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Abstract 27 

 28 

The current and cascading effects of global change challenge the interactions both between 29 

animals (i.e. social and sexual behaviour) and between them and the environment they 30 

inhabit. Amphibians are an ecologically diverse class with a wide range of social and sexual 31 

behaviours, making them a compelling model through which to understand the potential 32 

adaptations of animals faced with the effects of human-induced rapid environmental 33 

changes (HIREC). Poison frogs are a particularly interesting system, as they display diverse 34 

social behaviours that shape the way individuals interact with each other and with their 35 

environment, thus offering a tractable system to investigate how diverse, closely-related 36 

species may respond to the impacts of HIREC. Here, we discuss the potential impacts of 37 

global change on poison frog behaviour, and the future challenges this group may face in 38 

response to such change. We pay special attention to parental care and territoriality, which 39 

are emblematic of this clade, and consider how different species may flexibly respond and 40 

adapt to increasingly frequent and diverse anthropogenic stress. More specifically, we 41 

hypothesise that some parents may increase care (i.e. clutch attendance, distance travelled 42 

for tadpole transport) in HIREC scenarios, and that species with more generalist oviposition 43 

and tadpole deposition behaviours may fare more positively than their less flexible 44 

counterparts; we predict that the latter may either face increased competition for resources 45 

limited by HIREC or will be forced to adapt and expand their natural preferences. Likewise, 46 

we hypothesise that human-driven habitat alteration will disrupt the acoustic and visual 47 

communication systems due to increased noise pollution and/or changes in the surrounding 48 

light environment. We highlight the need for more empirical research combining behavioural 49 

ecology and conservation to better predict species’ vulnerability to global change and 50 

efficiently focus conservation efforts. 51 
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Introduction 63 

Environmental changes, including shifting continents and ice ages, have been shown to 64 

prompt diverse responses in organisms across a wide range of taxa (Ricklefs and Schluter 65 

1993; Rosenzweig 1995) throughout evolutionary time. However, the unprecedented scale 66 

and pace of recent and current human-induced rapid environmental changes (HIREC), 67 

such as habitat destruction/fragmentation (Pimm and Raven 2000), climate change 68 

(Parmesan and Yohe 2003), and exposure to novel biotic (e.g. exotic species, pathogens 69 

and parasites: Lockwood et al. 2013) and abiotic (e.g. environmental pollutants: Rohr et al. 70 

2006) stressors, represent new challenges for many species which have not experienced 71 

such rapid changes in their evolutionary past (Palumbi 2001). The impact of HIREC on the 72 

natural world is colossal (Wake and Vredenburg 2008; Cowie et al. 2022), affecting the 73 

availability of important resources (i.e. food, shelter; Fahrig 2003), altering conspecific and 74 

heterospecific interactions (Tuomainen and Candolin 2011; Candolin and Wong 2012), and 75 

ultimately threatening many species and populations (Pimm and Raven 2000; Wake and 76 

Vredenburg 2008; Cowie et al. 2022). 77 

For many animals, survival and reproduction in rapidly changing environments are 78 

expected to be shaped by the plasticity of their behavioural responses (Hendry et al. 2008; 79 

Sih et al. 2011; Sih 2013; Wong and Candolin 2015). Sometimes behavioural changes may 80 

be enough for an individual to adapt to new conditions or can provide additional time for 81 

genetic adaptation to occur (Pigliucci 2001). For example, great tits (Parus major) in urban 82 

environments have learnt to adjust their song frequency to avoid interference from city noise 83 

(Slabbekoorn and Peet 2003), while northern quolls (Dasyurus hallucatus) in Australia have 84 

learnt to avoid eating highly-toxic invasive cane toads (Rhinella marina) (Kelly and Phillips 85 

2017). However, species can also show maladaptive responses in HIREC scenarios, such 86 

as sea turtle hatchlings following artificial light instead of natural cues (Tuxbury and Salmon, 87 

2005), or aquatic insects ovipositing on asphalt or glass that resemble the surface of water 88 

(Kriska et al. 1998; Kriska et al. 2008), causing serious population declines (Tuomainen 89 

and Candolin 2011; Robertson et al. 2013). In other cases, behavioural changes can 90 

determine which individuals will survive and reproduce under novel conditions, acting as a 91 

driving force in evolutionary processes (West-Eberhard 2003; Crispo 2007; Tuomainen and 92 

Candolin 2011). Thus, changes in behaviour will directly influence how species evolve 93 

under HIREC. 94 

While individual behavioural responses will affect population dynamics on a local 95 

scale, the effect of HIREC on sociality and inter-species interactions has far-reaching 96 

ecological implications for broader community dynamics. Environmental changes can 97 
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directly and indirectly influence the way in which individuals interact, not only with other 98 

species (e.g. predators and prey, hosts and parasites), but also with each other (Candolin 99 

and Wong 2012). Social interactions, ranging from choosing a mate to providing offspring 100 

with care, can be affected by HIREC in multiple ways (Croft et al. 2008). For example, ship 101 

noise reduces the ability of Lusitanian toadfish (Halobatrachus didactylus) to detect 102 

conspecific acoustic signals, essential for mate attraction (Vasconcelos et al. 2007), while 103 

water turbidity reduces male-male competition in three-spined stickleback (Gasterosteus 104 

aculeatus), compromising the honesty of agonistic signals, which are relevant indicators of 105 

parenting ability (Wong et al. 2007). Similarly, human disturbance can directly reduce the 106 

nest attendance of bearded vultures (Gypaetus barbatus), increasing the probability of 107 

breeding failure (Arroyo and Razin 2006). 108 

Social interactions have a critical effect on individual fitness (Allee et al. 1949) and, 109 

consequently, on population dynamics. Parental care, for example, is known to enhance 110 

the offspring’s fitness by increasing their survival, growth and/or quality, and, ultimately, 111 

their lifetime reproductive success (Royle et al. 2012). Despite the obvious benefits for the 112 

offspring, parental care comes at a cost to the caregiver in the form of energy expenditure, 113 

loss of mating opportunities, and increased predation risk while tending to their young 114 

