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Light field (LF) enables high-dimensional image data representation since
it can capture spatial and angular information of light rays simultaneously.
The low spatial resolution caused by the limited imaging ability of
the capturing equipment and the trade-off between spatial and angular
resolution greatly affects the quality and application of LF images. In
this letter, we propose an end-to-end LF super-resolution (SR) method
via geometric feature interaction. Firstly, the low-resolution LF images
are stacked in the horizontal and vertical epipolar plane image (EPI)
directions and form 3D VI stacks. Then, these stacks are put into a
dual-branch network, and we alternately perform 3D convolution on the
viewpoint images (VIs) and EPIs by reshaping features for better feature
extraction and interaction. The proposed method can fully explore the
texture information and geometric consistency of the LF, and super-
resolve all VIs at the same time. Experimental results on both real-world
and synthetic LF datasets show that the proposed method has higher
performance than other state-of-the-art methods.

Introduction: Light field (LF) imaging is one of the most widely used
methods to capture the 3D appearance of scenes. Compared with
traditional 2D images which capture the spatial information of light rays
only, LF images can obtain both spatial coordinates and incident angles of
light rays simultaneously [1]. Thus LFs enable lots of applications such
as depth estimation [2], image refocusing [3] and 3D reconstruction [4].
However, due to the limited imaging ability of the capturing equipment
and the trade-off between spatial and angular resolution, LF images have
much lower spatial resolution than traditional 2D images. Therefore, in this
letter, we focus on the further exploration of the LF spatial super-resolution
(SR) technology.

Unlike the 2D image SR based on scene content prior, the pixel
information needed for LF SR actually exists in each viewpoint image (VI).
Conventional LF SR methods [5-7] explicitly warp the pixels of VIs using
the disparity prior. These methods usually require complex optimization
models such as Gaussian mixture model [5], variational model [6] and
graph-based regularization model [7] to obtain better SR results. However,
the occlusion and noise in LFs lead to the loss of valid pixel information,
and disparity information heavily depends on the quality of the VI itself.
Therefore, it is difficult for conventional LF SR methods to obtain high-
quality SR results.

With the development of deep learning, convolutional neural networks
(CNNs) are used for LF SR [8-15]. Yuan et al. [8] applied a single-image
SR method to LF VIs, and then used another network to improve the
quality of epipolar plane images (EPIs). But this method treated related
VIs as separate individuals and ignored the connection between them.
Zhang et al. [9] used VIs stacked in four directions to super-resolve the
central VI, and there were different strategies for VIs with different angular
locations. However, this method only used partial VIs for LF SR, and the
remaining VIs were wasted. Recently, there are also methods of using all
the information of VIs. Jin et al. [11] proposed an all-to-one method, which
super-resolved each VI by taking all the remaining VIs as references.
Wang et al. [12] used an ordinary convolution and a dilated convolution
to extract spatial features and angular features, and then achieved LF SR
through their interaction. Liang et al. [13] proposed a mixed-angular-
resolution training strategy and a decouple-and-fuse module to achieve
angular-flexible SR. However, these methods [10-14] lacked the use of
geometric consistency of LF, which is characterized by EPI. On the basis
of [9], Zhang et al. [15] used 3D convolution to extract the features of VIs
and EPIs to accomplish LF SR. However, there are still some limitations on
implicit learning of EPI information. In summary, learning-based methods
can learn useful information for LF SR implicitly. However, they lack
the interaction with geometric characteristics such as EPI. So the overall
performance of LF SR still has room for improvement.

Inspired by the review, we propose an end-to-end LF SR method via
geometric feature interaction. With the property that EPI information
is contained in 3D VI stacks, we use a residual network with a dual-
branch structure to learn the features of VIs, horizontal and vertical EPIs.
Specifically, we use 3D convolution to alternately perform convolution on
VIs and EPIs by reshaping features during convolution for better feature
extraction and interaction. This enables the network to explore both the
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Fig. 1. Proposed network structure

texture information and the geometric consistency of LFs. Experimental
results on both real-world and synthetic LF datasets show that our method
has higher objective performance than other state-of-the-art methods, and
our results have more image detail and better geometric consistency. We
also conduct ablation experiments to demonstrate the reasonableness and
effectiveness of our method.

