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Abstract

In this article, the (2+1) - dimensional variable coefficients Broer-Kaup-Kupershmit equation is studied for the first time
by Lie symmetry analysis. The derivation process of generating elements of vcBKK equation is given systematically, and the
optimal system of the one-dimensional subalgebras is determined. Furthermore vcBKK equation is reduced based on the optimal
system, and then the reduced equations are solved with the help of the (G′/G) - expansion method. The images of various
kinds of exact solutions are drawn. Finally, according to the conservation theorem, the conservation laws of vcBKK equation is
constructed.
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1. Introduction

Nonlinear partial differential equations (NPDEs) arise in many areas of physics. Exhibiting a wealth of nonlinear phenomena,
and NPDEs are often used to describe important areas of physics, mechanics, chemistry, dynamic processes biology and other
sciences. The study of exact solutions of NPDEs are of great importance and a large number of methods have now been devel-
oped, including Bäcklund transformation [1, 2], the Hirota bilinear method [3], Lie symmetry analysis [4, 5], the CK method [6],
dynamical system theory [7, 8], and hyperbolic function method [9]. With the help of Lie group, constructing exact solutions of
partial differential equations (PDEs) is very effective [10–12] , and we can use Lie group to get different reduced equations, and
then get different kinds of solutions, such as periodic solutions and kink solutions, etc [13–15].

The Broer-Kaup-Kupershmidt (BKK) equation is a well-known evolution equation, which can be obtained from symmetry
reduction of the KP equation [16, 17]. It has found a wide range of applications in physical fields, such as plasma physics,
hydrodynamics and nonlinear fibre optic communication [18]. The BKK equation is used to simulate the nonlinear dispersive
long gravity wave propagating along two horizontal directions in uniform water depth. The constant coefficients BKK equation
has the following form

uty − uxxy + 2(uux)y + 2vxx = 0,

vt + vxx + 2(uv)x = 0. (1.1)

Due to the assumption of constant coefficients, the physical situations that give rise to the nonlinear equations are often
highly idealised. Therefore, the variable coefficient NPDEs has been widely investigated [19–23]. In this article we discuss the
following vcBKK equation

uty − a (t) uxxy + b (t) (uux)y + c (t) vxx = 0,

vt + d (t) vxx + e (t) (uv)x = 0, (1.2)

where a (t) , b (t) , c (t) , d (t) , e (t) are arbitrary non-zero functions on t. When a (t) = d (t) = 1, b (t) = c (t) = e (t) = 2, the above
equation is the BKK equation (1.1).

Through literature review, the vcBKK equation has not been studied by the method of Lie symmetry analysis, the outline
of this paper is as follows. In Section 2, using the method of Lie symmetry analysis, the generators of vcBKK equation are
obtained, and then optimal system is determined. In Section 3, based on the optimal system, the vcBKK equation is reduced
to the (1+1) dimensional equations. In Section 4, the reduced equations are solved by (G′/G) -expansion method [24], and use
Maple software to draw figures, and get various types of images. In Section 5, four groups of conservation laws of the vcBKK
equation are obtained according to the conservation theorem. In Section 6, we have concluded this paper.
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2. Lie symmetry analysis

Lie symmetry analysis is an effective method for finding invariants and exploring certain properties by reducing the dimen-
sional of the NPDEs [28]. In this section, the generators of vcBKK are obtained with the help of Lie symmetry analysis. The
one-parameter Lie group transformation has the form

x∗ = x + ε · ξ + o
(
ε2

)
,

y∗ = y + ε · η + o
(
ε2

)
,

t∗ = t + ε · τ + o
(
ε2

)
,

u∗ = u + ε · φ1 + o
(
ε2

)
,

v∗ = v + ε · φ2 + o
(
ε2

)
,

(2.1)

where ξ, η, τ, φ1, φ2 are generators of the variables x, y, t, u and v, the vector field X relevant to the one-parameter transformations
of vcBKK can be separately written as

X = ξ
∂

∂x
+ η

∂

∂y
+ τ

∂

∂t
+ φ1

∂

∂u
+ φ2

∂

∂v
. (2.2)