(Alonso-Alvarez et al. 2012). Thus, an individual’s investment in parental care depends on 115 

the value of their existing offspring in relation to future reproductive opportunities (Alonso-116 

Alvarez et al. 2012; Royle et al. 2012). Under changing environmental conditions, both the 117 

energetic costs of care for the parents and the fitness benefits for the young could be 118 

altered, influencing population recruitment success (Alonso-Alvarez et al. 2012; Ratikainen 119 

et al. 2018). In the face of low resource availability, parents can, for instance, reduce their 120 

current offspring investment with the expectation of better reproductive opportunities in the 121 

future (Winkler 1987). This decline in care quality, in turn, can alter various offspring 122 

behaviours during adulthood, including aggressiveness and boldness (Armstrong 2019), 123 

cognition (Bredy et al. 2004) and F1’s parental behaviour (Gromov 2009). Research 124 

conducted in songbirds, for example, has shown that nutritional stress during early 125 

development stages (when songbirds depend on their parents for food), negatively affects 126 

brain development and male song quality in adulthood (Nowicki et al. 2002). In rodents, 127 

offspring who are groomed less frequently during early postnatal periods exhibit lower 128 

spatial learning and memory in adulthood (Liu et al. 2000; Bredy et al. 2004). Decreased 129 

investment in the face of challenging environmental conditions is not the rule, however, as 130 

some parents appear to increase their workload in the face of sub-optimal conditions 131 

(Vincze et al. 2017). Ultimately, the adaptability of parental behaviour/cooperation appears 132 
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to be the most accurate predictor of species successfully overcoming the varied pressures 133 

of global change in the wild (Vincze et al. 2017). 134 

Although behavioural responses to global change largely differ between species, 135 

amphibians are excellent models to study them due to their broad range of social 136 

behaviours and their wide distribution across latitudes and climates, being found in all 137 

continents except Antarctica. Furthermore, their key position in trophic webs, their role as 138 

sentinel species and bioindicators of ecosystem health thanks to their sensitivity to 139 

environmental changes, and their dramatic decline around the globe (Hopkins 2007), make 140 

them a useful system to study the impact of human disturbances. In fact, amphibians are 141 

considered the most threatened vertebrate class on the planet (Stuart et al. 2004; Wake 142 

and Vredenburg 2008; Nori et al. 2015; IUCN 2020; Cordier et al. 2021), primarily due to 143 

habitat fragmentation/destruction, and the spread of a pathogenic fungus (Daszak et al. 144 

2003; Pounds et al. 2006; Cordier et al. 2021).  145 

One of the most emblematic and well-studied groups of amphibians showing 146 

complex and diverse social behaviours are Neotropical poison frogs (Dendrobatoidea). 147 

Distributed from Nicaragua in Central America to Bolivia in South America, poison frogs 148 

generally inhabit tropical rainforests (Summers and Tumulty 2014), often in areas that are 149 

under severe degradation, and exhibit a large diversity in mating systems, parental care 150 

strategies, and communication modalities (reviewed in Summers and Tumulty 2014). Males 151 

generally defend long-term territories from conspecifics through so-called advertisement 152 

calls and, if necessary, physical combat (Fig.1A; Pröhl 2005). Defending these territories is 153 

often crucial to male reproductive success, as courtship, mating, and oviposition take place 154 

therein (Pröhl 2005). In most species, males perform parental care, which consists of clutch 155 

attendance and larval transport (Fig. 1B) from terrestrial oviposition sites (e.g. leaf litter, 156 

leaves on bushes) to water bodies such as streams, temporary ponds, or small pools of 157 

water formed in plant structures (i.e., phytotelmata) (Summers and Tumulty 2014). 158 

Tadpoles are confined in these water bodies until completing metamorphosis (Weygoldt 159 

1987; Lehtinen et al. 2004; Summers and McKeon 2004; Schulte et al. 2020). While 160 

uniparental male care is the basal reproductive strategy in poison frogs (Weygoldt 1987; 161 

Carvajal-Castro et al. 2021), multiple lineages have evolved biparental or exclusive female 162 

care, where females transport tadpoles (Fig. 1C) and feed them with unfertilized trophic 163 

eggs (Summers et al. 1999a). The transition to female or biparental care has been 164 

suggested to be the result of using small phytotelmata with scarce food resources (Brown 165 

et al. 2010; Carvajal-Castro et al. 2021), and biparental care has been proposed as the 166 

precursor of monogamy (Tumulty et al. 2014). It is precisely the interaction between the 167 
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diverse sexual and social systems of poison frogs, combined with the pressing effects of 168 

HIREC, what makes this family a relevant model through which to test and understand the 169 

impacts of global change. 170 

 171 

 172 

Fig 1 Poison frogs and their unique social behaviours may be impacted by global change A) 173 

