that

cλ = lim
n→∞

Jλ(un) = lim
n→∞

(
Jλ(un)− 1

θ
〈J ′λ(un), un〉

)
≥
∫

RN

(
1
θ
− 1
p∗(x)

)
|un|p

∗(x)dx

≥
(

1
θ
− 1
p+

)∫
RN

|un|p
∗(x)φRdx ≥

(
1
θ
− 1
p+

)
ν∞

≥
(

1
θ
− 1
p+

)
min

{(
m0S

p+
)τ+

,
(
m0S

p+
)τ−

}
> cλ.

(3.25) e3.25

Then we get a contradiction, so ν∞ = 0.
Therefore, in view of I = ∅ and ν∞ = 0, we obtain that

lim sup
n→∞

∫
RN

|un|p
∗(x)dx =

∫
RN

|u|p∗(x)dx.

According to the Brézis-Lieb type lemma, we get∫
RN

|un − u|p∗dx→ 0,

thus ‖un − u‖Lp∗(x)(RN ) → 0. Consequently, we have

lim
n→∞

∫
RN

(
|un|p

∗(x)−2 un − |u|p
∗(x)−2u

)
(un − u) dx = 0. (3.26) e3.26

Then we get
lim

n→∞

(
M
(
Tp(x)(un)

)
−M

(
Tp(x)(u)

))
〈L(u), un − u〉 = 0, (3.27) e3.27

where the functional L(v) on W 1,p(x)
V (RN ) defined by

〈L(v), w〉 =
∫

RN

(
|∇v|p(x)−2∇v∇w + V (x)|v|p(x)−2vw

)
dx

= λ

∫
RN

∫
RN

F (y, v(y))f(x, v(x))w(x)
|x− y|α(x,y)

dxdy +
∫

RN

|v|p∗(x)−2vwdx,

(3.28) e3.28
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for all w ∈W 1,p(x)
V (RN ).

Combining the weak convergence of (un)n in W 1,p(x)
V (RN ) with the boundedness of (M(Tp(x)(un))−

M(Tp(x)(u)))n in RN , we obtain that

lim
n→∞

(
M
(
Tp(x)(un)

)
−M

(
Tp(x)(u)

))
〈L(u), un − u〉 = 0. (3.29) e3.29

It follows from 〈Jλ(un), un − u〉 → 0 (n→∞) that

o(1) = 〈J ′λ(un)− J ′λ(u), un − u〉
= M

(
Tp(x)(un)

)
[〈L(un), un − u〉 − 〈L(u), un − u〉] + [M

(
Tp(x)(un)

)
−M

(
Tp(x)(u)

)
]〈L(u), un − u〉

− λ
〈
Φ′ (un)− Φ′(u), un − u

〉
−
∫

RN

(
|un|p

∗(x)−2 un − |u|p
∗(x)−2u

)
(un − u) dx

= M
(
Tp(x)(un)

)
[〈L(un), un − u〉 − 〈L(u), un − u〉] + o(1).

(3.30) e3.30

Hence, we yield that
lim

n→∞
[〈L(un), un − u〉 − 〈L(u), un − u〉] = 0,

that is, ∫
RN

(
|∇(un − u)|p(x) + V (x)|un − u|p(x)

)
dx = 0.

Hence, we deduce that (un)n strongly converges to u in W 1,p(x)
V (RN ). This completes the proof.

4 Non–degenerate case for problem (1.1)
sec4

In this part, we use the mountain pass theorem (see [3]) and the Krasnoselskii genus (see [43]) to prove
Theorem 1.1 and Theorem 1.2, respectively.

4.1 Proof of Theorem 1.1

First, we try to prove that the energy functional Jλ has mountain pass structure.

lem4.1 Lemma 4.1. Let Jλ ∈ C1(E), with Jλ(0) = 0, where E is a real Banach space. Assume that

(1) there exists ρ, α > 0 satisfying Jλ(u) ≥ α for all u ∈ E with ‖u‖E = ρ;

(2) there exists e ∈ E such that Jλ(e) < 0 with ‖e‖E > ρ .