To get the Lie point symmetry of vcBKK, the vector field X must fulfill the surface condition

Pr(3)XF1|F1=0,F2=0 = 0,

Pr(3)XF2|F1=0,F2=0 = 0,
(2.3)

where Pr(3)X denotes the third-order prolongation of the vector field X , which takes the form of

Pr(3)X = ξ
∂

∂x
+ η

∂

∂y
+ τ

∂

∂t
+ φ1

∂

∂u
+ φ2

∂

∂v
+ ψ1

x
∂

∂ux
+ ψ1

y
∂

∂uy
+ ψ1

xy
∂

∂uxy

+ψ1
xxy

∂

∂uxxy
+ ψ1

ty
∂

∂uty
+ ψ2

x
∂

∂vx
+ ψ2

t
∂

∂vt
+ ψ2

xx
∂

∂vxx

(2.4)

Applying Pr(3)X to vcBKK (1.2) , we obtain the following Lie invariant surface conditions

ψ1
yt + τ

[
−a′ (t) uxxy + b′ (t) uyux + b′ (t) uuxy + c′ (t) vxx

]
+ a (t)ψ1

xxy + b (t)
(
ψ1

xuy + ψ1
yux + φ1uxy + ψ1

xyu
)

+ c (t)ψ2
xx = 0,

ψ2
t + τ [d′ (t) vxx + e′ (t) uxv + e′ (t) uvx] + e (t) φ1vx + φ2ux + ψ1

xv + ψ2
xu + d (t)2

xx = 0,
(2.5)

where φx
1, φ

y
1, φ

xy
1 , φ

xxy
1 , φ

ty
1 , φ

x
2, φ

t
2, and φxx

2 can be defined separately

ψ1
x = Dx

(
φ1 − ξux − ηuy − τut

)
+ ξuxx + ηuxy + τuxt,

ψ2
x = Dx

(
φ2 − ξux − ηuy − τut

)
+ ξuxx + ηuxy + τuxt,

ψ1
y = Dy

(
φ1 − ξux − ηuy − τut

)
+ ξuxy + ηuyy + τuyt,

ψ2
t = Dt

(
φ2 − ξux − ηuy − τut

)
+ ξuxt + ηuyt + τutt,

ψ2
xx = Dxx

(
φ2 − ξux − ηuy − τut

)
+ ξuxxx + ηuxxy + τuxxt,

ψ1
xy = Dxy

(
φ1 − ξux − ηuy − τut

)
+ ξuxxy + ηuxyy + τuxyt,

ψ1
yt = Dyt

(
φ1 − ξux − ηuy − τut

)
+ ξuxyt + ηuyyt + τuytt,

ψ1
xxy = Dxxy

(
φ1 − ξux − ηuy − τut

)
+ ξuxxxy + ηuxxyy + τuxxyt.

(2.6)

where Dx,Dy and Dt denote total differential operator.
Taking Eqs. (1.2) and Eqs. (2.6) into Eqs. (2.5) , setting the derivative coefficients of the same order of u to be 0, we can get
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determining equations for ξ, η, τ, φ1, φ2, then solve those equations yields

ξ = c1x + c3, η = c1y + c2, φ1 = −c1u,

τ =
c4

b (t)
+

2c1
∫

b (t) dt

b (t)
, φ2 = −2c1v,

(2.7)

where c j ( j = 1, 2, 3, 4) are arbitrary constants. On the side, the coefficient functions a (t) , b (t) , c (t) , d (t) , e (t) in Eqs. (1.2) must
satisfy the following conditions

a (t) τt + a′ (t) − 2a (t) c1 = 0,

b (t) τt + b′ (t) − 2b (t) c1 = 0,

c (t) τt + c′ (t) − 2c (t) c1 = 0,

d (t) τt + d′ (t) − 2d (t) c1 = 0,

e (t) τt + e′ (t) − 2e (t) c1 = 0.

