Literature Cited
Acosta, K., J. Xu, S. Gilbert, E. Denison, T. Brinkman, S. Lebeis, and E. Lam. 2020. Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS ONE 15:1–24.
Appenroth, K. J., K. S. Sree, V. Böhm, S. Hammann, W. Vetter, M. Leiterer, and G. Jahreis. 2017. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chemistry 217:266–273.
Appenroth, K., P. Ziegler, and S. Sree. 2016. Duckweed as a model organism for investigating plant-microbe interactions in an aquatic environment and its applications. Endocytobiosis and Cell Research 27:94–106.
Arias-Sánchez, F. I., B. Vessman, and S. Mitri. 2019. Artificially selecting microbial communities: If we can breed dogs, why not microbiomes? PLoS Biology 17:1–8.
Bahram, M., F. Hildebrand, S. K. Forslund, J. L. Anderson, N. A. Soudzilovskaia, P. M. Bodegom, J. Bengtsson-Palme, S. Anslan, L. P. Coelho, H. Harend, J. Huerta-Cepas, M. H. Medema, M. R. Maltz, S. Mundra, P. A. Olsson, M. Pent, S. Põlme, S. Sunagawa, M. Ryberg, L. Tedersoo, and P. Bork. 2018. Structure and function of the global topsoil microbiome. Nature 560:233–237.
Bergmann, B. A., J. Cheng, J. Classen, and A. M. Stomp. 2000. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresource Technology 73:13–20.
Bever, J. D. 2003. Soil community feedback and the coexistence of competitors: Conceptual frameworks and empirical tests. New Phytologist 157:465–473.
Bever, J. D., K. M. Westover, and J. Antonovics. 1997. Incorporating the Soil Community into Plant Population Dynamics : The Utility of the Feedback Approach Published by : British Ecological Society Stable URL : http://www.jstor.org/stable/2960528. Journal of Ecology 85:561–573.
Björkman, O. 1981. Photosynthesis and Productivity, Photosynthesis and Environment. Pages 191–202 Ecological adaptation of the photosynthetic apparatus. Balaban International Sciences Service, Philadelphia.
Bottomley, W. B. 1920. The effect of Nitrogen-fixing organisms and nucleic acid derivatives on plant growth. Proceedings of the Royal Society B 91:531–540.
Bowker, D. W., A. N. Duffield, and Ṕarick Denny. 1980. Methods for the isolation, sterilization and cultivation of Lemnaceae. Freshwater Biology 10:385–388.
Cedergreen, N., and T. V. Madsen. 2002. Nitrogen uptake by the floating macrophyte Lemna minor. New Phytologist 155:285–292.
Cedergreen, N., and T. V. Madsen. 2004. Light regulation of root and leaf NO3- uptake and reduction in the floating macrophyte Lemna minor. New Phytologist 161:449–457.
Chen, G., J. Huang, Y. Fang, Y. Zhao, X. Tian, Y. Jin, and H. Zhao. 2019. Microbial community succession and pollutants removal of a novel carriers enhanced duckweed treatment system for rural wastewater in Dianchi Lake basin. Bioresource Technology 276:8–17.
Cheng, J. J., and A. M. Stomp. 2009. Growing Duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean - Soil, Air, Water 37:17–26.
Cole, C. T., and M. I. Voskuil. 1996. Population genetic structure in duckweed 230:222–230.
Compant, S., A. Samad, H. Faist, and A. Sessitsch. 2019. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research 19:29–37.
Crump, B. C., and E. W. Koch. 2008. Attached bacterial populations shared by four species of aquatic angiosperms. Applied and Environmental Microbiology 74:5948–5957.
Friesen, M. L., S. S. Porter, S. C. Stark, E. J. Von Wettberg, J. L. Sachs, and E. Martinez-Romero. 2011. Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics 42.
Gilbert, S., J. Xu, K. Acosta, A. Poulev, S. Lebeis, and E. Lam. 2018. Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Frontiers in Chemistry 6:1–14.
Glick, B. R. 2012. Plant Growth-Promoting Bacteria : Mechanisms and Applications. Scientifica 2012.
Henke, R., M. Eberius, and K. J. Appenroth. 2011. Induction of frond abscission by metals and other toxic compounds in Lemna minor. Aquatic Toxicology 101:261–265.
Ho, K. H. E. 2018. The Effects of Asexuality and Selfing on Genetic Diversity, the Efficacy of Selection and Species Persistence. University of Toronto.
Hubbard, C. J., B. Li, R. McMinn, M. T. Brock, L. Maignien, B. E. Ewers, D. Kliebenstein, and C. Weinig. 2019. The effect of rhizosphere microbes outweighs host plant genetics in reducing insect herbivory. Molecular Ecology 28:1801–1811.