Then we can define Γ = {γ ∈ C([0, 1], E) : γ(0) = 1, γ(1) = e}. Hence,

c = inf
γ∈Γ

max
0≤t≤1

Jλ(γ(t)) ≥ α

and there exists a (PS)c sequence (un)n ⊂ E.
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Proof. In view of assumption (M1) and Remark 2.1, with ‖u‖ ≤ 1, we get

Jλ(u) = M
(
Tp(x)(u)

)
− λΦ(u)−

∫
RN

1
p∗(x)

|u|p∗(x)dx

≥ m0

p+
‖u‖p−

W
1,p(x)
V (RN )

− S

p∗
‖u‖p∗

W
1,p(x)
V (RN )

− C‖F (x, u) ‖2
Lq+ (RN )

− C‖F (x, u) ‖2
Lq− (RN )

≥ m0

p+
‖u‖p−

W
1,p(x)
V (RN )

− S

p∗
‖u‖p∗

W
1,p(x)
V (RN )

− Cmax
{
‖u‖2r+

Lq+r(x)(RN )
, ‖u‖2r−

Lq+r(x)(RN )

}
− Cmax

{
‖u‖2r+

Lq−r(x)(RN )
, ‖u‖2r−

Lq−r(x)(RN )

}
≥m0

p+
‖u‖p−

W
1,p(x)
V (RN )

− S

p∗
‖u‖p∗

W
1,p(x)
V (RN )

− 2C
S2r−

‖u‖2r−

W
1,p(x)
V (RN )

for any u ∈W 1,p(x)
V (RN ).

Hence, let ρ, α > 0 and the fact p− ≤ q−r(x) ≤ q+r(x) � p∗ such that Jλ(u) ≥ α for ‖u‖ = ρ. So we
prove (1) of Lemma 4.1.

In order to prove the conclusion (2) of Lemma 4.1, we choose ψ ∈ C∞
0 (RN ) and ψ > 0, we can

deduce from (M2) that

M (t) ≤ M (1)tσ for all t ≥ 1. (4.1) e4.2

According to assumption (F) and for any t > 1, we obtain that

Jλ(tψ) = M
(
Tp(x)(tψ)

)
− λΦ(tψ)−

∫
RN

1
p∗(x)

|tψ|p∗(x)dx

≤ M
(
Tp(x)(tψ)

)
−
∫

RN

1
p∗(x)

|tψ|p∗(x)dx

≤ M (1)tσp+
Tp(x)(ψ)− tp

∗(x)

p∗(x)

∫
RN

|ψ|p∗(x)dx.

(4.2) e4.3

In view of σp+ < p∗ and for t0 large enough, we obtain Jλ(t0ψ) < 0 and t0‖ψ‖ > ρ. Set e = t0ψ. Hence
e is the required function and the conclusion (2) in Lemma 4.1 is true. This proof is complete.

Proof of Theorem 1.1. Next, for any λ large enough, we prove that

cλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) <
(

1
θ
− 1
p∗

)
min

{(
m0S

p+
)τ+

,
(
m0S

p+
)τ−

}
. (4.3) e4.4

Combining (4.3), Lemma 3.1 and Lemma 4.1, it is obvious that we can deduce the existence of nontrivial
critical points of Jλ. So we need to prove (4.3). Let v0 ∈W 1,p(x)

V (RN ) such that

Tp(x)(v0) = 1 and lim
t→∞

Jλ(tv0) = −∞.

Hence, for some tλ > 0, we get supt≥0 Jλ(tv0) = Jλ(tλv0). And

M(Tp(x)(tv0))
∫

RN

(
|∇tv0|p(x) + V (x)|tv0|p(x)

)
dx

= λ

∫
RN

∫
RN

F (y, tv0(y))f(x, tv0(x))tv0
|x− y|α(x,y)

dxdy +
∫

RN

|tv0|p
∗(x)dx.

(4.4) e4.5
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Next, we claim that {tλ}λ>0 is bounded. First, we assume that tλ ≥ 1 for all λ > 0. According to
(4.4), we obtain that

p+σM (1)t2p+σ
λ ≥ p+σM (1)

(
Tp(x)(tλv0)

)σ
≥ p+M

(
Tp(x)(tλv0)

)
Tp(x)(tλv0)

≥ M
(
Tp(x)(tλv0)

) [
|∇tλv0|p(x) + V (x)|tλv0|p(x)

]
= λ

∫
RN

∫
RN

F (y, tλv0(y))f(x, tλv0(x))tλv0
|x− y|α(x,y)

dxdy +
∫

RN

|tλv0|p
∗(x)dx

≥ t
p∗(x)
λ

∫
RN

|v0|p
∗(x)dx. (4.5)