(2.8)

The vector field X of the vcBKK equation (1.2) can be reduced to the form of vectors X1,X2,X3 and X4

X = a1X1 + a2X2 + a3X3 + a4X4, (2.9)

where the vectors X1,X2,X3 and X4 are to be defined as

X1 = x
∂

∂x
+ y

∂

∂y
+

2
∫

b (t) dt

b (t)
∂

∂t
− u

∂

∂u
− 2v

∂

∂v
,

X2 =
∂

∂y
,

X3 =
∂

∂x
,

X4 =
1

b (t)
∂

∂t
.

(2.10)

The Lie algebra and commutation relations for these vectors are calculated using the Lie bracket
[
Xi,X j

]
= XiX j − X jXi.

The Lie series for calculating accompanying relations can be expressed as

Ad
(
exp (ε)Xi

)
X j = X j − ε

[
Xi,X j

]
+
ε2

2
[Xi, [Xi,X j]] − · · · , (2.11)

with ε is an infinitesimal real number.

Table 1: Commutator table.[
Xi,X j

]
X1 X2 X3 X4

X1 0 −X2 −X3 −2X4
X2 X2 0 0 0
X3 X3 0 0 0
X4 2X4 0 0 0

Table 2: Adjoint representation table.

Ad X1 X2 X3 X4

X1 X1 X2eε X3eε X4eε

X2 X1 − εX2 X2 X3 X4
X3 X1 − εX3 X2 X3 X4
X4 X1 − ε2X4 X2 X3 X4
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According to Table 1 and Table 2, the optimal system for the one-dimensional subalgebra is derived by the method in [29, 30]

I: X1,

II: X2,

III: X2 + α1X3 + α2X4,

(2.12)

where α1 and α2 are arbitrary constants.

3. Similarity reductions of the vcBKK equation

In this section, we reduce the vcBKK equation to the (1+1)-dimensional PDEs based on the subalgebra in (2.10) and the
optimal system (2.12). Here, we only take Case III as an example for symmetric reduction. To simplify calculation, let α1 =

α2 = 1.
CaseIII in optimal system (2.12) can be written as

X =
∂

∂x
+
∂

∂y
+ τ (t)

∂

∂t
, (3.1)

according to this Lie vector, the corresponding characteristic equation can be expressed as

dx
1

=
dy
1

=
dt
τ (t)

=
du
0

=
dv
0
. (3.2)

The relative similarity variables are obtained by solving (3.2) are

X = x −
∫ 1
τ (t)

dt,Y = y −
∫ 1
τ (t)

dt, u = F (X,Y) , v = H (X,Y) . (3.3)

Eqs. (1.2) are simplified by means of Eqs. (3.3) to the following form

b (t) τ (t) FFXY + b (t) τ (t) FXFY − a (t) τ (t) FXXY + c (t) τ (t) HXX − FXY − FYY = 0,

e (t) τ (t) HFX + e (t) τ (t) FHX + d (t) τ (t) HXX − HX − HY = 0. (3.4)

To insure that only two independent variables X and Y , we also guarantee that the coefficient functions satisfy Eqs. (2.8),
therefore, the coefficient functions are expressed as

a (t) =
m1

τ (t)
, b (t) =

m2

τ (t)
, c (t) =

m3

τ (t)
, d (t) =

m4

τ (t)
, e (t) =

m5

τ (t)
, (3.5)

where mi(i = 1, 2 · · · 5) are arbitrary constants, for ease of calculation, let mi = 1, and substituting Eqs. (3.5) into Eqs. (3.4),
yields

FFXY + FXFY − FXXY + HXX − FXY − FYY = 0,

HFX + FHX + HXX − HX − HY = 0. (3.6)

The reduced equations for different Lie vectors are shown in the following tables. Table 3 shows similar variables corre-
sponding to different Lie vectors. Table 4 shows the expressions of coefficient functions corresponding to different Lie vectors,
and in Table 5 shows the corresponding reduced equations.

