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Abstract

The phenomenon of vibrational resonance (VR) in a classical position-dependent mass (PDM)

system under the influence of an amplitude modulated (AM) force with Ω >> ω is numerically

studied. The system provides an interesting scenario where PDM function makes a significant

contribution to the occurrence of VR. With the results given by this paper one can weaken or

enhance the weak low-frequency force in the PDM system by controlling the PDM parameters

such as mass amplitude (m0) and mass spatial nonlinearity (λ). The basic dynamical behaviours

such as VR, period-doubling, reverse period-doubling, chaos, hysteresis and jump phenomenon

have been investigated through bifurcation diagram, phase portrait and response amplitude.
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1. Introduction

Recently, a phenomenon that is called vibrational resonance (VR) is investigated by

numerical and analytical treatments. VR is commonly said to occur when a nonlinear system

subjected to a biharmonic excitation consisting of a small amplitude resonant excitation

and a large amplitude high-frequency excitation. Landa and McClintock [1] first reported

the occurrence of VR in the weakly damped and overdamped bistable system numerically.

Thereafter, an analytical investigation to confirm VR was carried out by Gitterman [2].

After these seminal works the features of this resonance have been analyzed in a variety of

systems. For example, its occurrence has been analyzed in a monostable system [3], bistable

system [4], a multistable system [5], an excitable system [6], a neuronal systems [7,8], a

deformable potential system [9], a driven plasma [10], time delayed systems [11,12], and

bistable gene transcriptional regulatory system [13]. Moreover, experimental evidences of

VR have also been reported in a bistable optical cavity [14,15], an electronic circuit with a

Chua’s diode [6,16], a twin-well oscillator [17] and an array of hard limiters [18].

The study of position dependent mass (PDM) system is a subject of great interest in

many branches of physics. In the PDM system the mass is dependent on a generalized

coordinate either velocity or position or time or on a function of both position and time.

In general, PDM systems are ubiquitous in nature and cut across different fields such as

geometric optics [19], motion of rockets [20], variable mass oscillators [21], meteorites [22],

aerology [22], inversion potential for NH3 in density theory [23] and asteroids in the early

solar systems [24]. In the past two decades numerous models have been used to illustrate

the dynamics of PDM systems and much of the work was related to quantum variants

[25]. Recently, classical PDM systems have also been considerable interest. In the classical

picture, a position dependent mass functionm(x) gives rise to forces quadratic in the velocity

which lead to nonlinear differential equations of motion in the Newtonian approach [26-29].

Generally in the VR studies, a nonlinear system driven by a weak periodic force, say,

f sinωt is further subjected to a high-frequency force g sinΩt with Ω >> ω. Exploring the

features of VR in systems with different types of setup of external force is a great significance.

The goal of the present paper is to analyze VR by an amplitude modulated (AM) force can

also be treated as consisting of a low-frequency force f sinωt and two high-frequency forces

with frequencies (Ω+ω) and (Ω−ω). There are notable earlier studies on nonlinear systems

subjected to AM force with Ω >> ω [30-32].
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The structure of this paper is as follows. To start with we introduce first the classical

position-dependent mass model in Section-2. We consider the system with single-well po-

tential in section 3. We describe the occurrence of VR and characterize it using the response

amplitude Q. Hysteresis and a jump phenomenon is observed for sufficiently large values of

the control parameters g, far after resonance. We find various dynamical behaviours such

as bifurcations and chaos. Section 4 is devoted to the system with a double-well potential.

We show the occurrence of enhanced VR, hysteresis and a jump phenomenon and various

dynamical behaviours in the PDM system with double-well potential. Later, we explain

the mechanism of resonance and dynamical behaviours of the system by using the response

amplitude, bifurcation diagram and phase portrait. Finally, the conclusion of the research

is given in section 5.