Males of Dendrobates tinctorius engaged in physical combat, where often one male pushes, kicks, 174 

and gets on top of the other trying to press them against the substrate; B) Male Ameerega hahneli 175 

transporting his tadpoles (pointed at by the arrow) to a body of water; C) Tadpole (pointed at by the 176 

arrow) transport is done by females in Oophaga granulifera; D) Habitat disturbance can alter the way 177 

in which colours are perceived by con- and heterospecifics, as shown in O. pumilio, and thus affect 178 

communication systems; E) Males of D. tinctorius are in charge of clutch (pointed at by the arrow) 179 

attendance; F) Climate change can increase the risk of tadpole death (agonising tadpoles pointed at 180 

by the arrow) by desiccation of nurseries; G) Ranitomeya ventrimaculata parents (pointed at by the 181 

dashed arrows) lay clutches (pointed at by the solid arrow) in bromeliads occupied by a large tadpole 182 

in periods of low rainfall to increase the survival probabilities of the tadpole therein; H) O. lehmanni 183 
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is highly threatened due to illegal pet trade activities. Males are thought to be more likely to be found 184 

by collectors because of their vocalisations (see the inflated vocal sac pointed by the arrow); I) 185 

Andinobates bombetes adjusts their calling behaviour to avoid interference caused by traffic noise. 186 

Photo credits: Bibiana Rojas (A, B, C, E,  F, G); Justin P. Lawrence (D); Mileidy Betancourth (H); 187 

Fernando Vargas (I). 188 

 189 

Although global change is expected to influence social behaviours in several ways, 190 

surprisingly little is known about how these effects take place in wild populations of poison 191 

frogs. Importantly, further research combining animal behaviour and conservation biology 192 

(Caro 1999) is necessary to identify species-specific relevant HIREC and to understand 193 

how they may adapt (or not) their behaviours accordingly. Only by doing so, we may be 194 

able to evaluate populations’ vulnerability to global change, develop predictive models and 195 

focus conservation efforts (Schroeder et al. 2011). Here, we illustrate key points about the 196 

potential impacts of, and responses to, HIREC using Neotropical poison frogs’ social 197 

behaviours as a model system. We specifically focus on territoriality and parental care 198 

behaviours, as they could be of special importance due to their capacity of buffering 199 

offspring against HIREC. Using this information as a baseline, we identify knowledge gaps 200 

and formulate new testable hypotheses to assess (1) the nature and magnitude of HIREC 201 

impact on wild populations of poison frogs, and (2) potential parental care and aggression 202 

responses to these HIREC. 203 

 204 

Impacts of global change on poison frogs 205 

Poison frogs depend on a wide variety of microhabitats across development. Leaf litter and 206 

phytotelmata, for example, serve as primary breeding sites, shelter, and nurseries for 207 

poison frogs; in addition to being defendable resources for territorial species, they provide 208 

more stable temperature and humidity conditions than open areas with little canopy 209 

(Duellman and Trueb 1994). The dependence on suitable microhabitats together with the 210 

obligate use of small water bodies for reproduction or development make many Neotropical 211 

frogs particularly vulnerable to HIREC (Donnelly and Crump 1998; Touchon and Warkentin 212 

2009).  213 

Habitat loss and climate change 214 

Many tropical regions are being subject to unprecedented rates of habitat loss (Lewis et al. 215 

2015; Taubert et al. 2018). Over the last decade, deforestation patterns in the Amazonian 216 
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rainforest have switched from localised large forest clearings to geographically spread 217 

small-scale deforestation events driven by land use change (i.e. agricultural expansion, 218 

pasture) and exploitation (i.e mining, logging activities) (Grau and Aide 2008; Hugo 2008; 219 

Kalamandeen et al. 2018). Small-scale deforestation pressures are expected to affect more 220 

remote areas and populations. This type of deforestation is also recognised as one of the 221 

main causes of more frequent and intense anomalies in the Amazonian hydrological cycle, 222 

such as extreme weather events (i.e. El Niño Southern Oscillation, hereafter El Niño) and 223 

dry spells during the rainy season (Lovejoy and Nobre 2018), which may be further 224 

exacerbated by global warming (Jiménez-Muñoz et al. 2016). Both the loss of habitat and 225 

more frequent climatic anomalies can affect poison frogs in multiple ways throughout their 226 

life stages, potentially leading to different behavioural responses and adaptations. 227 

Disruption in communication systems  228 

Habitat alteration through small-scale deforestation can directly affect conspecific 229 

communication in two different ways. First, because human-made gaps are known to have 230 

increased radiation and higher temperatures than other areas of the forest (Vitt et al. 1998), 231 

male calling behaviour can become unsustainable over long periods of time. This is 232 

because, in degraded conditions, males would be more exposed and thus could incur 233 

higher evaporative water loss and potential overheating. These physiological stressors 234 

entail behavioural consequences as, in the mid-to-long term, males would be unable to 235 

devote as much time to attract females and advertise territory ownership. Second, 236 

variations in the forest’s light environment can make an animal’s appearance change too 237 