Proposed method: With the property that EPI information is contained in
3D VI stacks, we propose an end-to-end method via geometric feature
interaction by making full use of the information of VIs, horizontal and
vertical EPIs. The network structure of our method is shown in Fig.1,
which consists of three main modules: the VI-EPI feature interaction
module, the global feature fusion module and the final upsampling module.
Firstly, the low-resolution LF images are stacked in the horizontal and
vertical EPI directions forming two sets of 3D LF data, and they are input
into the VI-EPI feature interaction module with a dual-branch structure to
obtain two intermediate features. Then the global feature fusion module
is used for further fuse and optimization of these intermediate features.
Finally, features pass through the upsampling module to output the SR
results.

EPIs in VI Stacks. In practical applications, an LF is usually
represented as a VI array and denoted by L (s, t, x, y), where s and t are
the angular dimensions, x and y are the spatial dimensions. The 2D slice
obtained by sampling the LF with a fixed angle and spatial dimension is
the EPI, in which the same visible object points in scenes from different
VIs form a continuous straight line due to the disparity, as shown in Fig.
2. This line effectively reflects the geometric consistency within an LF.
The EPI with fixed s and x is called the horizontal EPI and denoted by
Ls∗x∗ (t, y), and the one with fixed t and y is called the vertical EPI and
denoted by Lt∗y∗ (s, x). Similarly, the 3D VI stack with fixed s is called
the horizontal VI stack and denoted by Ss∗ (t, x, y), and the one with fixed
t is called the vertical VI stack and denoted by St∗ (s, x, y). As shown in
Fig. 2, the horizontal (vertical) VI stack contains horizontal (vertical) EPI
slices. Therefore, when the 3D VI stacks are alternately reshaped to VI
slices and EPI slices during the 3D convolution process, the dual-branch
network is able to learn all the information of VIs, horizontal and vertical
EPIs, which helps achieve higher SR quality.
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Fig. 2 VI array, EPI (blue box for the horizontal EPI and yellow box for the
vertical EPI) and 3D VI stacks stacked in EPI directions (light blue dotted box
for the horizontal and green dotted box for the vertical VI stack), from which
we can see that EPI information is contained in 3D VI stacks
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VI-EPI Feature Interaction. In order to make full use of the geometric
consistency of the LF, the VI-EPI feature interaction module uses 3D
convolution instead of 2D convolution for feature extraction. The 3D
convolution on 3D VI stacks can perceive the information of VIs and EPIs
simultaneously [15]. The size of the low-resolution LF is S × T ×X × Y ,
where S × T is the angular resolution, X × Y is the spatial resolution and
S equals to T . When the low-resolution LF is stacked in the horizontal and
vertical EPI directions, we can get two sets of 3D LF data, each of them
contains S or T groups of 3D VI stacks. To extract features from both the
horizontal and vertical EPI, the VI-EPI feature interaction module consists
of horizontal and vertical branches. The input for the horizontal branch is S
3D VI stacks of size N × 1×A×H ×W , and for the vertical branch is
T 3D VI stacks of size N × 1×B ×H ×W , where N is the batch size.
Furthermore, in each branch, the weights of the S (T ) groups of 3D VI
stacks are shared, and we use n1 layers V EConv to extract the interactive
features of VIs and EPIs from the 3D VI stacks. The above convolution
process is expressed by the formula as:

Feas∗ =Convh2(V EConvhn1
(· · ·V EConvh1(Convh1(S

lr
s∗ )))) (1)

Feat∗ =Convv2(V EConvvn1 (· · ·V EConvv1(Convv1(S
lr
t∗ )))) (2)

where h and v represent the horizontal and vertical EPI direction,
V EConvi(·) represents the i-th V EConv, i∈ 1, 2, · · ·n1, Conv(·)
represents the 3D convolution, and Slr

s∗/t∗ represents the low-resolution
3D VI stack stacked in the horizontal or vertical EPI direction.