Iqbal, J., and M. Baig. 2016. Effect of Nutrient Concentration and pH on Growth and Nutrient Removal Efficiency of Duckweed (Lemna Minor) From Natural Solid Waste Leachate. Journal of Health and Medicine (ISSN … 1:1–7.
Ishizawa, H., M. Kuroda, K. Inoue, D. Inoue, M. Morikawa, and M. Ike. 2019. Colonization and Competition Dynamics of Plant Growth-Promoting/Inhibiting Bacteria in the Phytosphere of the Duckweed Lemna minor. Microbial Ecology 77:440–450.
Ishizawa, H., M. Kuroda, M. Morikawa, and M. Ike. 2017a. Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria. Plant Physiology and Biochemistry 118:667–673.
Ishizawa, H., M. Kuroda, M. Morikawa, and M. Ike. 2017b. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnology for Biofuels 10:1–10.
Islam, M. S., M. S. Kabir, S. I. Khan, M. Ekramullah, G. B. Nair, R. B. Sack, and D. A. Sack. 2004. Wastewater-grown duckweed may be safely used as fish feed. Canadian Journal of Microbiology 50:51–56.
Iwashita, T., Y. Tanaka, H. Tamaki, Y. Yoneda, A. Makino, Y. Tateno, Y. Li, T. Toyama, Y. Kamagata, and K. Mori. 2020. Comparative analysis of microbial communities in fronds and roots of three duckweed species: Spirodela polyrhiza, lemna minor, and lemna aequinoctialis. Microbes and Environments 35:1–6.
Kivlin, S. N., S. M. Emery, and J. A. Rudgers. 2013. Fungal symbionts alter plant responses to global change. American Journal of Botany 100:1445–1457.
Kulmatiski, A., K. H. Beard, J. R. Stevens, and S. M. Cobbold. 2008. Plant-soil feedbacks: A meta-analytical review. Ecology Letters 11:980–992.
Landesman, L., C. Fedler, and R. Duan. 2011. Plant nutrient phytoremediation using duckweed. Eutrophication: Causes, Consequences and Control:341–354.
Landolt, E. 1986. The Family of Lemnaceae – a monographic study. Biosystematic investigations in the family of duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Ruebel, Zurich.
Lau, J. A., and J. T. Lennon. 2012. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proceedings of the National Academy of Sciences of the United States of America 109:14058–14062.
Lemon, G. D., U. Posluszny, and B. C. Husband. 2001. Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis. Aquatic Botany 70:79–87.
Li, T., and Z. Xiong. 2004a. A novel response of wild-type duckweed (Lemna paucicostata Hegelm.) to heavy metals. Environmental Toxicology 19:95–102.
Li, T. Y., and Z. T. Xiong. 2004b. Cadmium-induced colony disintegration of duckweed (Lemna paucicostata Hegelm.) and as biomarker of phytotoxicity. Ecotoxicology and Environmental Safety 59:174–179.
Minotta, G., and S. Pinzauti. 1996. Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. Forest Ecology and Management 86:61–71.
Mohan, B. S., and B. B. Hosetti. 1999. Aquatic plants for toxicity assessment. Environmental Research 81:259–274.
van Moorsel, S. J. 2022. The importance of ecotype diversity on duckweed growth with and without salt stress. Page Journal of Plant Ecology.
Naumann, B., M. Eberius, and K. J. Appenroth. 2007. Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. Journal of Plant Physiology 164:1656–1664.
O’Brien, A. M., J. Laurich, E. Lash, and M. E. Frederickson. 2020a. Mutualistic Outcomes Across Plant Populations, Microbes, and Environments in the Duckweed Lemna minor. Microbial Ecology 80:384–397.
O’Brien, A. M., R. J. H. Sawers, S. Y. Strauss, and J. Ross-Ibarra. 2019. Adaptive phenotypic divergence in an annual grass differs across biotic contexts*. Evolution 73:2230–2246.
O’Brien, A. M., Z. H. Yu, D. ya Luo, J. Laurich, E. Passeport, and M. E. Frederickson. 2020b. Resilience to multiple stressors in an aquatic plant and its microbiome. American Journal of Botany 107:273–285.
Parnell, J. J., R. Berka, H. A. Young, J. M. Sturino, Y. Kang, D. M. Barnhart, and M. V. Dileo. 2016. From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Frontiers in Plant Science 7:1–12.
Pieterse, C. M. J., C. Zamioudis, R. L. Berendsen, D. M. Weller, S. C. M. Van Wees, and P. A. H. M. Bakker. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52:347–375.
Van der Putten, W. H., R. D. Bardgett, J. D. Bever, T. M. Bezemer, B. B. Casper, T. Fukami, P. Kardol, J. N. Klironomos, A. Kulmatiski, J. A. Schweitzer, K. N. Suding, T. F. J. Van de Voorde, and D. A. Wardle. 2013. Plant-soil feedbacks: The past, the present and future challenges. Journal of Ecology 101:265–276.