(Endler 1993), which has been proven crucial in the courtship behaviour of some lekking 238 

bird species (Théry and Endler 2001). The detectability of the variable colour patterns found 239 

in D. tinctorius, likewise, has been shown to differ depending on whether they are seen 240 

under an open or closed canopy (Rojas et al. 2014). While this has been studied mostly in 241 

the context of predator-prey interactions, such differences in detectability in response to the 242 

surrounding light environment could be particularly relevant for species in which colour 243 

patterns play a role in mate choice (e.g., O. pumilio: Summers et al. 1999b; Maan and 244 

Cummings 2008; Yang et al. 2019) or underlie differences in other behavioural patterns 245 

such as boldness or aggressiveness (e.g., O. pumilio: Rudh et al. 2013; Pröhl and 246 

Ostrowski 2011; Crothers and Cummings 2015; O. granulifera: Willink et al. 2013; 2014). 247 

Importantly, human-driven habitat disturbance may not only affect the light environment but 248 

also the structure of the forest floor, which can alter detectability and visual contrast, thus 249 

causing potential interference in communication between conspecifics (Barnett et al. 2021).  250 

Increased care and aggression under HIREC: a parent’s perspective 251 
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Reduced vegetation cover and longer dry spells could result in higher egg mortality as a 252 

result of dehydration, especially for amphibian species with non-aquatic eggs (Touchon and 253 

Warkentin 2009). For example, Delia et al. (2013), found that offspring of the glass frog 254 

Hyalinobatrachium fleischmanni, a species with parental care, had higher mortality rates in 255 

years of low rainfall. Similar situations could arise in poison frogs due to the high 256 

susceptibility of their terrestrial clutches to evaporative water loss; in Allobates 257 

paleovarzensis, for instance, only 8.6% of the clutches survived until the transporting stage 258 

following an El Niño event compared to ~70% survival during a standard season (Rocha et 259 

al. 2021).  260 

There are several behaviours that may help adult poison frogs reduce the 261 

vulnerability of their eggs to HIREC. On the one hand, choosing suitable oviposition sites is 262 

particularly important if larvae are unable to leave these sites when conditions become 263 

unfavourable. For example, in the tree frog Dendropsophus ebraccatus, a unique species 264 

which can flexibly choose between aquatic and non-aquatic deposition sites, changes in 265 

rainfall patterns since 1972 have altered oviposition-site selection (Touchon 2012). 266 

Although egg mortality was generally higher in aquatic sites due to greater predation risk, 267 

altered rainfall patterns driven by climate change increased clutch dehydration risk, shifting 268 

the optimal site choice by parents from terrestrial to aquatic habitats over the span of only 269 

40 years. D. ebraccatus clearly provides an excellent system to measure the success of 270 

the adaptive decision-making by parents; however, whether or not poison frogs are as 271 

flexible in their use of oviposition and tadpole deposition sites requires further research. For  272 

terrestrially-breeding frogs, buffering the negative effects of HIREC could largely depend 273 

on the parents’ capacity to select for specific microhabitats with favourable structures. 274 

Dendrobates tinctorius, for example, is a terrestrial-breeding frog with clutch attendance 275 

(Fig. 1D) and uniquely flexible deposition choices compared to other species that also use 276 

ephemeral pools as nurseries. D. tinctorius fathers transport tadpoles to diverse pools that 277 

range enormously across vertical (0 m - >20 m), physical (19 mL - 270 L), and chemical 278 

(pH = 3 - 7) gradients (Fouilloux et al. 2021). We hypothesise that, when faced with the 279 

pressures of HIREC, species that can access (and tolerate) a wider variety of nurseries will 280 

fare better than those with narrower options. Flexible species may also benefit in modulating 281 

care investment based on climatic conditions, where when desiccation risk is high parents 282 

spend additional effort accessing especially deep/stable nurseries compared to potentially 283 

more relaxed, “riskier” choices throughout a consistently rainy season. Further, we predict 284 

sites with denser canopy cover as well as abundant leaf litter and vegetal structures (e.g. 285 

fallen branches and hollow trunks) to provide more stable microclimate conditions for 286 

successful egg development. Nevertheless, different microhabitats may be weighed 287 
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differently depending on species-specific biological and life-history requirements. 288 

Therefore, a better understanding of microhabitat use of species both in undisturbed and 289 

disturbed areas is essential to implement effective conservation efforts. 290 

On the other hand, to compensate for adverse environmental conditions, parents 291 

may adjust intensity and frequency of clutch attendance to guarantee offspring survival (see 292 

examples in invertebrates (Dick et al. 1998), fish (Green and McCormick 2005), reptiles 293 

(Stahlschmidt and DeNardo 2010), and birds (Vincze et al. 2017)). Males of H. fleischmanni, 294 

for example, increase both the frequency and time spent on egg care in response to a 295 

reduction in relative humidity (Delia et al. 2013). One of the most common ways anurans 296 

provide egg attendance is by placing their body over the eggs to reduce evaporative water 297 

loss or directly moistening the eggs through physical contact with the ventral integument 298 

(Wells 2010). Although this behaviour has been suggested for some poison frogs (Souza 299 

et al. 2017), it is not ubiquitous across the family (Rocha et al. 2021). Furthermore, some 300 

amphibians can increase the amount of glycoprotein-rich jelly cores, jelly layers or matrices 301 

surrounding the clutches, which protect embryos from dehydration and predators (Delia et 302 

al. 2020). So far, little research has focused on the potential egg attendance plasticity that 303 

poison frogs may present under environmental stress. Considering that egg attendance 304 

conflicts with other fitness-related activities, such as foraging and mating (e.g. Delia et al. 305 

