Literature Cited
Auld, J. R., & Rubio de Casas, R. (2013). The correlated evolution of dispersal and mating-system traits. Evolutionary Biology,40(2), 185–193.https://doi.org/10.1007/s11692-012-9202-7Bartolome, J. W., Fehmi, J. S., Jackson, R. D., & Allen-Diaz, B. (2004). Response of a native perennial grass stand to disturbance in California’s Coast Range grassland. Restoration Ecology,12(2), 279–289.https://doi.org/10.1111/j.1061-2971.2004.00355.xBaskin, J. M., & Baskin, C. C. (2017). Seed germination in cleistogamous species: Theoretical considerations and a literature survey of experimental results. Seed Science Research,27(2), 84–98.https://doi.org/10.1017/S0960258517000058Bischoff, A., Vonlanthen, B., Steinger, T., & Müller-Schärer, H. (2006). Seed provenance matters — effects on germination of four plant species used for ecological restoration. Basic and Applied Ecology, 7(4), 347–359.https://doi.org/10.1016/j.baae.2005.07.009Breed, M. F., Harrison, P. A., Bischoff, A., Durruty, P., Gellie, N. J. C., Gonzales, E. K., Havens, K., Karmann, M., Kilkenny, F. F., Krauss, S. L., Lowe, A. J., Marques, P., Nevill, P. G., Vitt, P. L., & Bucharova, A. (2018). Priority actions to improve provenance decision-making. BioScience, 68(7), 510–516.https://doi.org/10.1093/biosci/biy050Broadhurst, L. M., Lowe, A., Coates, D. J., Cunningham, S. A., McDonald, M., Vesk, P. A., & Yates, C. (2008). Seed supply for broadscale restoration: Maximizing evolutionary potential. Evolutionary Applications, 1(4), 587–597.https://doi.org/10.1111/j.1752-4571.2008.00045.xBrowne, W. J., Subramanian, S. V., Jones, K., & Goldstein, H. (2005). Variance partitioning in multilevel logistic models that exhibit overdispersion. Journal of the Royal Statistical Society: Series A (Statistics in Society), 168(3), 599–613.https://doi.org/10.1111/j.1467-985X.2004.00365.xBuisson, E., Holl, K. D., Anderson, S., Corcket, E., Hayes, G. F., Torre, F., Peteers, A., & Dutoit, T. (2006). Effect of seed source, topsoil removal, and plant neighbor removal on restoring California coastal prairies. Restoration Ecology, 14(4), 569–577.https://doi.org/10.1111/j.1526-100X.2006.00168.xCharlesworth, D. (2007). Plant sex chromosome evolution. Current Biology, 17(8), 405–420.https://doi.org/10.1016/j.cub.2007.02.045Cheplick, G. P. & Quinn, J. A. (1982). Amphicarpum purshii and the “Pessimistic Strategy” in Amphicarpic Annuals with Subterranean Fruit. Oecologia, 52(3), 327–332.https://doi.org/10.1007/BF00367955Clay, K. (1994). Hereditary symbiosis in the grass genusDanthonia. The New Phytologist, 126(2), 223–231. Coulter. (1914). The evolution of sex in plants. University of Chicago Press. Darris, Dale C., and Peter Gonzalves (n.d.). California oatgrassDanthonia californica plant fact sheet. United States Department of Agriculture, Natural Resources Conservation Service. DeMarche, M. L., Doak, D. F., & Morris, W. F. (2019). Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Global Change Biology, 25(3), 775–793.https://doi.org/10.1111/gcb.14562DeMarche M.L., Bailes, G., Hendricks, L. B., Pfeifer‐Meister, L., Reed, P. B., Bridgham, S. D., Johnson, B. R., Shriver, R., Waddle, E., Wroton, H., Doak, D. F., Roy, B. A., & Morris, W. F. (2021). Latitudinal gradients in population growth do not reflect demographic responses to climate. Ecological Applications, 31(2), e2242–n/a.https://doi.org/10.1002/eap.2242Dudley, Eufemia, L., Fleckenstein, M., Periago, M. E., Petersen, I., & Timmers, J. F. (2020). Grasslands and savannahs in the UN Decade on Ecosystem Restoration. Restoration Ecology, 28(6), 1313–1317.https://doi.org/10.1111/rec.13272Dyksterhuis, E. J. (1945). Axillary Cleistogenes in Stipa Leucotricha and their Role in Nature. Ecology (Durham), 26(2), 195–199.https://doi.org/10.2307/1930824Floberg J, Goering M, Wilhere G, and 16 others. (2004). Willamette Valley–Puget Trough–Georgia Basin ecoregional assessment, Volume one: Report. Prepared by The Nature Conservancy with support from the Nature Conservancy of Canada, Washington Department of Fish and Wildlife, Washington Department of Natural Resources (Natural Heritage and Nearshore Habitat programs), Oregon State Natural Heritage Information Center and the British Columbia Conservation Data Centre. Fox J, Weisberg S (2019). An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. Gallagher, M. K., & Wagenius, S. (2016). Seed source impacts germination and early establishment of dominant grasses in prairie restorations. Journal of Applied Ecology, 53(1), 251–263.https://doi.org/10.1111/1365-2664.12564Galliart, M., Bello, N., Knapp, M., Poland, J., St Amand, P., Baer, S., Maricle, B., Smith, A. B., & Johnson, L. (2019). Local adaptation, genetic divergence, and experimental selection in a foundation grass across the US Great Plains’ climate gradient. Global Change Biology, 25(3), 850–868.https://doi.org/10.1111/gcb.14534García‐Ramos, & Kirkpatrick, M. (1997). Genetic Models of Adaptation and Gene Flow in Peripheral Populations. Evolution, 51(1), 21–28.https://doi.org/10.1111/j.1558-5646.1997.tb02384.xGómez, J. M. (2004). Bigger is not always better: Conflicting selective pressures on seed size in Quercus ilex. Evolution,58(1), 71–80.https://doi.org/10.1111/j.0014-3820.2004.tb01574.xGreen, N. E., & Hansen, R. M. (1969). Relationship of seed weight to germination of six grasses. Journal of Range Management,22(2), 133.https://doi.org/10.2307/3896199Gundel, P. E., Garibaldi, L. A., Martínez-Ghersa, M. A., & Ghersa, C. M. (2012). Trade-off between seed number and weight: Influence of a grass–endophyte symbiosis. Basic and Applied Ecology,13(1), 32–39.https://doi.org/10.1016/j.baae.2011.10.008Harrison. (2014). Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ (San Francisco, CA), 2, e616–e616.https://doi.org/10.7717/peerj.616Harrison. (2015). A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ (San Francisco, CA), 3, e1114–e1114.https://doi.org/10.7717/peerj.1114Hayes, G. F., & Holl, K. D. (2011). Manipulating disturbance regimes and seeding to restore mesic Mediterranean grasslands. Applied Vegetation Science, 14(3), 304–315.https://doi.org/10.1111/j.1654-109X.2011.01127.xHendrix, S. D. (1984). Variation in seed weight and its effects on germination in Pastinaca sativa l. (Umbelliferae).American Journal of Botany, 71(6), 795–802.https://doi.org/10.1002/j.1537-2197.1984.tb14144.xHereford, J. (2009). A quantitative survey of local adaptation and fitness trade‐offs. The American Naturalist, 173(5), 579–588.https://doi.org/10.1086/597611Hereford, J. (2010). Does selfing or outcrossing promote local adaptation? American Journal of Botany, 97(2), 298–302.https://doi.org/10.3732/ajb.0900224Holsinger, K. E. (2000). Reproductive systems and evolution in vascular plants. Proceedings of the National Academy of Sciences,97(13), 