Literature Cited
Acosta, K., J. Xu, S. Gilbert, E. Denison, T. Brinkman, S. Lebeis, and
E. Lam. 2020. Duckweed hosts a taxonomically similar bacterial
assemblage as the terrestrial leaf microbiome. PLoS ONE 15:1–24.
Appenroth, K. J., K. S. Sree, V. Böhm, S. Hammann, W. Vetter, M.
Leiterer, and G. Jahreis. 2017. Nutritional value of duckweeds
(Lemnaceae) as human food. Food Chemistry 217:266–273.
Appenroth, K., P. Ziegler, and S. Sree. 2016. Duckweed as a model
organism for investigating plant-microbe interactions in an aquatic
environment and its applications. Endocytobiosis and Cell Research
27:94–106.
Arias-Sánchez, F. I., B. Vessman, and S. Mitri. 2019. Artificially
selecting microbial communities: If we can breed dogs, why not
microbiomes? PLoS Biology 17:1–8.
Bahram, M., F. Hildebrand, S. K. Forslund, J. L. Anderson, N. A.
Soudzilovskaia, P. M. Bodegom, J. Bengtsson-Palme, S. Anslan, L. P.
Coelho, H. Harend, J. Huerta-Cepas, M. H. Medema, M. R. Maltz, S.
Mundra, P. A. Olsson, M. Pent, S. Põlme, S. Sunagawa, M. Ryberg, L.
Tedersoo, and P. Bork. 2018. Structure and function of the global
topsoil microbiome. Nature 560:233–237.
Bergmann, B. A., J. Cheng, J. Classen, and A. M. Stomp. 2000. In vitro
selection of duckweed geographical isolates for potential use in swine
lagoon effluent renovation. Bioresource Technology 73:13–20.
Bever, J. D. 2003. Soil community feedback and the coexistence of
competitors: Conceptual frameworks and empirical tests. New Phytologist
157:465–473.
Bever, J. D., K. M. Westover, and J. Antonovics. 1997. Incorporating the
Soil Community into Plant Population Dynamics : The Utility of the
Feedback Approach Published by : British Ecological Society Stable
URL : http://www.jstor.org/stable/2960528. Journal of Ecology
85:561–573.
Björkman, O. 1981. Photosynthesis and Productivity, Photosynthesis and
Environment. Pages 191–202 Ecological adaptation of the photosynthetic
apparatus. Balaban International Sciences Service, Philadelphia.
Bottomley, W. B. 1920. The effect of Nitrogen-fixing organisms and
nucleic acid derivatives on plant growth. Proceedings of the Royal
Society B 91:531–540.
Bowker, D. W., A. N. Duffield, and Ṕarick Denny. 1980. Methods for the
isolation, sterilization and cultivation of Lemnaceae. Freshwater
Biology 10:385–388.
Cedergreen, N., and T. V. Madsen. 2002. Nitrogen uptake by the floating
macrophyte Lemna minor. New Phytologist 155:285–292.
Cedergreen, N., and T. V. Madsen. 2004. Light regulation of root and
leaf NO3- uptake and reduction in the floating macrophyte Lemna minor.
New Phytologist 161:449–457.
Chen, G., J. Huang, Y. Fang, Y. Zhao, X. Tian, Y. Jin, and H. Zhao.
2019. Microbial community succession and pollutants removal of a novel
carriers enhanced duckweed treatment system for rural wastewater in
Dianchi Lake basin. Bioresource Technology 276:8–17.
Cheng, J. J., and A. M. Stomp. 2009. Growing Duckweed to recover
nutrients from wastewaters and for production of fuel ethanol and animal
feed. Clean - Soil, Air, Water 37:17–26.
Cole, C. T., and M. I. Voskuil. 1996. Population genetic structure in
duckweed 230:222–230.
Compant, S., A. Samad, H. Faist, and A. Sessitsch. 2019. A review on the
plant microbiome: Ecology, functions, and emerging trends in microbial
application. Journal of Advanced Research 19:29–37.
Crump, B. C., and E. W. Koch. 2008. Attached bacterial populations
shared by four species of aquatic angiosperms. Applied and Environmental
Microbiology 74:5948–5957.
Friesen, M. L., S. S. Porter, S. C. Stark, E. J. Von Wettberg, J. L.