2013), investigating the trade-offs of parental decisions under environmental changes is 306 

essential to predict population dynamics. Thereby, if the costs of maintaining the current 307 

clutch surpass their fitness benefits, we would predict individuals to reduce their parental 308 

care effort or even abandon clutches completely as seen in other species (e.g. Bustnes and 309 

Erikstad 1991; Suski and Ridgway 2007; Öberg et al. 2015).  310 

It is noteworthy that in territorial species, such as most dendrobatid frogs (Pröhl 311 

2005), the trade-off between defending territories and attending multiple clutches 312 

simultaneously may become magnified under habitat loss. Habitat loss and fragmentation 313 

can limit species movement as well as the availability of resources and suitable territories 314 

(Fahrig 2003). In the resulting smaller and densely packed habitat patches, aggression 315 

rates between highly territorial individuals may increase due to higher number of encounters 316 

and more competition for limited resources and territories (Fisher et al. 2021). In male tree 317 

lizards (Urosaurus ornatus), for instance, aggressive interactions between individuals are 318 

more frequent in resource-limited burned sites than in resource-rich habitats (Lattanzio and 319 

Miles 2014). More energy spent on territorial defence could translate into a reduced ability 320 

to attract further mates or attend multiple clutches, directly influencing mating systems. This 321 

conflict between aggression and direct care of offspring has been found in multiple animals 322 
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(e.g. Lissåker and Kvarnemo 2006; DeAngelis et al. 2020). Importantly, filial cannibalism 323 

occurs in some dendrobatid frogs, both in adult males when taking over a new territory (e.g. 324 

Allobates femoralis: Ringler et al. 2017) and in females to decrease parental investment of 325 

a mate in unrelated clutches (e.g. Dendrobates auratus: Summers 1989). Thus, we predict 326 

that higher densities and lower resource availability could also lead to more territorial 327 

intrusions by males, more competition among females, and, as a result, an increase in filial 328 

cannibalism events. 329 

Finally, because egg attendance and territorial defence may become more 330 

energetically demanding under harsh environmental conditions, we hypothesise that 331 

alternative care strategies such as plastic biparental care and monogamy could become 332 

favoured over evolutionary time. This is the case in the Atlantic labrid fish Symphodus tinca, 333 

who changes from no parental care to uniparental care when temperature and predators 334 

increase during the breeding season (Van den Berghe 1990), or in plovers (Charadrius 335 

spp.), where temperature stochasticity increased males parental cooperation during 336 

incubation (Vincze et al. 2017). Given that some poison frogs can show parental flexibility 337 

and a parent can take over tadpole transport when the other parent goes missing (for more 338 

details see next section), we encourage future studies to investigate whether flexibility can 339 

be found in other parental care behaviours such as egg attendance.  340 

Consequences on larval survival and possible evolutionary trajectories under HIREC 341 

The alteration of forest habitats for different human land-uses, as well as changes in climate 342 

patterns can also affect poison frogs during larval and adult stages by modifying the 343 

availability and quality of important resources and microhabitats. For example, by clearing 344 

primary forest and reducing the canopy cover, the ground becomes more exposed to solar 345 

radiation, which increases near-ground temperature and, in turn, phytotelmata desiccation 346 

risk (del Pliego et al. 2016; Rivera-Ordonez et al. 2019). This is especially concerning given 347 

that the depletion of some resources (e.g. bromeliad phytotelmata) has been related to 348 

serious population declines in some poison frog species (Pröhl 2002; Vargas-Salinas and 349 

Amézquita 2013; Meza-Joya et al. 2015). 350 

Phytotelmata, used in multiple poison frog species to deposit their tadpoles 351 

(Weygoldt 1987; Summers and McKeon 2004; Lehtinen et al. 2004; Schulte et al. 2020; 352 

Fouilloux et al. 2021), can naturally vary in water volume, nutrient composition, food 353 

sources, stability as well as the risk of competition and predation (Lehtinen et al. 2004). 354 

Consequently, parents have to assess all these different ecological factors, which can be 355 

highly unstable and vary in space and time (Rudolf and Rödel 2005; Schulte and Lötters 356 
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2013), and adapt their deposition strategy according to this information (Webb et al. 1999; 357 

Schulte and Lötters 2013). The selection of suitable rearing sites will play a key role in the 358 

successful development and survival of their offspring (Refsnider and Janzen 2010), and 359 

thus will have direct effects on the population recruitment for multiple species. However, 360 

HIREC might further exacerbate the instability and availability of good-quality phytotelmata, 361 

imposing multiple novel costs on parental care and territoriality. Importantly, nursery 362 

desiccation is already considered one of the most common abiotic causes of tadpole 363 

mortality (Fig. 1E), even in tropical rainforests where annual rainfall is abundant (Murphy 364 

2003a; Rudolf and Rödel 2005; BR, pers. observ.).  365 

Some authors have suggested plastic feeding behaviour as one possible 366 

mechanism to deal with phytotelmata desiccation. According to this hypothesis, some 367 

poison frog species would switch from avoiding tadpole/egg deposition in pools already 368 

containing conspecifics (to minimise predation: Caldwell and Araújo 1998; Summers 1999) 369 

to systematically deposit them with conspecifics which can be a form of food resource. For 370 

example, in Ranitomeya ventrimaculata, clutches are laid more often in bromeliad axils 371 

where there is already a tadpole towards the end of the rainy season (Fig. 1F) (Poelman 372 

and Dicke 2007). This way, parents are thought to accelerate their older offspring’s 373 

development and increase their chance to reach metamorphosis before temporary pools 374 

dry out, which can happen within days. Likewise, older tadpoles of the species Ranitomeya 375 

variabilis may feed on younger siblings when resources are low (Brown et al. 2009). 376 