As shown in Fig. 2, in 3D VI stacks of size S ×X × Y and T ×X × Y ,
the X × Y slice represents VI information, while the X × S and T × Y
slices represent EPI information. For better extraction and interaction of
features of EPIs and VIs, the features are alternately reshaped to VI
slices and EPI slices during convolution in V EConv. Specifically, as
shown in Fig. 1, the V EConv is composed of V Conv and EConv,
and both V Conv and EConv are made up of resblock V EBlock. The
V Conv represents the convolution on VIs, and the EConv represents the
convolution on EPIs. During this process, the feature size of the horizontal
branch changes as follows:

S ×X × Y
V Conv−→
reshape

Y ×X × S
EConv−→
reshape

· · · EConv−→
reshape

S ×X × Y (3)

Similarly, the feature size of the vertical branch changes as follows:

T ×X × Y
V Conv−→
reshape

X × T × Y
EConv−→
reshape

· · · EConv−→
reshape

T ×X × Y (4)

Finally, the output of the VI-EPI feature interaction module is two
intermediate features from two EPI directions, and each of them consists
of S Feas∗ or T Feat∗ :

FeaIh = {Feas∗ |s∗ ∈ 1, 2, ..., S} (5)

FeaIv = {Feat∗ |t∗ ∈ 1, 2, ..., T} (6)

Global Feature Fusion. To further integrate and optimize the learned
information from 3D VI stacks of two EPI directions and improve
the wholeness of the SR results, we use n2 layers SAConv to fuse
and optimize the intermediate features obtained by the VI-EPI feature
interaction module. Firstly, the intermediate features FeaIh and FeaIv are
concatenated to a global feature Feag . Then, the angular dimension of
Feag is moved to the batch dimension, and the feature channels of it are
increased via a 2D convolutional layer. After this, the global feature size
becomes (N · S · T )× C ×X × Y , where C represents feature channels.
Then, the obtained global feature Feag is input into SAConv [10], which
consists of two 2D convolutional layers SConv and AConv sequentially.
Similar to V Conv and EConv, SConv represents the convolution on
the spatial dimension of LFs, which is performed on features of size
(N · S · T )× C ×X × Y , and AConv represents the convolution on the
angular dimension of LFs, which is performed on features of size (N ·X ·
Y )× C × S × T . The feature size is also reshaped between SConv and
AConv.

Upsampling. After fusion and optimization, the optimized global
feature ˆFeag is upsampled to the desired high-resolution spatial size via
a 2D transposed convolutional layer. Then, the feature channels of it are
reduced to 1 by a 2D convolutional layer to obtain the high-resolution
residual information. After this, the feature size becomes (N · S · T )×
C × (α ·X)× (α · Y ), where α is the upsampling factor. The final SR
result is obtained by adding the high-resolution residual information and

Table 1: The number and categories of LFs in training and test datasets
used in our method

Datasets real-world datasets synthetic datasets
STLFA Kalantari et al.[16] HCI new HCI old

training 88 72 20 –
test 108 30 4 5

the intermediate feature of the vertical branch, and the reason for using the
vertical branch to be the residual branch is explained in section Ablation
Experiments:

Lsr =Convres(Deconvres( ˆFeag)) +Deconv(FeaIv
R) (7)

where Conv(·) represents 2D convolution, Deconv(·) represents 2D
transposed convolution, FeaIv

R represents reshaping FeaIv to change the
stacking arrangement order of the features, making it consistent with that
of FeaIh.