Since σ ∈ [1, p∗(x)/2p+), so 2p+σ < p∗(x) and (4.5), we get the boundedness of {tλ}λ.
Then we prove that tλ → 0 as λ → ∞. We can assume that there exist t0 > 0 and a sequence

(λn)n, with λn → ∞ as n → ∞, such that tλn → t0 as n → ∞. In view of the Lebesgue dominated
convergence theorem, we yield∫

RN

∫
RN

F (y, tλnv0(y))f(x, tλnv0(x))tλnv0

|x− y|α(x,y)
dxdy →

∫
RN

∫
RN

F (y, tλv0(y))f(x, tλv0(x))tλv0
|x− y|α(x,y)

dxdy

as n→∞. And

λn

∫
RN

∫
RN

F (y, tλv0(y))f(x, tλv0(x))tλv0
|x− y|α(x,y)

dxdy →∞ as n→∞.

So it contracts M
(
Tp(x)(t0v0)

)
= ∞ as n→∞ which implied in (4.4). Hence, tλ → 0 as λ→∞. Then

we have
lim

λ→∞

∫
RN

F (y, tλv0(y))f(x, tλv0(x))tλv0
|x− y|α(x,y)

dxdy = 0

and
lim

λ→∞

∫
RN

|tλv0|p
∗(x)dx = 0.

Moreover, by easy computation we deduce that

lim
λ→∞

(
sup
t≥0

Jλ(tv0)
)

= lim
λ→∞

Jλ(tλv0) = 0.

Then there exists λ1 > 0 such that

sup
t≥0

Jλ(tv0) <
(

1
θ
− 1
p∗

)
min

{(
m0S

p+
)τ+

,
(
m0S

p+
)τ−

}
,

for any λ ≥ λ1. Letting e = τv0, with τ large enough such that Jλ(e) < 0, we have

cλ ≤ max
t∈[0,1]

Jλ(γ(t)) by taking γ(t) = tτv0.

Finally, if λ large enough, we obtain

cλ ≤ sup
t≥0

Jλ(tv0) <
(

1
θ
− 1
p∗

)
min

{(
m0S

p+
)τ+

,
(
m0S

p+
)τ−

}
.
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4.2 Proof of Theorem 1.2

To prove Theorem 1.2, we need to use the Krasnoselskii genus introduced by Krasnoselskii himself in
[43]. Let X be a Banach space and Λ be the class of all closed subsets A ⊂ X \ {0} that are symmetric
with respect to the origin, that is, u ∈ A implies −u ∈ A.

lem4.2 Lemma 4.2 (see [43]). Let X be an infinite dimensional Banach space and let Jλ ∈ C1(X) be an even
functional, with Jλ(0) = 0. Suppose that X = Y ⊕ Z, where Y is finite dimensional, and that Jλ

satisfies

(I1) There exists constant ρ, α > 0 such that Jλ(u) ≥ α for all u ∈ ∂Bρ
⋂
Z;

(I2) There exists Θ > 0 such that Jλ satisfies the (PS)c condition for all c, with c ∈ (0,Θ);

(I3) For any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such that Jλ(u) ≤ 0 on
X̃ \BR.

Assume furthermore that Y is k dimensional and Y = span{v1, · · · , vk}. For n ≥ k, inductively choose
vn+1 6∈ En = span{v1, · · · , vn}. Let Rn = R(En) and Ωn = BRn

⋂
En. Define

Gn = {ψ ∈ C(Ωn, X) : ψ|∂BRn

⋂
En

= id and ψ is odd}

and
Γj =

{
ψ
(
Ωn \ V

)
: ψ ∈ Gn, n ≥ j, V ∈ Λ, γ(V ) ≤ n− j

}
,

where γ(V ) is the Krasnoselskii genus of V . For j ∈ N, set

cj = inf
E∈Γj

max
u∈E

Jλ(u).

Thus, 0 ≤ cj ≤ cj+1 and cj < Θ for j > k, then we get cj is a critical value of Jλ. Furthermore, if
cj = cj+1 = · · · = cj+m = c < Θ for j > k, then γ(Kc) ≥ m+ 1, where

Kc = {u ∈ X : Jλ(u) = c and J ′λ(u) = 0}.