However, although cannibalising conspecific tadpoles provides higher nutritional value than 377 

other prey for some amphibian species (e.g. Crump 1990), the direct benefits of cannibalism 378 

through enhanced growth rates in poison frogs have not been disentangled from the 379 

benefits of eating ‘just’ another (i.e., heterospecific) tadpole. Instead, tadpole cannibalism 380 

is thought to be the result of indiscriminate predatory behaviour to eliminate potential 381 

competitors (Caldwell and Araújo 1998; Summers and McKeon 2004). Further, weaker 382 

avoidance or even active choice of pools with conspecific tadpoles at the end of the rainy 383 

season could also be the result of less suitable sites available or parents using tadpole 384 

presence as a cue for pool quality and persistence, as is the case in Dendrobates tinctorius 385 

(Rojas 2014). This last idea is further supported by a study on Edalorhina perezi 386 

(Leptodactylidae), which also loses their sensitivity to invertebrate predators late in the rainy 387 

season (Murphy 2003b). 388 

A reduction in the number of suitable nurseries could also lead to the convergence 389 

of site choice by multiple parents (potentially from multiple species), increasing overall larval 390 

density in pools. Therefore, we predict that under HIREC, competition between tadpoles 391 
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from the same or different species could become stronger, potentially benefitting certain 392 

species over others by exploiting alternative food supplies (i.e. feeding on other tadpoles of 393 

either the same (cannibalism) or different species). Cannibalism can have major 394 

consequences at the population level for some species, eliminating large proportions of 395 

offspring or entire cohorts in extreme cases (Polis 1981). That is the case in Ranitomeya 396 

(formerly Dendrobates) ventrimaculata, where only one tadpole survives in most pools 397 

regardless of the number of tadpoles deposited therein (Summers 1999).  398 

We hypothesise that a reduction in the number of suitable phytotelmata available in 399 

a territory will force parents to transport their tadpoles longer distances until deposition sites, 400 

increasing direct and indirect associated costs. For example, transporting individuals might 401 

directly increase their mortality risk by presumably spending more time exposed to potential 402 

predators (Rojas and Endler 2013; Pašukonis et al. 2019), as well as indirectly reduce their 403 

fitness by investing less time and energy on territorial defence and mating opportunities 404 

(Pašukonis et al. 2019). From the larvae point of view, in dendrobatid species where adults 405 

transport tadpoles singly into phytotelmata, travelling longer distances would mean leaving 406 

siblings unattended for longer periods of time and, thus, increasing their probability of dying 407 

from desiccation, predation or fungal infection. All these costs may, in turn, become 408 

accentuated in human-disturbed habitats, where different microclimatic conditions, 409 

vegetation cover, and assemblages of predators pose new threats and increased stress 410 

(Knowlton and Graham 2010). One possible behavioural response that might be favoured 411 

to reduce the costs of transporting tadpoles longer distances could be to transport as many 412 

tadpoles as possible at the same time. Ringler et al. (2013) found a significantly positive 413 

correlation between the distance of Allobates femoralis males to their home territories 414 

during tadpole transport and the number of tadpoles on their back, suggesting that the 415 

number of tadpoles that parents decide to take up at once is influenced by the distance to 416 

suitable water bodies. This would mean that at least some species of poison frogs may be 417 

capable of adjusting their behaviour depending on the availability of tadpole deposition sites 418 

and buffer to some degree their reduction due to HIREC. Another response to deal with 419 

increased parental costs (i.e. longer transporting distances) that could be favoured over 420 

evolutionary time is the appearance of female parental care plasticity in otherwise 421 

uniparental male care systems. Because most female poison frogs do not defend territories 422 

(Pröhl 2005), they might gain considerable fitness benefits by flexibly taking over parental 423 

duties and increase the survival chances of the clutches in which they have already invested 424 

significant time and energy. Female parental care plasticity has been previously reported 425 

in some poison frogs (e.g. Allobates femoralis, Dendrobates tinctorius, Anomaloglossus 426 

beebei) where, in absence of the male caregiver, females show compensatory parental 427 
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care behaviour by transporting tadpoles both under laboratory (Ringler et al. 2015; Fischer 428 

and O’connell 2020) and natural conditions (Ringler et al. 2013; Rojas and Pašukonis 2019; 429 

Pettitt 2012). However, this plasticity has not been found in other close species like 430 

Allobates paleovarzensis (Rocha et al. 2021). 431 

Finally, human-transformed habitats may also affect parents' orientation capacity by 432 

attenuating their familiarity with sensory cues. For example, in Oophaga pumilio, orientation 433 

depends both on the distance and the habitat type (forests or pastures) (Nowakowski et al. 434 

2013). Thus, given than males often select tadpole deposition sites outside of their 435 

territories or core areas (Ringler et al. 2013; Pašukonis et al. 2019), parents’ ability to find 436 

good rearing sites in the first place, or to return to selected phytotelmata in the case of 437 

tadpole feeding species, could be impaired. To date, very little work has explored the 438 

manner(s) in which land-use changes influence movement behaviour in poison frogs. 439 