4. Exact solutions of the vcBKK equation

In this section, we will solve the reduced equations from the Table 5. Firstly, introduce the traveling wave transformation,
the (1+1)-dimensional PDEs are transformed into ordinary differential equations(ODEs), and then using the (G′/G)-expansion
method to solve the ODEs, mathematical expressions and graphical illustrations of the exact solutions are explained.

The next work is to solve the Case III, IV, and V in Table 5 and draw the relevant images.
Case III X4 + X2
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Table 3: Similarity variables.

Case Similarity variables.

I: X1 X = xe−
(∫

1
τ(t) dt

)
,Y = ye−

(∫
1
τ(t) dt

)
, u = F (X,Y) , v = H (X,Y).

II: X4 X = x,Y = y, u = F (X,Y) , v = H (X,Y).
III: X4 + X2 X = x,Y = y −

∫
1
τ(t) dt, u = F (X,Y) , v = H (X,Y).

IV: X4 + X3 X = x,Y = y −
∫

1
τ(t) dt, u = F (X,Y) , v = H (X,Y).

V: X4 + X2 + X3 X = x −
∫

1
τ(t) dt,Y = y −

∫
1
τ(t) dt, u = F (X,Y) , v = H (X,Y).

Table 4: The expressions of the coefficient functions.

Case Coefficient functions expressions.

I: X1 a (t) = e
∫ 2
τ(t) dt

τ(t) , b (t) = e
∫ 2
τ(t) dt

τ(t) , c (t) = e
∫ 2
τ(t) dt

τ(t) , d (t) = e
∫ 2
τ(t) dt

τ(t) , e (t) = e
∫ 2
τ(t) dt

τ(t) .

II: X4 a (t) , b (t) , c (t) , d (t) , e (t) are any functions that depend on t.
III: X4 + X2 a (t) = 1

τ(t) , b (t) = 1
τ(t) , c (t) = 1

τ(t) , d (t) = 1
τ(t) , e (t) = 1

τ(t) .

IV: X4 + X3 a (t) = 1
τ(t) , b (t) = 1

τ(t) , c (t) = 1
τ(t) , d (t) = 1

τ(t) , e (t) = 1
τ(t) .

V: X4 + X2 + X3 a (t) = 1
τ(t) , b (t) = 1

τ(t) , c (t) = 1
τ(t) , d (t) = 1

τ(t) , e (t) = 1
τ(t) .

Table 5: The expressions of the reduced PDEs.

Case Reduced PDEs

I: X1

FXFY + FFXY − FXXY + HXX − FXY − FYYY − 2FY = 0,

FXH + FHX + HXX − HYY − HXX − 2H = 0.

II: X4

b (t) FY FX + b (t) FFXY − a (t) FXXY + c (t) HXX = 0,

e (t) FHX + e (t) HFX + d (t) HXX = 0.

III: X4 + X2

FXFY + FFXY − FXXY + HXX − FYY = 0,

HFX + FHX + HXX − HY = 0.

IV: X4 + X3

FXFY + FFXY − FXXY + HXX − FXY = 0,

HFX + FHX + HXX − HX = 0.

V: X4 + X2 + X3

FXFY + FFXY − FXXY + HXX − FXY − FYY = 0,

HFX + FHX + HXX − HX − HY = 0.
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In Table 5, we can see that the reduced equations as

FXFY + FFXY − FXXY + HXX − FYY = 0,

HFX + FHX + HXX − HY = 0. (4.1)

Firstly, introduce the traveling wave transformation

F (X,Y) = F (θ) ,H (X,Y) = H (θ) , θ = X − VY, (4.2)

in which V is denoted as the wave velocity.

The travelling wave transform (4.2) is applied to Eqs.(4.1) can obtain the following equations

−(F′)2V − FF′′V + F′′′V + H′′ − F′′V2 = 0,

HF′ + FH′ + H′′ + H′V = 0, (4.3)

we can directly solve the solutions of Eqs. (4.3) as

F =
c2V + Vθ − 2

c2 + θ
,

H =

(
4V

(c2 + θ)3 + c1

)
(c2 + θ) ,

(4.4)

where c1 and c2 are arbitrary constants.