2. Classical Position-Dependent Mass Model

We consider classical systems for which the forces are only those derivable from a position-

dependent potential so that Euler-Lagrange’s equations of motion are of the form

d

dt

(

∂L

∂ẋ

)

−

(

∂L

∂x

)

= Φ (1)

where L is the Lagrangian function is also called Lagrangian quantity that characterizes the

state of a physical system and Φ accounts for all the external contributions to the motion

of the system from dissipative and driving forces, assume here to be Φ = −dẋ + (f +

2g cosΩt) sinωt. Where d is the damping coefficient and the amplitudes and frequencies

of the AM force are f and ω for the low-frequency component and g and Ω for the high-

frequency component, respectively. In classical mechanics, the dynamics of the PDM systems

may be described by the Lagrangian function as

L(x, ẋ, t) = T − V (x) =
1

2
m(x)ẋ2 − V (x) (2)

Where T = 1
2
m(x)ẋ2 is the kinetic energy of the system, V (x) is the system’s potential and

m(x) is the position-dependent mass function with x being position at time t. Using the

Lagrangian function (Eq.2) in the Euler-Lagrangian equations, the corresponding Newton’s

equation of motion is given by

m(x)ẍ+
1

2
m′(x)ẋ2 +

dV (x)

dx
= Φ (3)

The prime in Eq.3 implies differentiation with respect to space variable x and the over dot

indicates differentiation with respect to time. Apart from the various mass function, in this
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paper, we adopt the simplest regular mass function without singularities

m(x) =
m0

1 + λx2
, (4)

where m0 is a constant mass, equivalent to the mass amplitude and λ is the strength of

the spatial nonlinearity in mass. The mass function m(x) is bounded and defined over the

entire real line D(m1) = < with its maximum,m0, at x = 0 and vanishing at | x |→ ∞.

The variation of mass with position is given by m′(x) = −2 m2(x) x γ λ, where γ = 1
m0

.

This mass function originally introduced by Mathews and Venkatesan [26] in relation to

relativistic fields of elementary particles. The mass function (Eq.4) appears frequently in

the modelling of diverse nonlinear mechanical systems [33,34,35]. In our present work, we

assume a Duffing type oscillator potential, ie,

V (x) =
1

2
m(x) ω2

0 x
2 +

1

4
β x4 , (5)

where ω0 is the oscillator’s natural frequency and β is the stiffness constant which plays the

role of the nonlinear parameter.

Substituting the values of Φ,m(x),m′(x) and V (x) in Eq.(3), we get the equation of

motion of the PDM-Duffing oscillator, ie.,

m(x) ẍ−m2(x)xγλẋ2 + dẋ+m2(x) ω2
0 x+ βx3 = (f + 2g cosΩt) sinωt, Ω >> ω. (6)

With the use of the formula 2 cosΩt sinωt = sin(Ω + ω)t + sin(Ω − ω)t, Eq.(6) takes the

form,

m(x) ẍ−m2(x)xγλẋ2+dẋ+m2(x) ω2
0 x+βx

3 = f sinωt+g sin(Ω+ω)t+g sin(Ω−ω)t, Ω >> ω.

(7)

When λ = 0 and unit mass m(x) = 1, Eq.(7) reduces to the well known Duffing oscillator

equation driven by an AM force. The physical system (Eq.6) describes a dual frequency

driven gas bubble in which the mass of the bubble is dependent on the bubble’s radius,

which is a spatial coordinate. By suitable mathematical manipulations in the Eq.(7) as

given in the ref.[35], the following equation can be used to numerically analyze the various

dynamical behaviours of the PDM-Duffing oscillator system

ẍ− λ(x− λx3 + λ2 x5)ẋ2 + dγ(1 + λx2)ẋ+ ω2
0 x+ δx3 + ξx5 =

γ(1 + λx2) (f sinωt+ g sin(Ω + ω)t+ g sin(Ω− ω)t), Ω >> ω. (8)
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FIG. 1: (a) The system potential (Eq.9) for d = 0.2, β = 1, ω2
0 = 1, λ = 1 and m0 =

0.5, 1.0, 1.5, 2.0, 10.0 (b) The system potential (Eq.9) for d = 0.2, β = 1, ω2
0 = 1,m0 = 1 and

λ = 0.5, 1.0, 1.5, 2.0, 4.0 .