Rehfeldt, G. E., N. M. Tchebakova, Y. I. Parfenova, W. R. Wykoff, N. A. Kuzmina, and L. I. Milyutin. 2002. Intraspecific responses to climate in Pinus sylvestris. Global Change Biology 8:912–929.
Rejmankova, E., M. Blackwell, and D. D. Culley. 1986. Dynamics of fungal infection in duckweeds (Lemnaceae). Veroff. Geobot. Inst. ETH, Stiftung Rubel, Zurich 87:178–189.
Schmid, M. W., T. Hahl, S. J. van Moorsel, C. Wagg, G. B. De Deyn, and B. Schmid. 2019. Feedbacks of plant identity and diversity on the diversity and community composition of rhizosphere microbiomes from a long-term biodiversity experiment. Molecular Ecology 28:863–878.
Severi, A. 2001. Toxicity of selenium to Lemna minor in relation to sulfate concentration. Physiologia Plantarum 113:523–532.
Shantz, A. A., N. P. Lemoine, and D. E. Burkepile. 2016. Nutrient loading alters the performance of key nutrient exchange mutualisms. Ecology Letters 19:20–28.
Smith, S. E., E. Facelli, S. Pope, and F. A. Smith. 2010. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil 326:3–20.
Smith, S. E., and D. J. Read. 2008. Mycorrhizal symbiosis. 3rd editio. Academic Press, London, UK.
Sokal, R. R., and F. J. Rohlf. 1981. Biometry. Second Edi. Freeman & Company, New York.
Sree, K. S., M. Bog, and K. J. Appenroth. 2016. Taxonomy of duckweeds (Lemnaceae), potential new crop plants. Emirates Journal of Food and Agriculture 28:291–302.
Stein, J. 1973. Handbook of Phycological methods. Culture methods and growth measurements. Cambridge University Press.
Tan, J., J. E. Kerstetter, and M. M. Turcotte. 2021. Eco-evolutionary interaction between microbiome presence and rapid biofilm evolution determines plant host fitness. Nature Ecology and Evolution 5:670–676.
Tang, J., Y. Zhang, Y. Cui, and J. Ma. 2015. Effects of a rhizobacterium on the growth of and chromium remediation by Lemna minor. Environmental Science and Pollution Research 22:9686–9693.
Topp, C., R. Henke, Á. Keresztes, W. Fischer, M. Eberius, and K. J. Appenroth. 2011. A novel mechanism of abscission in fronds of Lemna minor L. and the effect of silver ions. Plant Biology 13:517–523.
Underwood, G. J. C., and J. H. Baker. 1991. The effect of various aquatic bacteria on the growth and senescence of duckweed (Lemna minor). Journal of Applied Bacteriology 70:192–196.
Vasseur, L., L. W. Aarssen, and T. Bennett. 1993. Allozymic Variation in Local Apomictic Populations of Lemna minor (Lemnaceae). American Journal of Botany 80:974.
Verma, R., and S. Suthar. 2015. Utility of Duckweeds as Source of Biomass Energy: a Review. Bioenergy Research 8:1589–1597.
Wagner, M. R., D. S. Lundberg, D. Coleman-Derr, S. G. Tringe, J. L. Dangl, and T. Mitchell-Olds. 2014. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters 17:717–726.
Wagner, M. R., D. S. Lundberg, T. G. Del Rio, S. G. Tringe, J. L. Dangl, and T. Mitchell-Olds. 2016. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant.
Wilczek, A. M., M. D. Cooper, T. M. Korves, and J. Schmitt. 2014. Lagging adaptation to warming climate in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 111:7906–7913.
Xie, W. Y., J. Q. Su, and Y. G. Zhu. 2015. Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by Illumina high-throughput sequencing. Applied and Environmental Microbiology 81:522–532.
Xue, H., Y. Xiao, Y. Jin, X. Li, Y. Fang, H. Zhao, Y. Zhao, and J. Guan. 2012. Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers. Molecular Biology Reports 39:547–554.
Yamaga, F., K. Washio, and M. Morikawa. 2010. Sustainable biodegradation of phenol by acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed lemna aoukikusa. Environmental Science and Technology 44:6470–6474.
Zhang, Y., Y. Hu, B. Yang, F. Ma, P. Lu, L. Li, C. Wan, S. Rayner, and S. Chen. 2010. Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS ONE 5.
Zhu, X., F. Song, and H. Xu. 2010. Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137.
Ziegler, P., K. Adelmann, S. Zimmer, C. Schmidt, and K. J. Appenroth. 2015. Relative in vitro growth rates of duckweeds (Lemnaceae) - the most rapidly growing higher plants. Plant Biology 17:33–41.