References
Achour,
A. R., Bauda, P., & Billard, P. (2007). Diversity of arsenite
transporter genes from arsenic-resistant soil bacteria. Research
in Microbiology , 158 (2), 128–137. doi:
10.1016/j.resmic.2006.11.006
Afkar, E., Lisak, J., Saltikov, C., Basu, P., Oremland, R. S., & Stolz,
J. F. (2003). The respiratory arsenate reductase from Bacillus
selenitireducens strain MLS10. FEMS Microbiology Letters ,226 (1), 107–112. doi: 10.1016/S0378-1097(03)00609-8
Ali, W., Isayenkov, S. V., Zhao, F.-J., & Maathuis, F. J. M. (2009).
Arsenite transport in plants. Cellular and Molecular Life
Sciences: CMLS , 66 (14), 2329–2339. doi:
10.1007/s00018-009-0021-7
Basu, P., Stolz, J. F., & Oremland, R. S. (2010). Microbial Arsenic
Metabolism: New Twists on an Old Poison: During the early anoxic phase
on Earth, some microbes depended on arsenic to respire. Microbe
Magazine , 5 (2), 53–59. doi: 10.1128/microbe.5.53.1
Bhattacharjee, H., Sheng, J., Ajees, A. A., Mukhopadhyay, R., & Rosen,
B. P. (2010). Adventitious Arsenate Reductase Activity of the Catalytic
Domain of the Human Cdc25B and Cdc25C Phosphatases. Biochemistry ,49 (4), 802–809. doi: 10.1021/bi9019127
Bobrowicz, P., Wysocki, R., Owsianik, G., Goffeau, A., & Ułaszewski, S.
(1997). Isolation of Three Contiguous Genes, ACR1, ACR2 and ACR3,
Involved in Resistance to Arsenic Compounds in the Yeast Saccharomyces
cerevisiae. Yeast , 13 (9), 819–828. doi:
10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO;2-Y
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible
trimmer for Illumina sequence data. Bioinformatics ,30 (15), 2114–2120. doi: 10.1093/bioinformatics/btu170
Borgnia, M., Nielsen, S., Engel, A., & Agre, P. (1999). Cellular and
Molecular Biology of the Aquaporin Water Channels. Annual Review
of Biochemistry , 68 (1), 425–458. doi:
10.1146/annurev.biochem.68.1.425
Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive
protein alignment using DIAMOND. Nature Methods , 12 (1),
59–60. doi: 10.1038/nmeth.3176
Cai, L., Liu, G., Rensing, C., & Wang, G. (2009). Genes involved in
arsenic transformation and resistance associated with different levels
of arsenic-contaminated soils. BMC Microbiology , 9 (1), 4.
doi: 10.1186/1471-2180-9-4
Chen, J., Bhattacharjee, H., & Rosen, B. P. (2015). ArsH is an
organoarsenical oxidase that confers resistance to trivalent forms of
the herbicide monosodium methylarsenate and the poultry growth promoter
roxarsone. Molecular Microbiology , 96 (5), 1042–1052. doi:
10.1111/mmi.12988
Chen, J., Madegowda, M., Bhattacharjee, H., & Rosen, B. P. (2015).
ArsP: A methylarsenite efflux permease. Molecular Microbiology ,98 (4), 625–635. doi: 10.1111/mmi.13145
Chen, J., Nadar, V. S., & Rosen, B. P. (2017). A novel
MAs(III)-selective ArsR transcriptional repressor. Molecular
Microbiology , 106 (3), 469–478. doi: 10.1111/mmi.13826
Chen, J., Yoshinaga, M., Garbinski, L. D., & Rosen, B. P. (2016).
Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and
ArsJ, a novel organoarsenical efflux permease, confers arsenate
resistance. Molecular Microbiology , 100 (6), 945–953. doi:
10.1111/mmi.13371
Chen, S.-C., Sun, G.-X., Yan, Y., Konstantinidis, K. T., Zhang, S.-Y.,
Deng, Y., … Zhu, Y.-G. (2020). The Great Oxidation Event expanded
the genetic repertoire of arsenic metabolism and cycling.Proceedings of the National Academy of Sciences , 117 (19),
10414–10421. doi: 10.1073/pnas.2001063117
Chrysostomou, C., Quandt, E. M., Marshall, N. M., Stone, E., &
Georgiou, G. (2015). An Alternate Pathway of Arsenate Resistance in E.