where δ = βγ−λω2
0 and ξ = βγλ+λ2ω2

0. Eq.(8) is also known as the PDM-Duffing oscillator

equation. The corresponding potential of the system is

V (x) =
ω2

0

2
x2 +

δ

4
x4 +

ξ

6
x6 . (9)

The shape of the potential V (x) depends on the parameters ω2
0, γ and λ. It can be a single-

well, double-well, single-well with double-hump, double-well with double hump and inverted

single-well potentials. Recently, Roy-Layinde et al [35] examined and analyzed the VR

phenomenon in double-well PDM-Duffing oscillator system driven by biharmonic force. In

the present work, we numerically analyze the occurrence of VR in single-well and double-well

PDM-Duffing oscillator system with AM force.

3. VR in the Single-Well PDM-Duffing Oscillator

In this section, we analyze the occurrence of VR in the system (Eq.8) with symmetrical

single-well form of the potential V (x). Consider the parametric choices of the single-well

potential are ω2
0 > 0 and β > 0. The system potential (Eq.9) shown in Figs.1(a) and 1(b)

for different values of the PDM parameters such as mass amplitude m0(= 0.5, 1.0, 1.5, 2, 10)

with λ = 1 and the strength of the spatial nonlinearity λ(= 0.5, 1.0, 1.5, 2, 4) with m0 = 1.

In Fig.1(a), for a fixed value of λ, the width of the single-well potential increases as m0

increases but in Fig.1(b) the width of the potential decreases as λ increases for a fixed value

of m0.

To numerically integrate the PDM-Duffing oscillator system (Eq.8) driven by an AM

force, it is convenient to express it as a set of two coupled autonomous one dimensional
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differential equations (ODEs) of the from

ẋ = y, (10a)

ẏ = λ
(

x− λx3 + λ2x5
)

ẋ2 − dγ
(

1 + λx2
)

ẋ− ω2
0x− δx3 − ξx5

+γ
(

1 + λx2
)

((f + 2g cosΩt) sinωt) (10b)

In Eq.(10) d, ω2
0 and β are all system parameters. When Ω À ω, the amplitude mod-

ulated force can also be treated as consisting of a low-frequency force f sinωt and two

high-frequency forces with frequencies Ω + ω and Ω− ω.

In order to quantify the VR effect, we calculate the response amplitude Q of the system

at the low-frequency ω. It is defined as ref.[1] Q =
√

Q2
s
+Q2

c
/f with

Qs =
2

nT

∫

nT

0

x(t) sin(ωt)dt (11a)

Qc =
2

nT

∫

nT

0

x(t) cos(ωt)dt (11b)

with T = 2π/ω is the period of the response and n is a positive integer. The x(t) obtained

by numerically solving the differential equation (Eq.8) using fourth-order Runge-Kutta al-

gorithm with time step size ∆t = (2π/ω)/200. Numerical solutions corresponding to 500

drive cycles are left as transients. In all the calculations the initial conditions are chosen as

x(0) = 0.5 and ẋ = 0.5 and the system and signal parameters are ω2
0 = 1, β = 1, d = 0.2 and

f = 0.05.

We begin our examination of the phenomenon of VR in the system by first considering

the case of constant mass (m0). That is, the PDM-Duffing oscillator (Eq.10) in which

m(x) = m0 and λ = 0 corresponding to a Duffing oscillator with constant mass m0. Figures

2(a-c) show the response amplitude curves depicting the dependence of response amplitude

Q on the amplitude g of the high-frequency force for three values of mass amplitude m(=

0.5, 1.0, 1.5) respectively. The other parameter values are λ = 0, ω = 1.5,Ω = 15 and

f = 0.05. Here we see that the VR effect can be induced in the system even in the absence

of mass spatial nonlinearity (λ = 0) with increasing mass amplitude m0. The low-density

peaks in Figs.2(a) and 2(b) appear at 0 < g < 352.23 and 0 < g < 1095.52 for m0 = 0.5 and

1.0, respectively. Dense peaks appear beyond this regime. In Fig.2(c), almost low-density

peaks appear throughout the entire regime. The system’s response becomes significantly

altered at higher values of Ω as shown in Fig.2(d). Figure 2(d) shows the dependence of
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FIG. 2: The variation of response amplitude Q with g for three values of m0 = 0.5, 1.0, 1.5 with