Proof of Theorem 1.2. Then we can apply Lemma 4.2 to Jλ. Since W 1,p(x)
V (RN ) is a Banach space

and Jλ ∈ C1
(
W

1,p(x)
V (RN )

)
. According to (3.2), the functional Jλ satisfies Jλ(0) = 0. The proof is

similar to the proof of (1) and (2) in Lemma 4.1. Since Jλ satisfies (I1) and (I3) of Lemma 4.2. First,
we claim that there exists a sequence (Υn)n ⊂ R+, with Υn ≤ Υn+1, such that

cλn = inf
E∈Γn

max
u∈E

Jλ(u) < Υn.

According to the definition of cλn, we deduce that

cλn = inf
E∈Γn

max
u∈E

Jλ(u) ≤ inf
E∈Γn

max
u∈E

{
M
(
Tp(x)(u)

)
− 1
p∗

∫
RN

|u|p∗dx
}
.

Set

Υn = inf
E∈Γn

max
u∈E

{
M
(
Tp(x)(u)

)
− 1
p∗

∫
RN

|u|p∗dx
}
,
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so that Υn < ∞ and Υn ≤ Υn+1. We show that equation (1.1) has at least k pairs of weak solutions.
And we can analyze the following possibilities:
I. Fix λ > 0. Let m0 so large that

sup
n

Υn <

(
1
θ
− 1
p∗

)
min

{(
m0S

p+
)τ+

,
(
m0S

p+
)τ−

}
.

II. Similarly, in (4.3), for any λ > λ2, there exists λ2 > 0 such that

cλn ≤ Υn <

(
1
θ
− 1
p∗

)
min

{(
m0S

p+
)τ+

,
(
m0S

p+
)τ−

}
.

Hence, we yield

0 < cλ1 ≤ cλ2 ≤ · · · ≤ cλn < Υn <

(
1
θ
− 1
p∗

)
min

{(
m0S

p+
)τ+

,
(
m0S

p+
)τ−

}
.

In view of Proposition 9.30 in [43], we get that cλ1 ≤ cλ2 ≤ · · · ≤ cλn are critical values of Jλ.
If cλj = cλj+1 for some j = 1, 2, · · · , k − 1, we can get the set Kcλ

j
contains infinitely many distinct

points according to [4]. Hence, equation (1.1) has infinitely many weak solutions and we deduce the
result that equation (1.1) has at least k pairs of solutions.

5 Degenerate case for problem (1.1)
sec5

In this section, we discuss the degenerate case of problem (1.1). We assume that M satisfies (M2) and
(M3), and f verifies (f1)–(f3). We first give a crucial lemma.

lem5.1 Lemma 5.1. Let (un)n ⊂W
1,p(x)
V (RN ) be a Palais-Smale sequence of functional Jλ, then

Jλ(un) → cλ and J ′λ(un) → 0 in (W 1,p(x)
V (RN ))′

as n→∞, where
(
W

1,p(x)
V (RN ))

)′ is the dual of W 1,p(x)
V (RN ). If

cλ <

(
1
θ
− 1
p∗

)
min

{(
p−m1S

p+σ
)τ+

σ

,
(
p−m1S

p+σ
)τ−σ

}
, (5.1) e5.1

where τσ(x) := p∗

p∗−p+σ
, then there exists a subsequence of (un)n strongly convergent in W

1,p(x)
V (RN ).

Proof. If infn≥1 ‖un‖ = 0, then there exists a subsequence of (un)n such that un → 0 in W 1,p(x)
V (RN ) as

n → ∞. Hence, we assume that d := infn≥1 ‖un‖ > 0 and ‖un‖ > 1 for any integer n in the following
proof. In view of Jλ(un) → cλ and J ′λ(un) → 0 as n→∞,

cλ + 1 + o(1)‖un‖ =Jλ(un)− 1
θ
〈J ′λ(un), un〉

=M
(
Tp(x)(un)

)
− 1
θ
M
(
Tp(x)(un)

) [∫
RN

|∇un|p(x) + V (x)|un|p(x)dx

]
+
∫

RN

(
1
θ
− 1
p∗(x)

)
|un|p

∗(x)dx+ λ

∫∫
RN

F (y, un(y))
|x− y|α(x,y)

(
f(x, un)un

θ
− F (x, un)

2

)
dxdy.
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Combining (M2), (M3) and (f3), we have

cλ + 1 + o(1)‖un‖ = Jλ(un)− 1
θ
〈J ′λ(un), un〉

≥
(

1
σ
− p+

θ

)
M
(
Tp(x)(un)

)
Tp(x)(un)

≥
(

1
σ
− p+

θ

)
m1

(
Tp(x)(un)

)σ
≥
(

1
σ
− p+

θ

)
m1‖un‖p+σ.