coli Mediated by the Glutathione S-Transferase GstB. ACS Chemical
Biology , 10 (3), 875–882. doi: 10.1021/cb500755j
Dunivin, T. K., Yeh, S. Y., & Shade, A. (2019). A global survey of
arsenic-related genes in soil microbiomes. BMC Biology ,17 (1), 45. doi: 10.1186/s12915-019-0661-5
Fahy, A., Giloteaux, L., Bertin, P., Le Paslier, D., Médigue, C.,
Weissenbach, J., … Lauga, B. (2015). 16S rRNA and As-Related
Functional Diversity: Contrasting Fingerprints in Arsenic-Rich Sediments
from an Acid Mine Drainage. Microbial Ecology , 70 (1),
154–167. doi: 10.1007/s00248-014-0558-3
Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated
for clustering the next-generation sequencing data.Bioinformatics , 28 (23), 3150–3152. doi:
10.1093/bioinformatics/bts565
Galperin, M. Y., Wolf, Y. I., Makarova, K. S., Vera Alvarez, R.,
Landsman, D., & Koonin, E. V. (2021). COG database update: Focus on
microbial diversity, model organisms, and widespread pathogens.Nucleic Acids Research , 49 (D1), D274–D281. doi:
10.1093/nar/gkaa1018
Hamamura, N., Macur, R. E., Korf, S., Ackerman, G., Taylor, W. P.,
Kozubal, M., … Inskeep, W. P. (2009). Linking microbial oxidation
of arsenic with detection and phylogenetic analysis of arsenite oxidase
genes in diverse geothermal environments. Environmental
Microbiology , 11 (2), 421–431. doi:
10.1111/j.1462-2920.2008.01781.x
Hemmingsson, O., Zhang, Y., Still, M., & Naredi, P. (2009). ASNA1, an
ATPase targeting tail-anchored proteins, regulates melanoma cell growth
and sensitivity to cisplatin and arsenite. Cancer Chemotherapy and
Pharmacology , 63 (3), 491–499. doi: 10.1007/s00280-008-0762-2
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A.,
Forslund, S. K., Cook, H., … Bork, P. (2019). eggNOG 5.0: A
hierarchical, functionally and phylogenetically annotated orthology
resource based on 5090 organisms and 2502 viruses. Nucleic Acids
Research , 47 (D1), D309–D314. doi: 10.1093/nar/gky1085
Jia, Y., Huang, H., Zhong, M., Wang, F.-H., Zhang, L.-M., & Zhu, Y.-G.
(2013a). Microbial Arsenic Methylation in Soil and Rice Rhizosphere.Environmental Science & Technology , 47 (7), 3141–3148.
doi: 10.1021/es303649v
Jia, Y., Huang, H., Zhong, M., Wang, F.-H., Zhang, L.-M., & Zhu, Y.-G.
(2013b). Microbial Arsenic Methylation in Soil and Rice Rhizosphere.Environmental Science & Technology , 47 (7), 3141–3148.
doi: 10.1021/es303649v
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M.
(2016). KEGG as a reference resource for gene and protein annotation.Nucleic Acids Research , 44 (D1), D457–D462. doi:
10.1093/nar/gkv1070
Krafft, T., & Macy, J. M. (1998). Purification and characterization of
the respiratory arsenate reductase of Chrysiogenes arsenatis.European Journal of Biochemistry , 255 (3), 647–653. doi:
10.1046/j.1432-1327.1998.2550647.x
Kulp, T. R. (2014). Arsenic and primordial life. Nature
Geoscience , 7 (11), 785–786. doi: 10.1038/ngeo2275
Kurdi-Haidar, B., Aebi, S., Heath, D., Enns, R. E., Naredi, P., Hom, D.
K., & Howell, S. B. (1996). Isolation of the ATP-binding human homolog
of the arsA component of the bacterial arsenite transporter.Genomics , 36 (3), 486–491. doi: 10.1006/geno.1996.0494
Liu, G., Liu, M., Kim, E.-H., Maaty, W. S., Bothner, B., Lei, B.,
… McDermott, T. R. (2012). A periplasmic arsenite-binding protein
involved in regulating arsenite oxidation: Arsenite-binding protein.Environmental Microbiology , 14 (7), 1624–1634. doi:
10.1111/j.1462-2920.2011.02672.x
Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2015). Archaeal Clusters
of Orthologous Genes (arCOGs): An Update and Application for Analysis of
Shared Features between Thermococcales, Methanococcales, and
Methanobacteriales. Life , 5 (1), 818–840. doi:
10.3390/life5010818
Mukhopadhyay, R., & Rosen, B. P. (2002). Arsenate reductases in
prokaryotes and eukaryotes. Environmental Health Perspectives ,110 Suppl 5 , 745–748. doi: 10.1289/ehp.02110s5745
Mukhopadhyay, R., Rosen, B. P., Phung, L. T., & Silver, S. (2002).