7037–7042.https://doi.org/10.1073/pnas.97.13.7037Jin, H., Yuan, Y., Gao, F., Oduor, A. M. O., & Li, J. (2020). The invasive plant Solidago canadensis exhibits partial local adaptation to low salinity at germination but not at later life-history stages. American Journal of Botany, 107(4), 599–606.https://doi.org/10.1002/ajb2.1456Joshi, J., Schmid, B., Caldeira, M. C., Dimitrakopoulos, P. G., Good, J., Harris, R., Hector, A., Huss‐Danell, K., Jumpponen, A., Minns, A., Mulder, C. P. H., Pereira, J. S., Prinz, A., Scherer‐Lorenzen, M., Siamantziouras, A.-S. D., Terry, A. C., Troumbis, A. Y., & Lawton, J. H. (2001). Local adaptation enhances performance of common plant species. Ecology Letters, 4(6), 536–544.https://doi.org/10.1046/j.1461-0248.2001.00262.xKamalov, Elnagar, A., & Leung, H. H. (2021). Ensemble Learning with Resampling for Imbalanced Data. In Intelligent Computing Theories and Application (pp. 564–578). Springer International Publishing. https://doi.org/10.1007/978-3-030-84529-2_48 Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7(12), 1225–1241.https://doi.org/10.1111/j.1461-0248.2004.00684.xKitchen, S. G., & Monsen, S. B. (1994). Germination rate and emergence success in Bluebunch Wheatgrass. Journal of Range Management,47(2), 145.https://doi.org/10.2307/4002823Koslow, J. M., & Clay, K. (2007). The mixed mating system ofImpatiens capensis and infection by a foliar rust pathogen: Patterns of resistance and fitness consequences. Evolution,61(11), 2643–2654.https://doi.org/10.1111/j.1558-5646.2007.00224.xLeavelle, T. N. (1998). “We will make it our own place”: Agriculture and adaptation at the Grand Ronde Reservation, 1856-1887. American Indian Quarterly, 22(4), 433–456.https://doi.org/10.2307/1184835Leimu, R., & Fischer, M. (2008). A meta-analysis of local adaptation in plants. PloS One, 3(12), e4010–e4010.https://doi.org/10.1371/journal.pone.0004010Lenoir, & Svenning, J.-C. (2015). Climate-related range shifts - a global multidimensional synthesis and new research directions. Ecography (Copenhagen), 38(1), 15–28.https://doi.org/10.1111/ecog.00967Lenormand, T. (2002). Gene flow and the limits to natural selection.Trends in Ecology & Evolution, 17(4), 183–189.https://doi.org/10.1016/S0169-5347(02)02497-7Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.0. https://CRAN.R-project.org/package=emmeans. Lindh, B. C. (2018). Tipping the native-exotic balance: succession in restored upland prairies in Oregon’s Willamette Valley. Ecological Restoration, 36(1), 28–40.https://doi.org/10.3368/er.36.1.28Linhart, Y. B. and M. C. Grant. (1996). Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics 27: 237–277. Lovell, J. T., Grogan, K., Sharbel, T. F., & McKay, J. K. (2014). Mating system and environmental variation drive patterns of adaptation in Boechera spatifolia (Brassicaceae). Molecular Ecology,23(18), 4486–4497.https://doi.org/10.1111/mec.12879Lüdecke D (2021). sjPlot: Data Visualization for Statistics in Social Science. R package version 2.8.10, https://CRAN.R-project.org/package=sjPlot. Mackin, H. C., Shek, K. L., Thornton, T. E., Evens, K. C., Hallett, L. M., McGuire, K. L., Peterson, M. L., & Roy, B. A. (2021). The ‘black box’ of plant demography: How do seed type, climate and seed fungal communities affect grass seed germination? The New Phytologist,231(6), 2319–2332.https://doi.org/10.1111/nph.17532Maslovat, C. Y. T. (2002). Germination ecology of native grass