(a-c) Q = 15, (d) Q = 30. Other parameters are set as ω2
0 = 1, β = 1, d = 0.2 and λ = 0.

response amplitude Q on the amplitude g of the high-frequency force for three values of

m0 = 0.5, 1, 1.5 with Ω = 30. In Fig.2(d) we can clearly see the resonance at three values

of g for m0 = 0.5. The value of Q at gV R = 805.12 is slightly higher than the values of

other gV R. For m0 = 1.0 and 1.5, single resonance is observed at gV R = 500.15 and 807.52

with an enhanced response amplitude Q which is clearly shown in Fig.2(d). The value of Q

increases when m0 increases.

In Fig.2(a), for Ω = 15 a nonsmooth variation of Q(ω) is clearly seen for a certain range

of values of g. To find the reason for this fact that, we consider the bifurcation diagram

Fig.3 where the values of x are as t = n(2π/ω), n = 1, 2, ..., after leaving sufficient transient

motion. In the interval of g ∈ [0, 175], where x is periodic with period T = 2π/ω, the

response amplitude varies smoothly. For g ∈ [175, 1400] either higher periodic or chaotic

motion occurs and Q is found to irregularly. However, the value of Q is nonnegligible. In

Fig.2(d), for Ω = 30, a smooth variation of Q(ω) is clearly seen in the entire range of values

of g and x is periodic with period T = 2π/ω, which is clearly seen in Fig.3(b).

Now, we analyzing the dependence of Q on m0, ω and Ω when activating the mass spatial

nonlinearity (λ) for the following cases.

(i) m0 varied and λ fixed; (ii) m0 fixed and λ varied

(iii) m0, λ,Ω fixed and ω varied and (iv) m0, λ, ω fixed and Ω varied.
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0 = 1, β = 1, d = 0.2, f =
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0 100 200 300
0.0

0.4

0.8

0 25 50 75
0.0

0.4

0.8

4 3 2 1

(b)m
0
=0.5

Q

g

m
0
=0.5

m
0
=1.0

m
0
=1.5

λ=0.5 (a)

Q

g

FIG. 4: (a)Numerical results for the variation of the response amplitude Q with g for (a) three

values of mass amplitude m0 and λ = 0.5 and (b) four values of λ and m0 = 0.5. The values of λ

for the curves 1− 4 are 1.0,1.5, 2.0 and 4.0 respectively. Other parameter values of the system are

fixed as ω2
0 = 1, β = 1, d = 0.2, f = 0.05, ω = 1.5 and Ω = 30.0.

First we analyze the effect of the mass amplitude m0 with λ = 0.5 on the observed

resonance. Figure 4(a) shows the variation of Q with the control parameter g for three fixed

values of m0(= 0.5, 1.0, 1.5) with λ = 0.5. When g is varied from the small value, single

resonance occurs with same Qmax and the impact of g on Q is a shift in the peak position

in the direction of increasing m0. Then we compare the Fig.4(a) with Fig.2(d) which is

plotted for the PDM parameters m0 = 0.5 and λ = 0. In Fig.2(d), without the mass spatial

nonlinearity (λ = 0), we obtain three resonances for m0 = 0.5. When activating the mass

spatial linearity λ, only one resonance is observed for all the values of m0 which is clearly

shown in Fig.4(a). The variation of the response amplitude Q with g for four values of

λ(= 1.0, 1.5, 2.0, 4.0) and m0 = 0.5 is presented in Fig.4(b). Resonances with single peak
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can be seen for all the values of λ with same Qmax. The position of the peak and width of

the resonances decrease as λ increases which is clearly evident in Fig.4(b). In the absence of

mass spatial nonlinearity (λ = 0), resonances observed in large interval of g (Fig.2) but when

λ presents,we obtain resonances in a small interval of g. The dependence of the response

amplitude Q on the frequencies Ω and ω of the AM force is shown in Fig.5. The variation

of Q with g for three four values of ω(= 1.0, 2.0, 3.0, 5.0) with Ω = 30.0 is shown in Fig.5(a).