However, it is reasonable to predict that they could have great impacts not only on parental 440 

decisions and territorial defence, but also on population dispersal and gene flow. This is, 441 

therefore, a subject that merits further investigation. 442 

 443 

Pet trade, infectious diseases and pollution 444 

In the Amazonian and Chocó rainforests, the fast development of large- and small-scale 445 

agriculture, urbanisation, and mining activities (Fig. 2), especially of gold mining 446 

(Kalamandeen et al. 2018; Palacios-Torres et al. 2018), are not only modifying habitats but 447 

also polluting the environment (Folchi 2001; Piscoya Arbañil 2012; Gamarra Torres et al. 448 

2018). Furthermore, processes like globalisation, accidental or deliberate introduction of 449 

exotic species, and, especially pet trade in the case of poison frogs, are increasing the 450 

transmission of and susceptibility to pathogens and parasites in previously isolated 451 

populations (e.g. Fecchio et al. 2021; Santos et al. 2021). 452 



15 

 453 

Fig 2 Illegal mining Small-scale deforestation due to illegal mining activities is threatening 454 

the habitat of many species of poison frogs in the Amazon and the Chocó regions, two of 455 

Earth’s biodiversity hotspots. Here, illegal mining activity in French Guiana (Photo: Jerémy 456 

Lemaire) 457 

 458 

Illegal pet trade is recognised as one of the major threats for dendrobatid poison 459 

frogs (Gorzula 1996; Gaucher and MacCulloch 2010; Nijman and Shepherd 2010; Brown 460 

et al. 2011; Betancourth-Cundar et al. 2020), as hobbyists are often after exotic colour 461 

variants, which can reach exorbitant prices in the market. This practice has been notably 462 

increasing in South America with the popularisation of the internet (Máximo et al. 2021), 463 

placing increased risks to the anurans of this region. Besides obvious long-term 464 

consequences such as decreased genetic diversity, the extirpation of individuals from 465 

natural populations is thought to affect the two sexes differently, with males being at a 466 

higher risk of being detected due to the conspicuousness of their vocalisations (Fig. 1H) 467 

(Betancourth-Cundar et al. 2020), which they use to fend rivals off and to attract females. 468 

This can obviously alter the care provided to offspring, particularly in species in which 469 

parental-care duties are predominantly performed by males, but it can also result in 470 

population declines as the populations end up being heavily female-biassed (Betancourth-471 

Cundar et al. 2020). Globalisation and amphibian pet trade are also widely recognised as 472 
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one of the main drivers of the global spread of amphibian pathogens such as the chytrid 473 

fungus Batrachochytrium dendrobatidis (hereafter Bd) (Fisher and Garner 2007), one of the 474 

most dramatic examples of newly-emerged pathogens, which causes the infectious disease 475 

chytridiomycosis. Therefore, it is not surprising that Bd has recently been detected in 476 

dendrobatid species in the wild. 477 

Bd is known to be responsible for the mass mortalities of many amphibian 478 

populations and some species extinctions worldwide (Daszak et al. 2003; Lips et al. 2005; 479 

Pounds et al. 2006). Indeed, Bd prevalence in Dendrobatidae was recently found to be 480 

higher than in Bufonidae and Hylidae in an Amazonian population (Courtois et al. 2015). 481 

While the impact of Bd on poison frog populations is still poorly known, in other species it 482 

can inhibit the immune response (Fites et al. 2013), impact their body condition and growth 483 

(Parris and Cornelius 2004), reduce their locomotion and foraging performance (Chatfield 484 

et al. 2013; Venesky et al. 2009), and even change their advertisement calls (An and 485 

Waldman 2016). Moreover, because Bd zoospores are aquatic, species more dependent 486 

on water are expected to be the most impacted due to prolonged periods of time exposed 487 

to Bd zoospores (Bielby et al. 2008). Thus, in the scenario proposed above, where global 488 

change may cause higher densities of tadpoles sharing rearing sites, Bd transmission within 489 

and between species could exponentially increase. Likewise, we predict energetically costly 490 

activities such as parental care and territory defence to also be affected, because infected 491 

individuals may have to relocate energy from reproduction, calling or parental care into 492 

immunity. This means that infected individuals may be less able to defend their territories 493 

or perform parental care, which would indirectly cause higher offspring mortality rates. 494 

Given the importance of social behaviours on population dynamics, further research 495 

investigating the impacts of Bd on such behaviours is required. 496 

In addition, chemical pollutants derived from agriculture (e.g. herbicides, pesticides) 497 

and mining activities (e.g. metals and metalloids: Hg, Cu, Co, Zn, As, etc.) can impair 498 

individuals’ defensed and further increase their susceptibility to pathogens and diseases 499 

(Christin et al. 2003). Similarly, when found in low concentrations they can delay growth 500 

and metamorphosis (Carey and Bryant 1995), cause malformations (Unrine et al. 2004; 501 

Ferrante and Fearnside 2020), alter fertility and fecundity (Adams et al. 2021), or even 502 

cause sex-reversals (Nemesházi et al. 2020) often causing devastating consequences for 503 

amphibian populations (Brühl et al. 2013). Increasing evidence demonstrates effects on a 504 

wide range of amphibian behaviours, such as reduced rates of activity (e.g. swimming, 505 

feeding, breeding) or ability of tadpoles to escape predation (Shuman-Goodier and Propper 506 

