Auld, J. R., & Rubio de Casas, R. (2013). The correlated evolution of
dispersal and mating-system traits. Evolutionary Biology,40(2), 185–193.https://doi.org/10.1007/s11692-012-9202-7Bartolome, J. W., Fehmi, J. S., Jackson, R. D., & Allen-Diaz, B.
(2004). Response of a native perennial grass stand to disturbance in
California’s Coast Range grassland. Restoration Ecology,12(2), 279–289.https://doi.org/10.1111/j.1061-2971.2004.00355.xBaskin, J. M., & Baskin, C. C. (2017). Seed germination in
cleistogamous species: Theoretical considerations and a literature
survey of experimental results. Seed Science Research,27(2), 84–98.https://doi.org/10.1017/S0960258517000058Bischoff, A., Vonlanthen, B., Steinger, T., & Müller-Schärer, H.
(2006). Seed provenance matters — effects on germination of four plant
species used for ecological restoration. Basic and Applied
Ecology, 7(4), 347–359.https://doi.org/10.1016/j.baae.2005.07.009Breed, M. F., Harrison, P. A., Bischoff, A., Durruty, P., Gellie, N. J.
C., Gonzales, E. K., Havens, K., Karmann, M., Kilkenny, F. F., Krauss,
S. L., Lowe, A. J., Marques, P., Nevill, P. G., Vitt, P. L., &
Bucharova, A. (2018). Priority actions to improve provenance
decision-making. BioScience, 68(7), 510–516.https://doi.org/10.1093/biosci/biy050Broadhurst, L. M., Lowe, A., Coates, D. J., Cunningham, S. A., McDonald,
M., Vesk, P. A., & Yates, C. (2008). Seed supply for broadscale
restoration: Maximizing evolutionary potential. Evolutionary
Applications, 1(4), 587–597.https://doi.org/10.1111/j.1752-4571.2008.00045.xBrowne, W. J., Subramanian, S. V., Jones, K., & Goldstein, H. (2005).
Variance partitioning in multilevel logistic models that exhibit
overdispersion. Journal of the Royal Statistical Society: Series A
(Statistics in Society), 168(3), 599–613.https://doi.org/10.1111/j.1467-985X.2004.00365.xBuisson, E., Holl, K. D., Anderson, S., Corcket, E., Hayes, G. F.,
Torre, F., Peteers, A., & Dutoit, T. (2006). Effect of seed source,
topsoil removal, and plant neighbor removal on restoring California
coastal prairies. Restoration Ecology, 14(4), 569–577.https://doi.org/10.1111/j.1526-100X.2006.00168.xCharlesworth, D. (2007). Plant sex chromosome evolution. Current
Biology, 17(8), 405–420.https://doi.org/10.1016/j.cub.2007.02.045Cheplick, G. P. & Quinn, J. A. (1982). Amphicarpum purshii and
the “Pessimistic Strategy” in Amphicarpic Annuals with Subterranean
Fruit. Oecologia, 52(3), 327–332.https://doi.org/10.1007/BF00367955Clay, K. (1994). Hereditary symbiosis in the grass genusDanthonia. The New Phytologist, 126(2), 223–231.
Coulter. (1914). The evolution of sex in plants. University of Chicago
Press.
Darris, Dale C., and Peter Gonzalves (n.d.). California oatgrassDanthonia californica plant fact sheet. United States Department
of Agriculture, Natural Resources Conservation Service.