Substituting the similar variables in Table 3 into Eqs. (4.4) to obtain the solutions of Eqs. (1.2)

u =

c2V + V
(
V

(∫ 1
τ (t)

dt − y
)

+ x
)
− 2

V
(∫ 1

τ (t)
dt − y

)
+ c2 + x

,

v =


4V

V
(∫ 1

τ (t)
dt − y

)
+ c2 + x

+ c1


(
V

(∫ 1
τ (t)

dt − y
)

+ c2 + x
)
,

(4.5)

we choose parameters c1 = 1, c2 = 1, V = −1, τ (t) = sin (t), the images of Eqs. (4.5) are presented in Figure. 1 respectively.
Case IV X4 + X3

For Case III, we adopt the direct solution method after traveling wave transformation. Next we will use the (G′/G) - expan-
sion method to solve the Case IV and Case V.

In Table 5, we can see that the equations for Case IV after reduction are

FXFY + FFXY − FXXY + HXX − FXY = 0,

HFX + FHX + HXX − HX = 0. (4.6)

Firstly, we perform the traveling wave transformation on Eqs. (4.6) , using (4.2), we can transform the (1+1) dimensional
PDEs (4.6) into ODEs

−(F′)2V − FF′′V + F′′′V + H′′ + F′′V = 0,

HF′ + FH′ + H′′ − H′ = 0. (4.7)
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(a) (b)

(c) (d)

Figure 1: Evolution of solutions (4.5) at (a) t = 1, (b) density plot of (a) at t = 1, (c) t = 1, (d) density plot of (c) at t = 1.

With the help of homogeneous balance, we suppose that its solutions take the form

F (θ) = a1

(
G′

G

)
+ a0,

H (θ) = b2

(
G′

G

)2

+ b1

(
G′

G

)
+ b0,

(4.8)

where a0, a1, b0, b1, b2 are the coefficients to be identified, and G = G (θ) satisfies the second order linear ordinary differential
equation

G′′ + λG′ + µG = 0, (4.9)

in which λ and µ are arbitrary constants.

Substituting Eqs. (4.8) and Eq. (4.9) into Eqs. (4.7), then extracting the coefficients of the same order, and making them to
be 0, we can get the following equations



a1 = 2,

b2 − 4V = 0,

2λb2 − a0b2 − b1 + b2 = 0,

λb1 + 2µb2 − a0b1 − 2b0 + b1 = 0,

2V − 10Vλ − 6Vλa1 − 2Va0 + 5λb2 + b1 = 0,

2Vλµ − 2Vλ2µ − 2Vλµa0 − 8Vµ2 + λµb1 + 2µ2b2 = 0,

6Vλ − 22Vλ2 − 6Vλa0 − 32Vµ + 4λ2b2 + 3λb1 + 8µb2 = 0,

4λ2b2 − 2λa0b2 − λb1 + 2λb2 + 2µb2 − a0b1 − 2b0 + b1 = 0,

λ2b1 + 6λµb2 − λa0b1 − 2λb0 − 2µa0b2 − 2µb1 + λb1 + 2µb2 = 0,

2Vλ2 − 2Vλ3 − 2Vλ2a0 − 28Vλµ − 4Vµa0 + 4Vµ + λ2b1 + 6λµb2 + 2µb1 = 0.

(4.10)
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Solving the system (4.10) , yields

V = 1, a0 = λ + 1, a1 = 2, b0 = 4µ, b1 = 4λ, b2 = 4, (4.11)

substituting Eqs. (4.11) into Eqs. (4.8) and reducing it as

F (θ) = 2
(
G′

G

)
+ λ + 1,

H (θ) = 4
(
G′

G

)2

+ 4λ
(
G′

G

)
+ 4µ.

(4.12)

Substituting the solution of Eq. (4.9) into Eqs. (4.12) [18], we can obtain the exact solutions of the three types of Eqs. (4.6).