Microbial arsenic: From geocycles to genes and enzymes. FEMS
Microbiology Reviews , 26 (3), 311–325. doi:
10.1111/j.1574-6976.2002.tb00617.x
Nayfach, S., & Pollard, K. S. (2016). Toward Accurate and Quantitative
Comparative Metagenomics. Cell , 166 (5), 1103–1116. doi:
10.1016/j.cell.2016.08.007
O’Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D.,
McVeigh, R., … Pruitt, K. D. (2016). Reference sequence (RefSeq)
database at NCBI: Current status, taxonomic expansion, and functional
annotation. Nucleic Acids Research , 44 (D1), D733–D745.
doi: 10.1093/nar/gkv1189
Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic.Science (New York, N.Y.) , 300 (5621), 939–944. doi:
10.1126/science.1081903
Peng, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012).
IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing
data with highly uneven depth. Bioinformatics , 28 (11),
1420–1428. doi: 10.1093/bioinformatics/bts174
Qin, J., Fu, H.-L., Ye, J., Bencze, K. Z., Stemmler, T. L., Rawlings, D.
E., & Rosen, B. P. (2007). Convergent Evolution of a New Arsenic
Binding Site in the ArsR/SmtB Family of Metalloregulators. Journal
of Biological Chemistry , 282 (47), 34346–34355. doi:
10.1074/jbc.M706565200
Qin, J., Rosen, B. P., Zhang, Y., Wang, G., Franke, S., & Rensing, C.
(2006). Arsenic detoxification and evolution of trimethylarsine gas by a
microbial arsenite S-adenosylmethionine methyltransferase.Proceedings of the National Academy of Sciences , 103 (7),
2075–2080. doi: 10.1073/pnas.0506836103
Rosen, B. P. (2002). Biochemistry of arsenic detoxification. FEBS
Letters , 529 (1), 86–92. doi: 10.1016/S0014-5793(02)03186-1
Saltikov, C. W., & Newman, D. K. (2003). Genetic identification of a
respiratory arsenate reductase. Proceedings of the National
Academy of Sciences , 100 (19), 10983–10988. doi:
10.1073/pnas.1834303100
Sardiwal, S., Santini, J. M., Osborne, T. H., & Djordjevic, S. (2010).
Characterization of a two-component signal transduction system that
controls arsenite oxidation in the chemolithoautotroph NT-26. FEMS
Microbiology Letters , 313 (1), 20–28. doi:
10.1111/j.1574-6968.2010.02121.x
Shen, W., & Xiong, J. (2019). TaxonKit: A cross-platform and
efficient NCBI taxonomy toolkit [Preprint]. Bioinformatics. doi:
10.1101/513523
Tamaki, S., & Frankenberger, W. T. (1992). Environmental Biochemistry
of Arsenic. In G. W. Ware (Ed.), Reviews of Environmental
Contamination and Toxicology: Continuation of Residue Reviews (pp.
79–110). New York, NY: Springer. doi: 10.1007/978-1-4612-2864-6_4
Tu, Q., Lin, L., Cheng, L., Deng, Y., & He, Z. (2019). NCycDB: A
curated integrative database for fast and accurate metagenomic profiling
of nitrogen cycling genes. Bioinformatics , 35 (6),
1040–1048. doi: 10.1093/bioinformatics/bty741
The UniProt Consortium. (2017). UniProt: The universal protein
knowledgebase. Nucleic Acids Research , 45 (D1), D158–D169.
doi: 10.1093/nar/gkw1099
Wang, H.-T., Zhu, D., Li, G., Zheng, F., Ding, J., O’Connor, P. J.,
… Xue, X.-M. (2019). Effects of Arsenic on Gut Microbiota and Its
Biotransformation Genes in Earthworm Metaphire sieboldi.Environmental Science & Technology , 53 (7), 3841–3849.