DeMarche, M. L., Doak, D. F., & Morris, W. F. (2019). Incorporating
local adaptation into forecasts of species’ distribution and abundance
under climate change. Global Change Biology, 25(3),
775–793.https://doi.org/10.1111/gcb.14562DeMarche M.L., Bailes, G., Hendricks, L. B., Pfeifer‐Meister, L., Reed,
P. B., Bridgham, S. D., Johnson, B. R., Shriver, R., Waddle, E., Wroton,
H., Doak, D. F., Roy, B. A., & Morris, W. F. (2021). Latitudinal
gradients in population growth do not reflect demographic responses to
climate. Ecological Applications, 31(2), e2242–n/a.https://doi.org/10.1002/eap.2242Dudley, Eufemia, L., Fleckenstein, M., Periago, M. E., Petersen, I., &
Timmers, J. F. (2020). Grasslands and savannahs in the UN Decade on
Ecosystem Restoration. Restoration Ecology, 28(6),
1313–1317.https://doi.org/10.1111/rec.13272Dyksterhuis, E. J. (1945). Axillary Cleistogenes in Stipa
Leucotricha and their Role in Nature. Ecology (Durham), 26(2),
195–199.https://doi.org/10.2307/1930824Floberg J, Goering M, Wilhere G, and 16 others. (2004). Willamette
Valley–Puget Trough–Georgia Basin ecoregional assessment, Volume one:
Report. Prepared by The Nature Conservancy with support from the Nature
Conservancy of Canada, Washington Department of Fish and Wildlife,
Washington Department of Natural Resources (Natural Heritage and
Nearshore Habitat programs), Oregon State Natural Heritage Information
Center and the British Columbia Conservation Data Centre.
Fox J, Weisberg S (2019). An R Companion to Applied Regression,
Third edition. Sage, Thousand Oaks
CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
Gallagher, M. K., & Wagenius, S. (2016). Seed source impacts
germination and early establishment of dominant grasses in prairie
restorations. Journal of Applied Ecology, 53(1), 251–263.https://doi.org/10.1111/1365-2664.12564Galliart, M., Bello, N., Knapp, M., Poland, J., St Amand, P., Baer, S.,
Maricle, B., Smith, A. B., & Johnson, L. (2019). Local adaptation,
genetic divergence, and experimental selection in a foundation grass
across the US Great Plains’ climate gradient. Global Change
Biology, 25(3), 850–868.https://doi.org/10.1111/gcb.14534García‐Ramos, & Kirkpatrick, M. (1997). Genetic Models of Adaptation
and Gene Flow in Peripheral Populations. Evolution, 51(1), 21–28.https://doi.org/10.1111/j.1558-5646.1997.tb02384.xGómez, J. M. (2004). Bigger is not always better: Conflicting selective
pressures on seed size in Quercus ilex. Evolution,58(1), 71–80.https://doi.org/10.1111/j.0014-3820.2004.tb01574.xGreen, N. E., & Hansen, R. M. (1969). Relationship of seed weight to
germination of six grasses. Journal of Range Management,22(2), 133.https://doi.org/10.2307/3896199Gundel, P. E., Garibaldi, L. A., Martínez-Ghersa, M. A., & Ghersa, C.
M. (2012). Trade-off between seed number and weight: Influence of a
grass–endophyte symbiosis. Basic and Applied Ecology,13(1), 32–39.https://doi.org/10.1016/j.baae.2011.10.008Harrison. (2014). Using observation-level random effects to model
overdispersion in count data in ecology and evolution. PeerJ (San
Francisco, CA), 2, e616–e616.https://doi.org/10.7717/peerj.616Harrison. (2015). A comparison of observation-level random effect and
Beta-Binomial models for modelling overdispersion in Binomial data in
ecology & evolution. PeerJ (San Francisco, CA), 3, e1114–e1114.https://doi.org/10.7717/peerj.1114Hayes, G. F., & Holl, K. D. (2011). Manipulating disturbance regimes
and seeding to restore mesic Mediterranean grasslands. Applied
Vegetation Science, 14(3), 304–315.https://doi.org/10.1111/j.1654-109X.2011.01127.xHendrix, S. D. (1984). Variation in seed weight and its effects on
germination in Pastinaca sativa l. (Umbelliferae).American Journal of Botany, 71(6), 795–802.https://doi.org/10.1002/j.1537-2197.1984.tb14144.xHereford, J. (2009). A quantitative survey of local adaptation and
fitness trade‐offs. The American Naturalist, 173(5),
579–588.https://doi.org/10.1086/597611Hereford, J. (2010). Does selfing or outcrossing promote local
adaptation? American Journal of Botany, 97(2), 298–302.https://doi.org/10.3732/ajb.0900224Holsinger, K. E. (2000). Reproductive systems and evolution in vascular
plants. Proceedings of the National Academy of Sciences,97(13), 7037–7042.https://doi.org/10.1073/pnas.97.13.7037Jin, H., Yuan, Y., Gao, F., Oduor, A. M. O., & Li, J. (2020). The
invasive plant Solidago canadensis exhibits partial local
adaptation to low salinity at germination but not at later life-history
stages. American Journal of Botany, 107(4), 599–606.https://doi.org/10.1002/ajb2.1456Joshi, J., Schmid, B., Caldeira, M. C., Dimitrakopoulos, P. G., Good,
J., Harris, R., Hector, A., Huss‐Danell, K., Jumpponen, A., Minns, A.,
Mulder, C. P. H., Pereira, J. S., Prinz, A., Scherer‐Lorenzen, M.,
Siamantziouras, A.-S. D., Terry, A. C., Troumbis, A. Y., & Lawton, J.