When λ2 > 4µ ,

F (θ) =

√
λ2 − 4µ

(
k1 sinh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 cosh

(
1
2
θ
√
λ2 − 4µ

))
k1 cosh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 sinh

(
1
2
θ
√
λ2 − 4µ

) + 1,

H (θ) =

(
λ2 − 4µ

) (
k1 sinh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 cosh

(
1
2
θ
√
λ2 − 4µ

))2

(
k1 cosh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 sinh

(
1
2
θ
√
λ2 − 4µ

))2 − λ2 + 4µ,

(4.13)

where k1 and k2 are arbitrary constants, and θ = X − VY .

When λ2 < 4µ ,

F (θ) =

√
−λ2 + 4µ

(
−k3 sin

(
1
2

√
4µ − λ2θ

)
+ k4 cos

(
1
2

√
4µ − λ2θ

))
k3 cos

(
1
2

√
4µ − λ2θ

)
+ k4 sin

(
1
2

√
4µ − λ2θ

) + 1,

H (θ) =

(
4µ − λ2

) (
−k3 sin

(
1
2

√
4µ − λ2θ

)
+ k4 cos

(
1
2

√
4µ − λ2θ

))2

(
k3 cos

(
1
2

√
4µ − λ2θ

)
+ k4 sin

(
1
2

√
4µ − λ2θ

))2 − λ2 + 4µ,

(4.14)

where k3 and k4 are arbitrary constants, and θ = X − VY .

When λ2 = 4µ ,

F (θ) =
2k6

k6θ + k5
+ 1,

H (θ) =
4k2

2

(k2θ + k1)2 − λ
2 + 4µ,

(4.15)

where k5 and k6 are arbitrary constants, and θ = X − VY .

The exact solutions of vcBKK are obtained by substituting the corresponding similar variables into the above solutions, and
the procedure is as below.

8



When λ2 > 4µ ,

u (θ) =

√
λ2 − 4µ

(
k1 sinh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 cosh

(
1
2
θ
√
λ2 − 4µ

))
k1 cosh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 sinh

(
1
2
θ
√
λ2 − 4µ

) + 1,

v (θ) =

(
λ2 − 4µ

) (
k1 sinh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 cosh

(
1
2
θ
√
λ2 − 4µ

))2

(
k1 cosh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 sinh

(
1
2
θ
√
λ2 − 4µ

))2 − λ2 + 4µ,

(4.16)

where θ = x −
∫ 1
τ (t)

dt − y , k1 and k2 are arbitrary constants. We choose parameters k1 = 1, k2 = 2, τ (t) =
1
t

, λ = 3, µ = 2, the

images of solutions (4.16) are presented in Figure. 2 .

(a) (b)

(c) (d)

Figure 2: Evolution of the solutions (4.16) at (a) t = 1, (b) density plot of (a) at t = 1, (c) t = 1, (d) 2D plot at t = 1.

When λ2 < 4µ ,

F (θ) =

√
−λ2 + 4µ

(
−k3 sin

(
1
2

√
4µ − λ2θ

)
+ k4 cos

(
1
2

√
4µ − λ2θ

))
k3 cos

(
1
2

√
4µ − λ2θ

)
+ k4 sin

(
1
2

√
4µ − λ2θ

) + 1,

H (θ) =

(
4µ − λ2

) (
−k3 sin

(
1
2

√
4µ − λ2θ

)
+ k4 cos

(
1
2

√
4µ − λ2θ

))2

(
k3 cos

(
1
2

√
4µ − λ2θ

)
+ k4 sin

(
1
2

√
4µ − λ2θ

))2 − λ2 + 4µ,

(4.17)

where θ = x −
∫ 1
τ (t)

dt − y , k3 and k4 are arbitrary constants. We choose parameters k3 = 1, k4 = 1, τ (t) = t2, λ = 2, µ = 3, the

images of solutions (4.17) are presented in Figure. 3 .

When λ2 = 4µ ,

9



(a) (b)

(c) (d)

Figure 3: Evolution of the solutions (4.16) at (a) t = −1, (b) density plot of (a) at t = −1, (c) t = 1, (d) density plot of (c) at t = 1.