doi: 10.1021/acs.est.8b06695
Wang, P., Sun, G., Jia, Y., Meharg, A. A., & Zhu, Y. (2014). A review
on completing arsenic biogeochemical cycle: Microbial volatilization of
arsines in environment. Journal of Environmental Sciences ,26 (2), 371–381. doi: 10.1016/S1001-0742(13)60432-5
Wysocki, R., Chéry, C. C., Wawrzycka, D., Van Hulle, M., Cornelis, R.,
Thevelein, J. M., & Tamás, M. J. (2001). The glycerol channel Fps1p
mediates the uptake of arsenite and antimonite in Saccharomyces
cerevisiae. Molecular Microbiology , 40 (6), 1391–1401.
doi: 10.1046/j.1365-2958.2001.02485.x
Xiao, K.-Q., Li, L.-G., Ma, L.-P., Zhang, S.-Y., Bao, P., Zhang, T., &
Zhu, Y.-G. (2016). Metagenomic analysis revealed highly diverse
microbial arsenic metabolism genes in paddy soils with low-arsenic
contents. Environmental Pollution , 211 , 1–8. doi:
10.1016/j.envpol.2015.12.023
Xu, R., Huang, D., Sun, X., Zhang, M., Wang, D., Yang, Z., … Sun,
W. (2021). Diversity and metabolic potentials of As(III)-oxidizing
bacteria in activated sludge. Applied and Environmental
Microbiology . doi: 10.1128/AEM.01769-21
Yan, Y., Ye, J., Xue, X.-M., & Zhu, Y.-G. (2015). Arsenic Demethylation
by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120.Environmental Science & Technology , 49 (24), 14350–14358.
doi: 10.1021/acs.est.5b03357
Yoshinaga, M., Cai, Y., & Rosen, B. P. (2011). Demethylation of
methylarsonic acid by a microbial community. Environmental
Microbiology , 13 (5), 1205–1215. doi:
10.1111/j.1462-2920.2010.02420.x
Yoshinaga, M., & Rosen, B. P. (2014). A C⋅As lyase for degradation of
environmental organoarsenical herbicides and animal husbandry growth
promoters. Proceedings of the National Academy of Sciences ,111 (21), 7701–7706. doi: 10.1073/pnas.1403057111
Yu, X., Zhou, J., Song, W., Xu, M., He, Q., Peng, Y., … He, Z.
(2021). SCycDB: A curated functional gene database for metagenomic
profiling of sulphur cycling pathways. Molecular Ecology
Resources , 21 (3), 924–940. doi: 10.1111/1755-0998.13306
Zargar, K., Conrad, A., Bernick, D. L., Lowe, T. M., Stolc, V., Hoeft,
S., … Saltikov, C. W. (2012). ArxA, a new clade of arsenite
oxidase within the DMSO reductase family of molybdenum oxidoreductases.Environmental Microbiology , 14 (7), 1635–1645. doi:
10.1111/j.1462-2920.2012.02722.x
Zargar, K., Hoeft, S., Oremland, R., & Saltikov, C. W. (2010).
Identification of a novel arsenite oxidase gene, arxA, in the
haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii
strain MLHE-1. Journal of Bacteriology , 192 (14),
3755–3762. doi: 10.1128/JB.00244-10
Zhang, C., Xiao, X., Zhao, Y., Zhou, J., Sun, B., & Liang, Y. (2021).
Patterns of microbial arsenic detoxification genes in low-arsenic
continental paddy soils. Environmental Research , 201 ,
111584. doi: 10.1016/j.envres.2021.111584
Zhang, S.-Y., Su, J.-Q., Sun, G.-X., Yang, Y., Zhao, Y., Ding, J.,
… Zhu, Y.-G. (2017). Land scale biogeography of arsenic
biotransformation genes in estuarine wetland. Environmental
Microbiology , 19 (6), 2468–2482. doi: 10.1111/1462-2920.13775
Zheng, Y. (2020). Global solutions to a silent poison. Science ,368 (6493), 818–819. doi: 10.1126/science.abb9746
Zhu, Y.-G., Xue, X.-M., Kappler, A., Rosen, B. P., & Meharg, A. A.
(2017). Linking Genes to Microbial Biogeochemical Cycling: Lessons from
Arsenic. Environmental Science & Technology , 51 (13),
7326–7339. doi: 10.1021/acs.est.7b00689