Sachs, and E. Martinez-Romero. 2011. Microbially mediated plant
functional traits. Annual Review of Ecology, Evolution, and Systematics
42.
Gilbert, S., J. Xu, K. Acosta, A. Poulev, S. Lebeis, and E. Lam. 2018.
Bacterial production of indole related compounds reveals their role in
association between duckweeds and endophytes. Frontiers in Chemistry
6:1–14.
Glick, B. R. 2012. Plant Growth-Promoting Bacteria : Mechanisms and
Applications. Scientifica 2012.
Henke, R., M. Eberius, and K. J. Appenroth. 2011. Induction of frond
abscission by metals and other toxic compounds in Lemna minor. Aquatic
Toxicology 101:261–265.
Ho, K. H. E. 2018. The Effects of Asexuality and Selfing on Genetic
Diversity, the Efficacy of Selection and Species Persistence. University
of Toronto.
Hubbard, C. J., B. Li, R. McMinn, M. T. Brock, L. Maignien, B. E. Ewers,
D. Kliebenstein, and C. Weinig. 2019. The effect of rhizosphere microbes
outweighs host plant genetics in reducing insect herbivory. Molecular
Ecology 28:1801–1811.
Iqbal, J., and M. Baig. 2016. Effect of Nutrient Concentration and pH on
Growth and Nutrient Removal Efficiency of Duckweed (Lemna Minor) From
Natural Solid Waste Leachate. Journal of Health and Medicine (ISSN
… 1:1–7.
Ishizawa, H., M. Kuroda, K. Inoue, D. Inoue, M. Morikawa, and M. Ike.
2019. Colonization and Competition Dynamics of Plant
Growth-Promoting/Inhibiting Bacteria in the Phytosphere of the Duckweed
Lemna minor. Microbial Ecology 77:440–450.
Ishizawa, H., M. Kuroda, M. Morikawa, and M. Ike. 2017a. Differential
oxidative and antioxidative response of duckweed Lemna minor toward
plant growth promoting/inhibiting bacteria. Plant Physiology and
Biochemistry 118:667–673.
Ishizawa, H., M. Kuroda, M. Morikawa, and M. Ike. 2017b. Evaluation of
environmental bacterial communities as a factor affecting the growth of
duckweed Lemna minor. Biotechnology for Biofuels 10:1–10.
Islam, M. S., M. S. Kabir, S. I. Khan, M. Ekramullah, G. B. Nair, R. B.
Sack, and D. A. Sack. 2004. Wastewater-grown duckweed may be safely used
as fish feed. Canadian Journal of Microbiology 50:51–56.
Iwashita, T., Y. Tanaka, H. Tamaki, Y. Yoneda, A. Makino, Y. Tateno, Y.
Li, T. Toyama, Y. Kamagata, and K. Mori. 2020. Comparative analysis of
microbial communities in fronds and roots of three duckweed species:
Spirodela polyrhiza, lemna minor, and lemna aequinoctialis. Microbes and
Environments 35:1–6.
Kivlin, S. N., S. M. Emery, and J. A. Rudgers. 2013. Fungal symbionts
alter plant responses to global change. American Journal of Botany
100:1445–1457.
Kulmatiski, A., K. H. Beard, J. R. Stevens, and S. M. Cobbold. 2008.
Plant-soil feedbacks: A meta-analytical review. Ecology Letters
11:980–992.
Landesman, L., C. Fedler, and R. Duan. 2011. Plant nutrient
phytoremediation using duckweed. Eutrophication: Causes, Consequences
and Control:341–354.
Landolt, E. 1986. The Family of Lemnaceae – a monographic study.
Biosystematic investigations in the family of duckweeds (Lemnaceae).
Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung
Ruebel, Zurich.
Lau, J. A., and J. T. Lennon. 2012. Rapid responses of soil
microorganisms improve plant fitness in novel environments. Proceedings
of the National Academy of Sciences of the United States of America
109:14058–14062.
Lemon, G. D., U. Posluszny, and B. C. Husband. 2001. Potential and
realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna
minor, and Wolffia borealis. Aquatic Botany 70:79–87.