(5.2) e5.2

Since p+σ > 1, we deduce that (un)n is bounded in W 1,p(x)
V (RN ).

Similar to the proof of Lemma 3.1, we can assume I 6= ∅. For any i ∈ I and any ε > 0 small, we
define a smooth cut-off function φε,i as Lemma 3.1. In view of the boundedness of (un)n in W 1,p(x)

V (RN )
and 〈J ′λ(un), unφε,i〉 → 0 as n→∞. Thus we have

M(Tp(x)(un))
∫

RN

(
|∇un|p(x)φε,i + V (x)|un|p(x)unφε,i + |∇un|p(x)−2∇un∇φε,iun

)
dx

= λ

∫
RN

∫
RN

F (y, un(y))f(x, un(x))unφε,i

|x− y|α(x,y)
dxdy +

∫
RN

|un|p
∗(x)φε,idx+ on(1).

(5.3) e5.3

Similarly in Lemma 3.1, we deduce that

lim sup
ε→0

lim sup
n→∞

∣∣∣∣∫
RN

|∇un|p(x)−2∇un∇φε,iundx

∣∣∣∣ = 0

and
lim sup

ε→0
lim sup

n→∞

∫
RN

∫
RN

F (y, un(y))f(x, un(x))unφε,i

|x− y|α(x,y)
dxdy =

〈
Φ′ (un) , unφε,i

〉
= 0.

By (M3) and (5.3), we have

M(Tp(x)(un))
∫

RN

(
|∇un|p(x)φε,i + V (x)|un|p(x)unφε,i

)
dx

= M
(
Tp(x)(un)

) ∫
RN

Un(x)φε,idx ≥M
(
Tp(x)(unφε,i)

) ∫
RN

Un(x)φε,idx

≥ p−
(
Tp(x)(unφε,i)

)
Tp(x)(unφε,i) ≥ p−m1

(
Tp(x)(unφε,i)

)σ
≥ (p−)σ+1m1

(∫
RN

Un(x)φε,idx

)σ

≥ (p−)σ+1m1µ
σ
i .

(5.4) e5.4

According to (5.3), we get
(p−)σ+1m1µ

σ
i ≤ νi.

Then we find that either νi = 0 or

νi ≥
(
p−m1S

p+σ
) p∗(zi)

p∗(zi)−p+σ ≥ min
{(

p−m1S
p+σ
)τ+

σ

,
(
p−m1S

p+σ
)τ−σ

}
. (5.5) e5.5
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Assume that (5.5) holds true. In view of Lemma 3.1, (M2) and (f3), we obtain

cλ ≥
(

1
θ
− 1
p∗

)∫
RN

|un|p
∗
φε,idx. (5.6) e5.6

So we get

cλ ≥
(

1
θ
− 1
p∗

)
min

{(
p−m1S

p+σ
)τ+

σ

,
(
p−m1S

p+σ
)τ−σ

}
.

Thus we get a contradiction with (5.1). Hence νi = 0.
Next, we claim that ν∞ = 0. Similarly, we define a smooth cut-off function φR as in Lemma 3.1.

Since 〈J ′λ(un), unφR〉 → 0 as n→∞,

M(Tp(x)(un))
∫

RN

(
|∇un|p(x)φR + V (x)|un|p(x)unφR + |∇un|p(x)−2∇un∇φRun

)
dx

= λ

∫
RN

∫
RN

F (y, un(y))f(x, un(x))unφR

|x− y|α(x,y)
dxdy +

∫
RN

|un|p
∗(x)φRdx+ on(1).

(5.7) e5.7

Similarly in Lemma 3.1, we deduce

lim
R→∞

lim sup
n→∞

∣∣∣∣∫
RN

|∇un|p(x)−2∇un∇φRundx

∣∣∣∣ = 0

and
lim

R→∞
lim sup

n→∞

∫
RN

∫
RN

F (y, un(y))f(x, un(x))unφR

|x− y|α(x,y)
dxdy =

〈
Φ′ (un) , unφR

〉
= 0.