H. (2001). Local adaptation enhances performance of common plant
species. Ecology Letters, 4(6), 536–544.https://doi.org/10.1046/j.1461-0248.2001.00262.xKamalov, Elnagar, A., & Leung, H. H. (2021). Ensemble Learning with
Resampling for Imbalanced Data. In Intelligent Computing Theories and
Application (pp. 564–578). Springer International Publishing.
https://doi.org/10.1007/978-3-030-84529-2_48
Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local
adaptation. Ecology Letters, 7(12), 1225–1241.https://doi.org/10.1111/j.1461-0248.2004.00684.xKitchen, S. G., & Monsen, S. B. (1994). Germination rate and emergence
success in Bluebunch Wheatgrass. Journal of Range Management,47(2), 145.https://doi.org/10.2307/4002823Koslow, J. M., & Clay, K. (2007). The mixed mating system ofImpatiens capensis and infection by a foliar rust pathogen:
Patterns of resistance and fitness consequences. Evolution,61(11), 2643–2654.https://doi.org/10.1111/j.1558-5646.2007.00224.xLeavelle, T. N. (1998). “We will make it our own place”: Agriculture
and adaptation at the Grand Ronde Reservation, 1856-1887. American
Indian Quarterly, 22(4), 433–456.https://doi.org/10.2307/1184835Leimu, R., & Fischer, M. (2008). A meta-analysis of local adaptation in
plants. PloS One, 3(12), e4010–e4010.https://doi.org/10.1371/journal.pone.0004010Lenoir, & Svenning, J.-C. (2015). Climate-related range shifts - a
global multidimensional synthesis and new research directions. Ecography
(Copenhagen), 38(1), 15–28.https://doi.org/10.1111/ecog.00967Lenormand, T. (2002). Gene flow and the limits to natural selection.Trends in Ecology & Evolution, 17(4), 183–189.https://doi.org/10.1016/S0169-5347(02)02497-7Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares
Means. R package version 1.5.0.
https://CRAN.R-project.org/package=emmeans.
Lindh, B. C. (2018). Tipping the native-exotic balance: succession in
restored upland prairies in Oregon’s Willamette Valley. Ecological
Restoration, 36(1), 28–40.https://doi.org/10.3368/er.36.1.28Linhart, Y. B. and M. C. Grant. (1996). Evolutionary significance of
local genetic differentiation in plants. Annual Review of Ecology
and Systematics 27: 237–277.
Lovell, J. T., Grogan, K., Sharbel, T. F., & McKay, J. K. (2014).
Mating system and environmental variation drive patterns of adaptation
in Boechera spatifolia (Brassicaceae). Molecular Ecology,23(18), 4486–4497.https://doi.org/10.1111/mec.12879Lüdecke D (2021). sjPlot: Data Visualization for Statistics in
Social Science. R package version
2.8.10, https://CRAN.R-project.org/package=sjPlot.
Mackin, H. C., Shek, K. L., Thornton, T. E., Evens, K. C., Hallett, L.
M., McGuire, K. L., Peterson, M. L., & Roy, B. A. (2021). The ‘black
box’ of plant demography: How do seed type, climate and seed fungal
communities affect grass seed germination? The New Phytologist,231(6), 2319–2332.https://doi.org/10.1111/nph.17532Maslovat, C. Y. T. (2002). Germination ecology of native grass species,Danthonia californica and Elymus glaucus, in Garry oak
ecosystems and the implications for restoration [Master of Science
Thesis, University of Victoria]. Proquest Information and Learning
(Order No. MQ68181).