Li, T., and Z. Xiong. 2004a. A novel response of wild-type duckweed
(Lemna paucicostata Hegelm.) to heavy metals. Environmental Toxicology
19:95–102.
Li, T. Y., and Z. T. Xiong. 2004b. Cadmium-induced colony disintegration
of duckweed (Lemna paucicostata Hegelm.) and as biomarker of
phytotoxicity. Ecotoxicology and Environmental Safety 59:174–179.
Minotta, G., and S. Pinzauti. 1996. Effects of light and soil fertility
on growth, leaf chlorophyll content and nutrient use efficiency of beech
(Fagus sylvatica L.) seedlings. Forest Ecology and Management 86:61–71.
Mohan, B. S., and B. B. Hosetti. 1999. Aquatic plants for toxicity
assessment. Environmental Research 81:259–274.
van Moorsel, S. J. 2022. The importance of ecotype diversity on duckweed
growth with and without salt stress. Page Journal of Plant Ecology.
Naumann, B., M. Eberius, and K. J. Appenroth. 2007. Growth rate based
dose-response relationships and EC-values of ten heavy metals using the
duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone
St. Journal of Plant Physiology 164:1656–1664.
O’Brien, A. M., J. Laurich, E. Lash, and M. E. Frederickson. 2020a.
Mutualistic Outcomes Across Plant Populations, Microbes, and
Environments in the Duckweed Lemna minor. Microbial Ecology 80:384–397.
O’Brien, A. M., R. J. H. Sawers, S. Y. Strauss, and J. Ross-Ibarra.
2019. Adaptive phenotypic divergence in an annual grass differs across
biotic contexts*. Evolution 73:2230–2246.
O’Brien, A. M., Z. H. Yu, D. ya Luo, J. Laurich, E. Passeport, and M. E.
Frederickson. 2020b. Resilience to multiple stressors in an aquatic
plant and its microbiome. American Journal of Botany 107:273–285.
Parnell, J. J., R. Berka, H. A. Young, J. M. Sturino, Y. Kang, D. M.
Barnhart, and M. V. Dileo. 2016. From the lab to the farm: An industrial
perspective of plant beneficial microorganisms. Frontiers in Plant
Science 7:1–12.
Pieterse, C. M. J., C. Zamioudis, R. L. Berendsen, D. M. Weller, S. C.
M. Van Wees, and P. A. H. M. Bakker. 2014. Induced systemic resistance
by beneficial microbes. Annual Review of Phytopathology 52:347–375.
Van der Putten, W. H., R. D. Bardgett, J. D. Bever, T. M. Bezemer, B. B.
Casper, T. Fukami, P. Kardol, J. N. Klironomos, A. Kulmatiski, J. A.
Schweitzer, K. N. Suding, T. F. J. Van de Voorde, and D. A. Wardle.
2013. Plant-soil feedbacks: The past, the present and future challenges.
Journal of Ecology 101:265–276.
Rehfeldt, G. E., N. M. Tchebakova, Y. I. Parfenova, W. R. Wykoff, N. A.
Kuzmina, and L. I. Milyutin. 2002. Intraspecific responses to climate in
Pinus sylvestris. Global Change Biology 8:912–929.
Rejmankova, E., M. Blackwell, and D. D. Culley. 1986. Dynamics of fungal
infection in duckweeds (Lemnaceae). Veroff. Geobot. Inst. ETH, Stiftung
Rubel, Zurich 87:178–189.
Schmid, M. W., T. Hahl, S. J. van Moorsel, C. Wagg, G. B. De Deyn, and
B. Schmid. 2019. Feedbacks of plant identity and diversity on the
diversity and community composition of rhizosphere microbiomes from a
long-term biodiversity experiment. Molecular Ecology 28:863–878.
Severi, A. 2001. Toxicity of selenium to Lemna minor in relation to
sulfate concentration. Physiologia Plantarum 113:523–532.
Shantz, A. A., N. P. Lemoine, and D. E. Burkepile. 2016. Nutrient
loading alters the performance of key nutrient exchange mutualisms.
Ecology Letters 19:20–28.
Smith, S. E., E. Facelli, S. Pope, and F. A. Smith. 2010. Plant
performance in stressful environments: Interpreting new and established
knowledge of the roles of arbuscular mycorrhizas. Plant and Soil
326:3–20.