According to (5.5) and choosing R→∞ and n→∞, we obtain that

M
(
Tp(·,·)(un)

) ∫
RN

Un(x)φRdx ≥ (p−)σ+1m1µ
σ
∞ (5.8) e5.8

and
(p−)σ+1m1µ

σ
∞ ≤ ν∞.

Combining with (3.12), we find that either ν∞ = 0 or

ν∞ ≥
(
p−m1S

p+σ
) p∗∞

p∗∞−p+σ ≥ min
{(

p−m1S
p+σ
)τ+

σ

,
(
p−m1S

p+σ
)τ−σ

}
. (5.9) e5.9

Then we prove (5.9). Similarly, in view of (3.21), we deduce that

cλ ≥
(

1
θ
− 1
p∗

)
min

{(
p−m1S

p+σ
)τ+

σ

,
(
p−m1S

p+σ
)τ−σ

}
. (5.10) e5.10

By (5.1), it is an obvious contradiction. Thus ν∞ = 0.
Hence, we have I = ∅ and

lim sup
n→∞

∫
RN

|un|p
∗(x)dx =

∫
RN

|u|p∗(x)dx.
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According to a Brézis-Lieb lemma for the Lebesgue spaces with variable exponents (see [23], Lemma
3.9) and last equality, we yield ∫

RN

|un − u|p∗(x)dx→ 0,

that is, un → u in Lp∗(x)(RN ). Moreover, we have∫
RN

|un|p
∗(x)−2un(un − u)dx→ 0.

Set L(v) be defined as in (3.28). Then it follows from (3.30) and 〈Jλ(un), un − u〉 → 0 that

lim
n→∞

M
(
Tp(x)(un)

)
[〈L(un), un − u〉 − 〈L(u), un − u〉] = 0.

We get
lim

n→∞
[〈L(un), un − u〉 − 〈L(u), un − u〉] = 0.

that is, ∫
RN

(
|∇(un − u)|p(x) + V (x)|un − u|p(x)

)
dx = 0.

So we can find a u in W 1,p(x)
V (RN ) such that (un)n strongly converges to u. The proof is now complete.

lem5.2 Lemma 5.2. The functional Jλ satisfies the conditions (1) and (2) of Lemma 4.1.

Proof. According to (M3), (f2) and Remark 2.1, for any λ > 0, u ∈ W
1,p(x)
V (RN ) and ‖u‖ < 1, we

deduce that

Jλ(u) =M
(
Tp(x)(u)

)
− λΦ(u)−

∫
RN

1
p∗(x)

|u|p∗(x)dx

≥ 1
σ
M
(
Tp(x)(u)

)
Tp(x)(u)−−

S

p∗
‖u‖p∗

W
1,p(x)
V (RN )

− C‖F (·, u) ‖2
Lq+ (RN )

− C‖F (·, u) ‖2
Lq− (RN )

≥ m1

σ(p+)σ
‖u‖p+σ

W
1,p(x)
V (RN )

− S

p∗
‖u‖p∗

W
1,p(x)
V (RN )

− Cmax
{
‖u‖2r+

Lq+r(x)(RN )
, ‖u‖2r−

Lq+r(x)(RN )

}
− Cmax

{
‖u‖2r+

Lq−r(x)(RN )
, ‖u‖2r−

Lq−r(x)(RN )

}
(5.11) e5.11

≥ m1

σ(p+)σ
‖u‖p+σ

W
1,p(x)
V (RN )

− S

p∗
‖u‖p∗

W
1,p(x)
V (RN )

− 2C
S2r−

‖u‖2r−

W
1,p(x)
V (RN )

.

Since p+σ < p∗ and p� rq− ≤ rq+ � p∗ , choosing ρ, α > 0, we have Jλ(u) ≥ α for ‖u‖ = ρ. Thus we
get the proof of (1) in Lemma 4.1. Similarly, we can prove that (2) of Lemma 4.1 is true.

Proof of Theorem 1.3 Similar to the proof of Lemma 4.1, we obtain that

cλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) <
(

1
θ
− 1
p∗

)
min

{(
p−m1S

p+σ
)τ+

σ

,
(
p−m1S

p+σ
)τ−σ

}
.

The rest of the proof is the same as Theorem1.1.

Proof of Theorem 1.4 The proof of Theorem 1.4 is the same as that of Theorem 1.2.
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