For ω = 1.0, as g increases, Q decreases and resonance is not observed. For ω = 2.0, 3.0, 5.0,

resonance is found at g = 55.24, 99.65 and 175.73 respectively. In Fig.5(a), Qmax decreases

as ω increases and at the time the position of the peak is shifted towards the high-frequency

amplitude g. Figure 5(b) shows when g varies from 0 to 200, m0 = 0.5, λ = 0.5 with ω = 1.5

and the influence of the parameter Ω is shown on VR. From the Fig.5(b), we note that single

resonance is observed for all values of Ω with almost same Qmax. Also there is a shift in

the peak position in the direction of increasing g and width of the resonance increases as Ω

increases.

Then, we analyze the effect of m0 on the dynamics of the system with constant mass (ie.,

λ = 0) by looking the hysteresis and jump phenomenon. The values of the other parameters

are ω2
0 = 1, β = 1, d = 0.2, f = 0.05,m0 = 0.5, λ = 0, ω = 1.5 and Ω = 30.0. Fig.6(a)

presents Q is obtained by varying g in the forward and reverse directions. Continuous

curve obtained by varying the control parameter g in the forward direction and the dashed

curve by varying the control parameter g in the reverse direction. We can clearly observe
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FIG. 5: (a) Numerical results for the variation of the response amplitude Q of the PDM-Duffing

oscillator driven by an AM force with g for (a) four values of ω with Ω = 30 and (b) for four values

of Ω with ω = 1.5. Other parameter values of the system are fixed as ω2
0 = 1, β = 1, d = 0.2,m0 =

0.5, λ = 0.5 and f = 0.05.
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cillator system driven by an AM force. (b) Magnification of the Q(ω) curve in the interval

g ∈ [700, 1500] indicating hysteresis and jumps in Q. Other parameter values of the system are

fixed as ω2
0 = 1, β = 1, d = 0.2,m0 = 0.5, λ = 0.0, ω = 1.5,Ω = 30.0 and f = 0.05.
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FIG. 7: Phase portrait of the system (Eq.8) for four values of g. The system is a single-well

PDM-Duffing oscillator driven by an AM force. The parameter values of the system are as in

Fig.6.

hysteresis and a jump phenomenon. Figure 6(b) shows the magnification of the Q curve

in the interval g ∈ [700, 1500]. Q is found to follow different paths when g is varied in

the forward and reverse directions. For the single well PDM-Duffing oscillator system, this

phenomenon occurs at higher g values. To understand the dynamics of a single-well system

with AM force, we consider the change in the phase diagram of the system. Figure 7 shows

the portraits for four values of g in the interval g ∈ [754.73, 1200]. For g = 800.96, the orbit

in the x − ẋ plane consists of three parts. There is a part of the orbit enclosing both solid

circles. In addition, we can clearly notice two other parts of the orbit-one enclosing left solid

circle only and another right solid circle only. This is similar to an orbit moving around two

equilibrium states. The distance between these two points decreases (and Q also decreases)

with an increase in the value of g from 800.96. This is clearly evident from Figs.7(a)-((c).
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FIG. 8: (a) The system potential (Eq.9) for d = 0.2, β = 1, ω2
0 = −1, λ = 1 and m0 =

0.5, 1.5, 2.0, 4.0 (b) The system potential (Eq.9) for d = 0.2, β = 1, ω2
0 = −1,m0 = 1 and

λ = 0.5, 1, 2, 4 .

As shown in Fig.7(d) at g = 1005.56, the two points merged together at the origin and the

orbit move around it like an orbit in a single-well potential. Q becomes a local minimum at

this value of g.