Smith, S. E., and D. J. Read. 2008. Mycorrhizal symbiosis. 3rd editio.
Academic Press, London, UK.
Sokal, R. R., and F. J. Rohlf. 1981. Biometry. Second Edi. Freeman &
Company, New York.
Sree, K. S., M. Bog, and K. J. Appenroth. 2016. Taxonomy of duckweeds
(Lemnaceae), potential new crop plants. Emirates Journal of Food and
Agriculture 28:291–302.
Stein, J. 1973. Handbook of Phycological methods. Culture methods and
growth measurements. Cambridge University Press.
Tan, J., J. E. Kerstetter, and M. M. Turcotte. 2021. Eco-evolutionary
interaction between microbiome presence and rapid biofilm evolution
determines plant host fitness. Nature Ecology and Evolution 5:670–676.
Tang, J., Y. Zhang, Y. Cui, and J. Ma. 2015. Effects of a rhizobacterium
on the growth of and chromium remediation by Lemna minor. Environmental
Science and Pollution Research 22:9686–9693.
Topp, C., R. Henke, Á. Keresztes, W. Fischer, M. Eberius, and K. J.
Appenroth. 2011. A novel mechanism of abscission in fronds of Lemna
minor L. and the effect of silver ions. Plant Biology 13:517–523.
Underwood, G. J. C., and J. H. Baker. 1991. The effect of various
aquatic bacteria on the growth and senescence of duckweed (Lemna minor).
Journal of Applied Bacteriology 70:192–196.
Vasseur, L., L. W. Aarssen, and T. Bennett. 1993. Allozymic Variation in
Local Apomictic Populations of Lemna minor (Lemnaceae). American Journal
of Botany 80:974.
Verma, R., and S. Suthar. 2015. Utility of Duckweeds as Source of
Biomass Energy: a Review. Bioenergy Research 8:1589–1597.
Wagner, M. R., D. S. Lundberg, D. Coleman-Derr, S. G. Tringe, J. L.
Dangl, and T. Mitchell-Olds. 2014. Natural soil microbes alter flowering
phenology and the intensity of selection on flowering time in a wild
Arabidopsis relative. Ecology Letters 17:717–726.
Wagner, M. R., D. S. Lundberg, T. G. Del Rio, S. G. Tringe, J. L. Dangl,
and T. Mitchell-Olds. 2016. Host genotype and age shape the leaf and
root microbiomes of a wild perennial plant.
Wilczek, A. M., M. D. Cooper, T. M. Korves, and J. Schmitt. 2014.
Lagging adaptation to warming climate in Arabidopsis thaliana.
Proceedings of the National Academy of Sciences of the United States of
America 111:7906–7913.
Xie, W. Y., J. Q. Su, and Y. G. Zhu. 2015. Phyllosphere bacterial
community of floating macrophytes in paddy soil environments as revealed
by Illumina high-throughput sequencing. Applied and Environmental
Microbiology 81:522–532.
Xue, H., Y. Xiao, Y. Jin, X. Li, Y. Fang, H. Zhao, Y. Zhao, and J. Guan.
2012. Genetic diversity and geographic differentiation analysis of
duckweed using inter-simple sequence repeat markers. Molecular Biology
Reports 39:547–554.
Yamaga, F., K. Washio, and M. Morikawa. 2010. Sustainable biodegradation
of phenol by acinetobacter calcoaceticus P23 isolated from the
rhizosphere of duckweed lemna aoukikusa. Environmental Science and
Technology 44:6470–6474.
Zhang, Y., Y. Hu, B. Yang, F. Ma, P. Lu, L. Li, C. Wan, S. Rayner, and
S. Chen. 2010. Duckweed (Lemna minor) as a model plant system for the
study of human microbial pathogenesis. PLoS ONE 5.
Zhu, X., F. Song, and H. Xu. 2010. Arbuscular mycorrhizae improves low
temperature stress in maize via alterations in host water status and
photosynthesis. Plant Soil 331:129–137.
Ziegler, P., K. Adelmann, S. Zimmer, C. Schmidt, and K. J. Appenroth.
2015. Relative in vitro growth rates of duckweeds (Lemnaceae) - the most
rapidly growing higher plants. Plant Biology 17:33–41.