Masuda, & Yahara, T. (1992). Dispersal of chasmogamous and
cleistogamous seeds in Viola hondoensis W. Backer et H. Boiss.
The Botanical Magazine Tokyo, 105(2), 323–326.https://doi.org/10.1007/BF02489424Merges, Albrecht, J., Böhning-Gaese, K., Schleuning, M., & Neuschulz,
E. L. (2020). Environmental context determines the limiting demographic
processes for plant recruitment across a species’ elevational range.
Scientific Reports, 10(1), 10855–10855.https://doi.org/10.1038/s41598-020-67602-5Middleton, E. L., Bever, J. D., & Schultz, P. A. (2010). The effect of
restoration methods on the quality of the restoration and resistance to
invasion by exotics. Restoration Ecology, 18(2), 181–187.https://doi.org/10.1111/j.1526-100X.2008.00501.xMiller, S. A., Bartow, A., Gisler, M., Ward, K., Young, A. S., & Kaye,
T. N. (2011). Can an ecoregion serve as a seed transfer zone? Evidence
from a common garden study with five native species. Restoration
Ecology, 19(201), 268–276.https://doi.org/10.1111/j.1526-100X.2010.00702.xMoreira de Oliveira, Santos da Silva, F. F., Araujo, M. do N., Campos da
Costa, D. C., Vieira Gomes, S. E., Matias, J. R., Angelotti, F.,
Pelacani Cruz, C. R., Seal, C. E., & Dantas, B. F. (2019).
Environmental stress, future climate, and germination of Myracrodruon
urundeuva seeds. Journal of Seed Science, 41(1), 32–43.https://doi.org/10.1590/2317-1545v41n1191945Nakagawa S., Johnson, P. C. D., & Schielzeth, H. (2017). The
coefficient of determination R2 and intra-class correlation coefficient
from generalized linear mixed-effects models revisited and expanded.
Journal of the Royal Society Interface, 14(134).https://doi.org/10.1098/rsif.2017.0213Nelson, E. B. (2018). The seed microbiome: Origins, interactions, and
impacts. Plant and Soil, 422(1–2), 7–34.https://doi.org/10.1007/s11104-017-3289-7Oakley, C. G., Moriuchi, K. S., & Winn, A. A. (2007). The maintenance
of outcrossing in predominantly selfing species: Ideas and evidence from
cleistogamous species. Annual Review of Ecology, Evolution, and
Systematics, 38, 437–457.
Pfeifer-Meister, L., Roy, B. A., Johnson, B. R., Krueger, J., &
Bridgham, S. D. (2012). Dominance of native grasses leads to community
convergence in wetland restoration. Plant Ecology, 213(4),
637–647.https://doi.org/10.1007/s11258-012-0028-2PRISM Climate Group (2018).https://prism.oregonstate.edu/R Core Team (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Ramalho, C. E., Byrne, M., & Yates, C. J. (2017). A climate-oriented
approach to support decision-making for seed provenance in ecological
restoration. Frontiers in Ecology and Evolution, 5.https://doi.org/10.3389/fevo.2017.00095Ribeiro, Barbosa, E. R. M., & Borghetti, F. (2021). How regional
climate and seed traits interact in shaping stress–tolerance of savanna
seeds? Seed Science Research, 31(4), 300–310.https://doi.org/10.1017/S0960258521000234Rice, K. J., & Knapp, E. E. (2008). Effects of competition and life
history stage on the expression of local adaptation in two native
bunchgrasses. Restoration Ecology, 16(1), 12–23.https://doi.org/10.1111/j.1526-100X.2007.00257.xRushworth, C. A., Brandvain, Y., & Mitchell-Olds, T. (2020).