species,Danthonia californica and Elymus glaucus, in Garry oak ecosystems and the implications for restoration [Master of Science Thesis, University of Victoria]. Proquest Information and Learning (Order No. MQ68181). Masuda, & Yahara, T. (1992). Dispersal of chasmogamous and cleistogamous seeds in Viola hondoensis W. Backer et H. Boiss. The Botanical Magazine Tokyo, 105(2), 323–326.https://doi.org/10.1007/BF02489424Merges, Albrecht, J., Böhning-Gaese, K., Schleuning, M., & Neuschulz, E. L. (2020). Environmental context determines the limiting demographic processes for plant recruitment across a species’ elevational range. Scientific Reports, 10(1), 10855–10855.https://doi.org/10.1038/s41598-020-67602-5Middleton, E. L., Bever, J. D., & Schultz, P. A. (2010). The effect of restoration methods on the quality of the restoration and resistance to invasion by exotics. Restoration Ecology, 18(2), 181–187.https://doi.org/10.1111/j.1526-100X.2008.00501.xMiller, S. A., Bartow, A., Gisler, M., Ward, K., Young, A. S., & Kaye, T. N. (2011). Can an ecoregion serve as a seed transfer zone? Evidence from a common garden study with five native species. Restoration Ecology, 19(201), 268–276.https://doi.org/10.1111/j.1526-100X.2010.00702.xMoreira de Oliveira, Santos da Silva, F. F., Araujo, M. do N., Campos da Costa, D. C., Vieira Gomes, S. E., Matias, J. R., Angelotti, F., Pelacani Cruz, C. R., Seal, C. E., & Dantas, B. F. (2019). Environmental stress, future climate, and germination of Myracrodruon urundeuva seeds. Journal of Seed Science, 41(1), 32–43.https://doi.org/10.1590/2317-1545v41n1191945Nakagawa S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14(134).https://doi.org/10.1098/rsif.2017.0213Nelson, E. B. (2018). The seed microbiome: Origins, interactions, and impacts. Plant and Soil, 422(1–2), 7–34.https://doi.org/10.1007/s11104-017-3289-7Oakley, C. G., Moriuchi, K. S., & Winn, A. A. (2007). The maintenance of outcrossing in predominantly selfing species: Ideas and evidence from cleistogamous species. Annual Review of Ecology, Evolution, and Systematics, 38, 437–457. Pfeifer-Meister, L., Roy, B. A., Johnson, B. R., Krueger, J., & Bridgham, S. D. (2012). Dominance of native grasses leads to community convergence in wetland restoration. Plant Ecology, 213(4), 637–647.https://doi.org/10.1007/s11258-012-0028-2PRISM Climate Group (2018).https://prism.oregonstate.edu/R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Ramalho, C. E., Byrne, M., & Yates, C. J. (2017). A climate-oriented approach to support decision-making for seed provenance in ecological restoration. Frontiers in Ecology and Evolution, 5.https://doi.org/10.3389/fevo.2017.00095Ribeiro, Barbosa, E. R. M., & Borghetti, F. (2021). How regional climate and seed traits interact in shaping stress–tolerance of savanna seeds? Seed Science Research, 31(4), 300–310.https://doi.org/10.1017/S0960258521000234Rice, K. J., & Knapp, E. E. (2008). Effects of competition and life history stage on the expression of local adaptation in two native bunchgrasses. Restoration Ecology, 16(1), 12–23.https://doi.org/10.1111/j.1526-100X.2007.00257.xRushworth, C. A., Brandvain, Y., & Mitchell-Olds, T. (2020). Identifying the fitness consequences of sex in complex natural environments. Evolution Letters, 4(6), 516–529.https://doi.org/10.1002/evl3.194Schmitt, J., & Gamble, S. E. (1990). The effect of distance from the parental site on