4. VR in the Double-Well PDM-Duffing Oscillator

In the preceding section, we showed that the VR phenomenon can occur in the single-well

system driven by an AM force. Now we proceed to verify the existence of VR phenomenon

in double-well system driven by an AM force. We fix the mass parameter regimes within

which the system potential is symmetrical double-well potential form so that 0 < m0 < 1.5

and 0 < λ < 1 with d = 0.2, β = 1 and ω2
0 = −1. The system potential in Fig.8(a) and

8(b) for different values of the parameters : the mass amplitude m0(= 0.5, 1.5, 2.0, 4.0) and

the strength of the spatial nonlinearity λ(= 0.5, 1, 2, 4) respectively is computed from the

Eq.(9). First we examine the existence of VR phenomenon in the double-well system with

constant mass (ie., λ = 0). The possibility of occurrence of VR through variation of the

mass amplitudem0 with the high-frequency amplitude g is confirmed by the results presented

in Fig.9 for two values of frequency Ω of the high-frequency component of the AM force.

Fig.9(a) presents the numerically computed response amplitude Q versus g for Ω = 15.0.

When g < 125.25 single resonance is obtained and Q(ω) does not decrease continuously

beyond the first resonance peak. Q(ω) is maximum at more than one value of g and dense

resonance peaks are observed in the region 402.15 < g < 500. For Ω = 30, Q(ω) decays

to zero as g increases beyond gV R (at which resonance occurs) which is clearly shown in

Fig.9(b). Here only one resonance peak is possible. Hysteresis and a jump phenomenon are
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FIG. 9: Response amplitude Q curves for (a) Ω = 15 (b) Ω = 30 and (c) Q(ω) obtained by varying

the control parameter g from 0 to 500 (continuous curve) and from 500 to 0 (dashed curve) for the

PDM-Duffing oscillator with AM force. Other parameter values are ω2
0 = −1, β = 1, d = 0.2,m0 =

0.5, λ = 0.0, ω = 1.5 and f = 0.05.

also found in response amplitude curves when g is varies in forward and reverse directions.

In Fig.9(c), Q is found to follow different paths as indicated by dashed lines where g is

varied in the forward and reverse directions. Next we analyze the bifurcation structures

of the system (Eq.8) for the two values of Ω(= 15, 30) and the corresponding bifurcation

patterns is presented in Fig.10. The other parameter values of the system are as in Fig.9.

In Fig.10(a), for increasing values of g, the periodic orbits dominates the dynamics in the

high-frequency regime 0 < g < 398.55 from which the value of g was chosen. For larger

values of g, small periodic windows are sandwiched by chaotic regimes . The bifurcation

pattern for Ω = 30 is shown in Fig.10(b). For this case, only periodic states appear in the

system which is clearly shown in Fig.10(b). For clarity an example of periodic and chaotic

attractor from Fig.10(a) is shown in Figs.10(c) and 10(d).

So far we have investigated the occurrence of VR in the double-well PDM-Duffing oscil-

lator system with constant mass (λ = 0). Further in order to know the contributions of the
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FIG. 10: Bifurcation diagrams of the double-well PDM-Duffing oscillator driven by an AM force

for (a) Ω = 15 and (b) Ω = 30. Phase portraits of the system (c) periodic attractor and (d) chaotic

attractor. The parameter values of the system are as in Fig.9.
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FIG. 11: The variation of the response amplitude Q with g for three values of (a) mass amplitude

m0 and λ = 0.5 and (b) mass spatial nonlinearity λ and m0 = 0.5. Other parameter values of the

system are fixed as ω2
0 = −1, β = 1, d = 0.2, f = 0.05, ω = 1.5 and Ω = 30.0.

mass spatial nonlinearity parameter λ to VR, we also consider the effect of λ on the observed

resonances. First we showed that the resonances for λ = 0.5. This is presented in 11(a) for

varying g and three values of m0(= 0.5, 1, 1.5) respectively with ω = 1.5,Ω = 30. Qmax is

almost the same in all the curves. But gmax and the width of the resonance curve increases

with m0. In Fig.11(b), Q(ω) is plotted for different values of λ and with ω = 1.5,Ω = 30.

With increasing λ, double peaked resonances occur for λ = 0.1 and 0.2 and single peaked

resonance occurs for λ = 0.3. Qmax is different for single and double peaked resonances

and gmax (at which Q is maximum) and the width of the resonance curve decreases with λ

increases, which is clearly shown in Fig.11(b).