Identifying the fitness consequences of sex in complex natural
environments. Evolution Letters, 4(6), 516–529.https://doi.org/10.1002/evl3.194Schmitt, J., & Gamble, S. E. (1990). The effect of distance from the
parental site on offspring performance and inbreeding depression in
Impatiens capensis: A test of the local adaptation hypothesis.Evolution, 44(8), 2022–2030.https://doi.org/10.1111/j.1558-5646.1990.tb04308.xSchmitt, J., Ehrhardt, D., & Swartz, D. (1985). Differential Dispersal
of Self-Fertilized and Outcrossed Progeny in Jewelweed (Impatiens
capensis). The American Naturalist, 126(4), 570–575.
Schoen, D. J., & Lloyd, D. G. (1984). The selection of cleistogamy and
heteromorphic diaspores. Biological Journal of the Linnean
Society, 23(4), 303–322.https://doi.org/10.1111/j.1095-8312.1984.tb00147.xSchluter, D. and P. R. Grant. (1984). Ecological correlates of
morphological evolution in a Darwin’s finch, Geospiza difficilis.Evolution 38: 856–869.
Seifert, B., & Fischer, M. (2010). Experimental establishment of a
declining dry-grassland flagship species in relation to seed origin and
target environment. Biological Conservation, 143(5),
1202–1211.https://doi.org/10.1016/j.biocon.2010.02.028Siepielski, A. M., A. Nemirov, M. Cattivera, & A. Nickerson. (2016).
”Experimental Evidence for an Eco-Evolutionary Coupling between Local
Adaptation and Intraspecific Competition.” The American Naturalist 187:
447-456.
Stanley, A. G., Dunwiddie, P. W., & Kaye, T. N. (2011). Restoring
invaded Pacific Northwest prairies: Management recommendations from a
region-wide experiment. Northwest Science, 85(2),
233–246.https://doi.org/10.3955/046.085.0212UNEP and FAO (2020). The UN Decade on Ecosystem Restoration 2021-2030.
The United Nations Environmental Program Fact Sheet, June 2020.
van Boheemen, L. A., Atwater, D. Z., & Hodgins, K. A. (2019). Rapid and
repeated local adaptation to climate in an invasive plant. New
Phytologist, 222(1), 614–627.https://doi.org/10.1111/nph.15564Waller D. M. (1982). Factors Influencing Seed Weight in Impatiens
capensis (Balsaminaceae). American Journal of Botany, 69(9), 1470–1475.https://doi.org/10.1002/j.1537-2197.1982.tb13395.xWang, Y., Xu, W., Yuan, W., Chen, X., Zhang, B., Fan, L., He, B., Hu,
Z., Liu, S., Liu, W., & Piao, S. (2021). Higher plant photosynthetic
capability in autumn responding to low atmospheric vapor pressure
deficit. The Innovation, 2(4), 100163.https://doi.org/10.1016/j.xinn.2021.100163Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York. ISBN 978-3-319-24277-4,https://ggplot2.tidyverse.org.
Williams, E. (n.d.). “Latitude/Longitude Distance Calculator.”
National Oceanic and Atmospheric Administration. Retrieved fromhttps://www.nhc.noaa.gov/gccalc.shtml.
Wilson MV. (1998). Wetland prairie. In: Part I the US Fish and Wildlife
Service Willamette Basin Recovery Plan. Portland (OR): US Fish and
Wildlife Service. Order No. 13420-6-0287 (2). 23 p.
Yi, Wang, Z., Baskin, C. C., Baskin, J. M., Ye, R., Sun, H., Zhang, Y.,
Ye, X., Liu, G., Yang, X., & Huang, Z. (2019). Seed germination
responses to seasonal temperature and drought stress are
species‐specific but not related to seed size in a desert steppe:
Implications for effect of climate change on community structure.
Ecology and Evolution, 9(4), 2149–2159.https://doi.org/10.1002/ece3.4909Zeide, B. (1978). Reproductive Behavior of Plants in Time. The American
Naturalist, 112(985), 636–639.https://doi.org/10.1086/283305Zhang, M., Suren, H., & Holliday, J. A. (2019). Phenotypic and genomic
local adaptation across latitude and altitude in Populus
trichocarpa. Genome Biology and Evolution, 11(8),
2256–2272.https://doi.org/10.1093/gbe/evz151