2016; Sievers et al. 2019). In two-lined salamanders (Eurycea bislineata), for instance, 507 
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exposure to sublethal concentrations of mercury reduced their motivation to feed (Burke et 508 

al. 2010) whereas it impaired swimming performance in American toad (Bufo americanus) 509 

larvae (Bergeron et al. 2011). Although chemical contaminants have also been reported to 510 

alter multiple social behaviours such as territorial behaviour in other taxa (e.g. vom Saal et 511 

al. 1995; Bell 2001), to our knowledge no study has addressed this possibility in 512 

amphibians. Given the strong detrimental effects of pollutants to egg and tadpole survival 513 

and development, we would expect selection to favour individuals capable of recognising 514 

and avoiding oviposition and rearing sites based on chemical pollutant concentrations. As 515 

far as we are aware, however, this ability has been investigated in some anurans but not in 516 

poison frogs. For example, adults of the grey treefrog (Hyla versicolor) avoided ponds for 517 

oviposition if contaminated with the glyphosate pesticide Roundup (Takahashi 2007). 518 

 519 

 520 

Figure 3 Conceptual overview. The main driving forces of HIREC (A, B, C, D) interact across 521 

habitats implicating cascading effects on the social behaviours of amphibians. Throughout the tropics 522 

these disturbances will impact a large diversity of species with consequences detectable at every 523 

life stage. (I.) We predict that HIREC will particularly threaten juveniles and larvae, where less 524 

consistent rainfall and higher temperatures will limit the availability and diversity of larval nurseries 525 

and increase the dessication probability of clutches. (II.) In response to these threats, we hypothesise 526 

that parents will both increase care and the flexibility in deposition choices. 527 

 528 
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Social behaviours can also be impacted by an important, yet often underestimated, 529 

form of anthropogenically-driven pollution, noise pollution. For acoustically communicating 530 

species, as is the case of most anuran species, anthropogenic background noise can mask 531 

vocalisations and thus disrupt key species-specific communication (Simmons and Narins 532 

2018). For instance, masking of acoustic signals could inhibit males' calling activity (Sun 533 

and Narins 2005), reduce females’ ability to localise male’s advertisement calls (Caldwell 534 

and Bee 2014), or change female’s mate choice, potentially selecting for less fit males 535 

(Barrass 1985) or males with lower-quality of parental care (Pettitt et al. 2020). Masked 536 

male calls may not only attract fewer females, but also make territorial calls less audible, 537 

affecting male territorial defence by reducing their ability to detect and discriminate against 538 

conspecific intruders, as shown in birds (Kleist et al. 2016). This, in turn, may translate into 539 

more conspecific intrusions, aggressive encounters and increased filial cannibalism rates. 540 

To cope with anthropogenic noise, some species can modify their call characteristics to 541 

contrast acoustically with the noise pollution. For example, Cauca poison frogs, 542 

Andinobates bombetes, (Fig. 1I) vocalise in moments of low background noise and call less 543 

when noise is higher (Vargas-Salinas and Amézquita 2013; Jiménez-Vargas and Vargas-544 

Salinas 2021), while Bloody Bay poison frogs (Mannophryne olmonae) increase higher 545 

frequency calls and decrease inter-pulse intervals (Clemmens 2014). However, because 546 

changes in calling characteristics could potentially be opposed to female mate preferences, 547 

future research should investigate if such responses could become maladaptive.  548 

Conclusions 549 

1. HIREC have great impacts on the way organisms interact among them and with their 550 

environment, imposing new threats for multiple species. Behaviour is often the first 551 

response to environmental changes, and its plasticity can determine how organisms adapt 552 

(or not) to HIREC. Social behaviour responses, in particular, are of especial importance 553 

given their role in population dynamics (i.e. reproductive success, offspring survival, etc.). 554 

Thus, by combining animal behaviour and conservation issues we can improve our 555 

understanding and predictions of how susceptible different species and populations are to 556 

HIREC.  557 

2. Due to their diverse and complex social behaviours, as well as their occurrence in often 558 

degraded habitats, poison frogs are an interesting group to study the potential impacts of 559 

and social responses to HIREC (see Fig. 3 for a summary). 560 

3. To compensate for negative HIREC impacts, we predict individuals to increase parental 561 

care costs by spending more time attending clutches and transporting tadpoles to further 562 
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and fewer nursery sites. Furthermore, we hypothesise higher species-specific aggression 563 

rates both in adults and tadpoles, as well as more frequent filial cannibalistic events due to 564 

limited resources/territories and anthropogenic noise. Finally, altered environmental 565 

conditions derived from small-scale deforestation (i.e. higher radiation, increased 566 

temperature, changes in ambient light) or increased noise pollution may disrupt important 567 

conspecific communication processes by reducing the calling capacity of males or by 568 

modifying mate detectability, courtship and choice. 569 

4. Here, we have examined the impact of different anthropogenic stressors in poison frogs 570 

individually. However, the reality is usually more complex, with individuals having to cope 571 

with multiple HIREC acting simultaneously. Even more complicated, these novel 572 

anthropogenic stressors can interact with each other or with natural stressors, causing 573 

negative synergistic effects. For example, while tadpoles managed to cope with predator-574 

induced stress and low concentrations of pesticides separately, when exposed to both at 575 

the same time they showed substantial mortality (Relyea and Mills 2001). All these potential 576 

interactions make predictions harder. 577 

 578 

  579 
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