offspring performance and inbreeding depression in Impatiens capensis: A test of the local adaptation hypothesis.Evolution, 44(8), 2022–2030.https://doi.org/10.1111/j.1558-5646.1990.tb04308.xSchmitt, J., Ehrhardt, D., & Swartz, D. (1985). Differential Dispersal of Self-Fertilized and Outcrossed Progeny in Jewelweed (Impatiens capensis). The American Naturalist, 126(4), 570–575. Schoen, D. J., & Lloyd, D. G. (1984). The selection of cleistogamy and heteromorphic diaspores. Biological Journal of the Linnean Society, 23(4), 303–322.https://doi.org/10.1111/j.1095-8312.1984.tb00147.xSchluter, D. and P. R. Grant. (1984). Ecological correlates of morphological evolution in a Darwin’s finch, Geospiza difficilis.Evolution 38: 856–869. Seifert, B., & Fischer, M. (2010). Experimental establishment of a declining dry-grassland flagship species in relation to seed origin and target environment. Biological Conservation, 143(5), 1202–1211.https://doi.org/10.1016/j.biocon.2010.02.028Siepielski, A. M., A. Nemirov, M. Cattivera, & A. Nickerson. (2016). ”Experimental Evidence for an Eco-Evolutionary Coupling between Local Adaptation and Intraspecific Competition.” The American Naturalist 187: 447-456. Stanley, A. G., Dunwiddie, P. W., & Kaye, T. N. (2011). Restoring invaded Pacific Northwest prairies: Management recommendations from a region-wide experiment. Northwest Science, 85(2), 233–246.https://doi.org/10.3955/046.085.0212UNEP and FAO (2020). The UN Decade on Ecosystem Restoration 2021-2030. The United Nations Environmental Program Fact Sheet, June 2020. van Boheemen, L. A., Atwater, D. Z., & Hodgins, K. A. (2019). Rapid and repeated local adaptation to climate in an invasive plant. New Phytologist, 222(1), 614–627.https://doi.org/10.1111/nph.15564Waller D. M. (1982). Factors Influencing Seed Weight in Impatiens capensis (Balsaminaceae). American Journal of Botany, 69(9), 1470–1475.https://doi.org/10.1002/j.1537-2197.1982.tb13395.xWang, Y., Xu, W., Yuan, W., Chen, X., Zhang, B., Fan, L., He, B., Hu, Z., Liu, S., Liu, W., & Piao, S. (2021). Higher plant photosynthetic capability in autumn responding to low atmospheric vapor pressure deficit. The Innovation, 2(4), 100163.https://doi.org/10.1016/j.xinn.2021.100163Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4,https://ggplot2.tidyverse.org. Williams, E. (n.d.). “Latitude/Longitude Distance Calculator.” National Oceanic and Atmospheric Administration. Retrieved fromhttps://www.nhc.noaa.gov/gccalc.shtml. Wilson MV. (1998). Wetland prairie. In: Part I the US Fish and Wildlife Service Willamette Basin Recovery Plan. Portland (OR): US Fish and Wildlife Service. Order No. 13420-6-0287 (2). 23 p. Yi, Wang, Z., Baskin, C. C., Baskin, J. M., Ye, R., Sun, H., Zhang, Y., Ye, X., Liu, G., Yang, X., & Huang, Z. (2019). Seed germination responses to seasonal temperature and drought stress are species‐specific but not related to seed size in a desert steppe: Implications for effect of climate change on community structure. Ecology and Evolution, 9(4), 2149–2159.https://doi.org/10.1002/ece3.4909Zeide, B. (1978). Reproductive Behavior of Plants in Time. The American Naturalist, 112(985), 636–639.https://doi.org/10.1086/283305Zhang, M., Suren, H., & Holliday, J. A. (2019). Phenotypic and genomic local adaptation across latitude and altitude in Populus trichocarpa. Genome Biology and Evolution, 11(8), 2256–2272.https://doi.org/10.1093/gbe/evz151