Finally we study the dependence of Q on the frequencies ω and Ω of the driving forces.In
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FIG. 12: Variation of the response amplitude Q of the PDM-Duffing oscillator driven by an AM

force with g for (a) four values of ω with Ω = 30 and (b) three values of Ω with ω = 1.5. (c) Q(ω)

obtained by varying the control parameter g from 0 to 350 (continuous curve) and from 350 to 0

(dashed curve) for the double-well PDM-Duffing oscillator with AM force. Other parameter values

of the system are fixed as ω2
0 = −1, β = 1, d = 0.2,m0 = 0.5, λ = 0.1 and f = 0.05.

Fig.12(a) Q(g) is plotted for different values ω, namely, ω = 0.75, 1, 2, 3 with Ω = 30,m0 =

0.5, λ = 0.1. With increasing ω, Qmax also increases. Fig.12(a) has double-peaked resonances

for ω = 0.75 and ω = 1 while single-peaked resonance for ω = 2 and ω = 3. Width of the

resonance curve and gmax values increase with increasing ω values. In 12(b) the resonance

curve is plotted for different values of Ω for ω = 1.5 withm0 = 0.5 and λ = 0.1. Here we again

observe that single and double resonances occur for different values of Ω. Qmax of the first

and second resonances are almost the same in all the cases. But gmax and the width of the

resonance curve increases with Ω. The hysteresis and a jump phenomenon in the double-well

form of the potential of the system is confirmed by Fig.12(c) for m0 = 0.5, λ = 0.1, ω = 1.5

and Ω = 30. For certain cases of the parametric choices considered in our study chaotic

motion is found for sufficiently large values of the control parameter g, particularly, far after

resonance. An example is presented in Fig.13(a) for m0 = 0.5, λ = 0.1, ω = 1.5 and Ω = 30.
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FIG. 13: Bifurcation diagrams of the double-well PDM-Duffing oscillator driven by an AM force

for (a) m0 = 0.5, λ = 0.1, ω = 1.5 and Ω = 30. (b) Magnification of a part of bifurcation diagram

in Fig.13(a). Phase portraits of the system (c) periodic attractor and (d) chaotic attractor. The

parameter values of the system are as in Fig.12.

For 0 < g < 330.12, a period-T solution is found. When g is varied further reverse period-

doubling phenomena leading to chaotic motion, intermittency and periodic windows occur

and are clearly shown in Fig.13(b) which is a magnification of a small part of the bifurcation

diagram Fig.13(a). For clarity, an example of periodic and chaotic orbits from Fig.13(b) is

shown in Figs.13(c) and 13(d).

5. Conclusion

Generally in the VR studies a nonlinear system driven by a weak periodic force is further

subjected to a high-frequency force with Ω À ω while less attention is paid to different

types of forces such as amplitude, frequency and pulse modulated forces. Also most of the

previous VR investigations in a nonlinear system with constant mass and only few studies

were reported in the system with position dependent mass. In the present work, we have

analyzed the occurrence of vibrational resonance in the position-dependent mass (PDM)-

Duffing oscillator system with single-well and double-well potentials driven by the amplitude

modulated (AM) force. In the PDM-Duffing system, the mass is defined as a regular function

comprising of mass amplitudem0 and the strength of spatial nonlinearity λ. We investigated

the existence of VR induced by the PDM parameters: m0, λ and signal parameters: g, ω,Ω.

From our numerical results, we found that the PDM parameters have significant effect on VR.

Particularly, multiple resonance peaks and non-decaying behaviour of Q(ω) even for large

values of the control parameter g are realized. Also period-doubling, reverse period-doubling
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bifurcation, hysteresis and a jump phenomenon, intermittency dynamics and chaotic motion

are realized in the PDM-Duffing system driven by an AM force. The use of the PDM

and signal parameters have shown that the various complex phenomena obtained can be

controlled and suppressed. Our investigations in this paper has potential applications in

signal detection, transmission and amplification. Analysis of VR in PDM-Duffing oscillator

system driven by frequency modulated (FM) force will be studied in future.
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