Experiments: The training and test datasets we used in this letter follow
[11] and the details of them are shown in Table 1, including 2 real-world
datasets Stanford Lytro LF Archive (referred to as STLFA) and Kalantari
et al. [16], and 2 synthetic datasets HCI new and HCI old. The training and
test LFs we used have the same angular resolution of 7× 7. During the
training stage, the low-resolution LF images for training are downsampled
by bicubic and cropped to patches of size 64× 64 and augmented by
flipping horizontally or vertically, or rotating 90/180/270 degree randomly.
All experiments are implemented in Pytorch with RTX 3090 GPU. The 2D
and 3D convolutional layers in the network all have 64 filters with kernel
size 3× 3 or 3× 3× 3 and zero-padding is applied to all convolutional
layers. In network settings, we set n1 = 10 and n2 = 6. Besides, we use
the Xaviers algorithm to initialize the weights of each convolutional layer,
and the Adam optimizer to optimize the network. The batch size is set
to 1, and the learning rate is initialized to 10−4 and halved every 2000
epochs. During the training, the network is supervised using the L1 loss
function between the final SR result Lsr and the ground truth. We use peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM) to evaluate
our method objectively. For subjective evaluation, the details of SR results
and the EPI of the texture area are compared and displayed. Our source
codes are available at https://github.com/wennychen11/LF-VEnet.

Comparative Experiments. We choose 7 comparative methods to
evaluate our method, including 5 state-of-the-art LF SR methods resLF [9],
LF-ATO [11], SA-Inter [12], LF-AFnet [13] and MEG-Net [15], a single
image SR method VDSR [17] and a baseline method of single image SR
bicubic. VDSR is retrained using all the LF VIs from the training datasets
in Table 1. The quantitative results are illustrated in Table 2, from which
we can conclude that our method outperforms other methods on both real-
world and synthetic LF datasets for both ×2 and ×4 SR. The qualitative
results are shown in Fig 3, from which we can see that the SR results of
our method are closer to the ground truth, and have richer image detail,
clearer image texture and edges than other methods. Furthermore, the EPIs
of SR results produced by our method also have higher consistency. The
straight lines formed by the disparity in EPIs have no disconnection or
misconnection, and there is no obvious sawtooth.

Ground Truth
PSNR/SSIM

Ours
36.643/0.9699

LF-ATO
33.983/0.9426

LF-AFnet
34.298/0.9460

SA-Inter
34.202/0.9434

VDSR
30.614/0.9044

Bicubic
29.409/0.8854

Bedroom
×4 SR

MEGnet
35.807/0.9640

Fig. 3. Qualitative results of different methods for ×4 SR

Ablation Experiments. We design some ablation experiments to
demonstrate the reasonableness and effectiveness of our method, and the
experimental results are shown in Table 3.
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Table 2: Average PSNR/SSIM of results achieved by different methods for ×2 and ×4 SR. The data shown in bold is the best, and the sub-best data is
shown in underline, the same as in Table 3

×2 SR Bicubic VDSR resLF LF-ATO LF-AFnet MEGnet Ours

Kalantari et al.[16] 38.311/0.9839 40.686/0.9890 43.202/0.9937 44.025/0.9949 44.060/0.9951 44.105/0.9953 44.666/0.9958
HCI new 33.296/0.9525 35.016/0.9621 37.431/0.9784 38.519/0.9819 38.912/0.9839 38.196/0.9805 39.493/0.9851

STLFA General 36.464/0.9751 38.056/0.9806 40.558/0.9888 41.997/0.9916 41.838/0.9917 42.348/0.9927 42.745/0.9931
STLFA Occlusions 36.012/0.9744 38.151/0.9812 40.967/0.9888 41.916/0.9900 41.480/0.9877 41.294/0.9876 42.048/0.9884

HCI old 35.377/0.9655 37.208/0.9701 36.786/0.9609 39.499/0.9813 36.878/0.9526 40.514/0.9838 41.245/0.9881