F (θ) =
2k6

k6θ + k5
+ 1,

H (θ) =
4k2

2

(k2θ + k1)2 − λ
2 + 4µ,

(4.18)

where θ = x −
∫ 1
τ (t)

dt − y , with k5 and k6 are arbitrary constants.

Case V X4 + X2 + X3

The following method is used to calculate the exact solutions for Case V in the same way as the above cases.

When λ2 > 4µ ,

u (θ) =

√
λ2 − 4µ

(
k1 sinh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 cosh

(
1
2
θ
√
λ2 − 4µ

))
k1 cosh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 sinh

(
1
2
θ
√
λ2 − 4µ

) − λ + 1,

v (θ) =

λ
(
λ2 − 4µ

) (
k1 sinh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 cosh

(
1
2
θ
√
λ2 − 4µ

))2

(
k1 cosh

(
1
2
θ
√
λ2 − 4µ

)
+ k2 sinh

(
1
2
θ
√
λ2 − 4µ

))2 − λ3 + 4λµ,

(4.19)

where θ = −λ

(
y −

∫ 1
τ (t)

dt
)

+ x −
∫ 1
τ (t)

dt , with k1 and k2 are arbitrary constants. We choose parameters k1 = 2, k2 = 1,τ (t) =

sin (t), λ = 3, µ = 2, the images of the solutions (4.19) are presented in Figure. 4 .
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(a) (b) (c)

(d) (e) (f)

Figure 4: Evolution of the solutions (4.19) at (a) t = 1, (b) 2D plot at t = 1, x = 0, (c) density plot of (a) at t = 1, (d) t = 1, (e) 2D plot at t = 1, x = 0, (f) density
plot of (d) at t = 1,

When λ2 < 4µ ,

u (θ) =

√
4µ − λ2

(
−k3 sin

(
1
2
θ
√

4µ − λ2

)
+ k4 cos

(
1
2
θ
√

4µ − λ2

))
k3 cos

(
1
2
θ
√

4µ − λ2

)
+ k4 sin

(
1
2
θ
√

4µ − λ2

) − λ + 1,

v (θ) =

λ
(
4µ − λ2

) (
−k3 sin

(
1
2
θ
√

4µ − λ2

)
+ k4 cos

(
1
2
θ
√

4µ − λ2

))2

(
k3 cos

(
1
2
θ
√

4µ − λ2

)
+ k4 sin

(
1
2
θ
√

4µ − λ2

))2 − λ3 + 4λµ,

(4.20)

where θ = −λ

(
y −

∫ 1
τ (t)

dt
)

+ x −
∫ 1
τ (t)

dt , with k3 and k4 are arbitrary constants.

When λ2 = 4µ ,

u (θ) =
2k2

k2θ + k1
− λ + 1,

v (θ) =

λ
((

2k2θ
√
µ + 2k1

√
µ
)2

+ 4k2
2
)

(k2θ + k1)2 − λ2(k2θ + k1)2,

(4.21)

where θ = −λ

(
y −

∫ 1
τ (t)

dt
)

+ x −
∫ 1
τ (t)

dt , with k5 and k6 are arbitrary constants.

5. Conservation laws of the vcBKK equations

The conservation laws are of great value in exploring the exact solutions of the PDEs. We can use them to explain many of
the physical phenomena described by the PDEs, next we derive the conservation laws of the vcBKK. Firstly, we give a standard
Lagrangian function as[31–34]
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L = Λ1

(
uty − a (t) uxxy + b (t) (uux)y + c (t) vxx

)
+ Λ2 (vt + d (t) vxx + e (t) (uv)x) , (5.1)

where Λ1 = Λ1 (x, y, t, u, v) ,Λ2 = Λ2 (x, y, t, u, v) .

For the vector X1 = x
∂

∂x
+ y

∂

∂y
+

2
∫

b (t) dt

b (t)
∂

∂t
− u

∂

∂u
− 2v

∂

∂v
, we can obtain

W1 = −u − xux − yuy −
2
∫

b (t) dt

b (t)
ut,

W2 = −2v − xvx − yvy −
2
∫

b (t) dt

b (t)
vt,

(5.2)

thus, the conservation law is obtained

Cx =y
(
−Λ1

(
b (t)

(
uuy

)
y

+ vxyc (t)
)

+ Λ2

(
e (t) (uv)y + vxyd (t)

))
+ x

(
Λ1

(
uyt − a (t) uxxy

)
+ vtΛ2

)
− 2

∫
b (t) dt

(
1

b (t)
(e (t) Λ2(uv)t + vxt (c (t) Λ1 + d (t) n)) + Λ1

(
uuy

)
t

)
− 3

(
u
(
b (t) uyΛ1 + e (t) vΛ2

)
+ vx (c (t) Λ1 + d (t) Λ2)

)
,

Ct =2
∫

b (t) dt
(
Λ1(uux)y +

1
b (t)

(
Λ2 (uxe (t) v + vxxd (t) + ue (t) vx) + Λ1

(
c (t) vxx − a (t) uxxy + uyt

)))
− Λ2

(
2v + vx + yvy

)
,

Cy =Λ1 (−3ut − uxt x + a (t) (uxxxx + 3uxx)) + 2Λ1

∫
b (t) dt

(
a (t) uxxt

b (t)
−

(
ut

b(t)

)
t

)
+ y

(
b (t) Λ1(uux)y + e (t) Λ2(uv)x + c (t) vxxΛ1 + vxxd (t) Λ2 + vtΛ2

)
.

(5.3)

For the vector X2 =
∂

∂y
, we can obtain

W1 = −uy,

W2 = −vy,
(5.4)

thus, the conservation law is obtained

Cx = −uy

(
b (t) uyΛ1 + e (t) vΛ2

)
− uyyb (t) uΛ1 − vyue (t) Λ2 − vxy (c (t) Λ1 + d (t) Λ2) ,

Ct = −vyΛ2,

Cy = b (t) Λ1

(
uyux + uuxy

)
+ e (t) Λ2 (uxv + vxu) + vxx (c (t) Λ1 + d (t) Λ2) + vtΛ2.

(5.5)

For the vector X3 =
∂

∂x
, we can obtain

W1 = −ux,

W2 = −vx,
(5.6)

thus, the conservation law is obtained
Cx = −a (t) uxxyΛ1 + uytΛ1 + vtΛ2,

Ct = −vxΛ2,

Cy = −uxtΛ1 + uxxxa (t) Λ1.

(5.7)
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For the vector X4 =
1

b (t)
∂

∂t
, we can obtain

W1 = −
ut

b (t)
,

W2 = −
vt

b (t)
,

(5.8)

thus, the conservation law is obtained

Cx = −ut

(
uyΛ1 +

e (t) vΛ2

b (t)

)
− vxt

(
c (t) Λ1

b (t)
+

vxtd (t) Λ2

b (t)

)
− uytuΛ1 −

vtue (t) Λ2

b (t)
,

Ct = Λ1

(
uyux + uuxy +

c (t) vxx

b (t)
−

a (t) uxxy

b (t)
+

uyt

b (t)

)
+ Λ2

(
uxe (t) v

b (t)
+

ue (t) vx

b (t)
+

vxxd (t)
b (t)

)
,

Cy =
uxxta (t) Λ1

b (t)
−

(
ut

b (t)

)
t
.

(5.9)

The above results have been verified using Maple software we can get that Dx (Cx) + Dt
(
Ct) + Dy (Cy) = 0.

6. Conclusions

In this paper, the Lie symmetry method was used to reduce the vcBKK equation on the basis of the optimal system. The
(2+1)-dimensional vcBKK equation was reduced to the (1+1)-dimensional PDEs, and then reduced to ODEs by the traveling
wave transformation method. Then, the (G′/G)-expansion method was used to solve the corresponding exact solution. We obtain
different kinds of solutions, including kink solutions and periodic solutions. Moreover, four conservation laws of the vcBKK
equation were obtained at the end of this article.
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