×4 SR Bicubic VDSR SA-Inter LF-ATO LF-AFnet MEGnet Ours

Kalantari et al.[16] 30.601/0.9215 32.089/0.9368 36.700/0.9719 36.911/0.9745 36.796/0.9746 37.634/0.9803 37.747/0.9807
HCI new 27.584/0.8632 28.848/0.8846 32.216/0.9303 32.276/0.9335 32.478/0.9369 32.862/0.9555 33.755/0.9592

STLFA General 29.564/0.9024 30.849/0.9187 34.839/0.9586 35.014/0.9613 34.744/0.9603 35.894/0.9712 36.132/0.9724
STLFA Occlusions 28.162/0.8765 29.323/0.8945 33.565/0.9415 33.878/0.9457 33.571/0.9434 34.011/0.9507 34.253/0.9504

HCI old 28.886/0.8677 30.312/0.8842 30.601/0.8745 32.751/0.9127 30.998/0.8793 34.973/0.9536 35.438/0.9657

Table 3: Average PSNR/SSIM of results achieved by several variants of ablation experiments for ×2 SR

×2 SR h-only v-only non-V E V V Conv EEConv EV Conv 3D-only ours

Kalantari et al. [16] 44.190/0.9954 44.187/0.9954 44.279/0.9954 44.583/0.9958 44.550/0.9957 44.636/0.9958 44.207/0.9954 44.666/0.9958
HCI new 38.930/0.9834 38.901/0.9832 39.017/0.9837 39.449/0.9850 39.371/0.9848 39.498/0.9851 38.822/0.9831 39.493/0.9851

STLFA General 42.193/0.9923 41.459/0.9880 42.257/0.9924 42.674/0.9930 42.654/0.9930 42.771/0.9931 42.215/0.9923 42.745/0.9931
STLFA Occlusions 41.448/0.9880 41.459/0.9880 41.616/0.9887 41.907/0.9872 41.936/0.9883 42.026/0.9875 41.494/0.9879 42.048/0.9884

HCI old 40.801/0.9864 40.883/0.9869 40.944/0.9871 41.202/0.9880 41.195/0.9878 41.237/0.9878 40.796/0.9867 41.245/0.9881

The dual-branch structure. We use horizontal-branch-only and the
vertical-branch-only networks (referred to as h-only and v-only) to
investigate the contribution of our dual-branch structure network. As
shown in Table 3, the performance of these two variants is similar and
much lower than our method. It proves that our dual-branch structure
network can better explore all the information of VIs, horizontal and
vertical EPIs. Meanwhile, v-only has a slight advantage than h-only, so
we choose the vertical branch to be the residual branch in our network.

The V EConv design. In our network, we design the structure of
V EConv to perform convolution on VIs and EPIs alternately. So we
change the convolution order or type to show the effectiveness of this
design. There are four variants called V V Conv, EEConv, EV Conv

and non-V E (delete all the V EConv structures in our network). The
experimental results show that V EConv outperforms both V V Conv and
EEConv, and has similar results to EV Conv. Besides, non-V E has the
worst performance in all variants. It can be demonstrated that the design
of V EConv can facilitate better extraction and interaction of features and
improve the SR performance effectively.

The residual block. In V EConv, we use V EBlock to achieve the
convolution performed on 3D VI stacks. To prove its advantage, we use
regular 3D convolutional layers to replace V EBlock as a variant, and we
call it 3D-only. The experimental results indicate that the residual structure
V EBlock can extract features of LFs more sufficiently.

Conclusion: In this letter, we propose an end-to-end LF SR method via
geometric feature interaction. This method emphasizes the property that
EPI information is contained in 3D VI stacks, so we use a residual network
with a dual-branch structure to learn the information of VIs, horizontal
and vertical EPIs from horizontal and vertical 3D VI stacks. Specifically,
we use the V EConv to perform convolution on VIs and EPIs alternately
for better feature extraction and interaction. The experimental results
show that our method outperforms other state-of-the-art methods in both
objective metrics and subjective quality on both real-world and synthetic
datasets. In the future, we will combine more characteristics of LFs to
obtain higher quality SR results.
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