Investigation for Existence, Controllability & Observability of a Fractional
order Delay Dynamical System

Hu Zhang®, Irshad Ahmad®, Ghaus ur Rahman®, Saeed Ahmad®*
@ “School of Management Science & Engineering, Anhui University of Finance and Economics, Bengbu, 233030, China”
b “Department of Mathematics, University of Malakand, Chakdara, Pakhtunkhwa, Pakistan”

¢ “Department of Mathematics and Statistics, University of Swat, Pakhtunkhwa, Pakistan”

Abstract

Recently, several research articles have investigated the existence of solution of dynamical systems with
fractional-order and as well as expounded controllability. Nevertheless, very little attention has been given
to observability of such dynamical systems. In the present work, we explore the outcomes of controllability
and observability regarding a differential system of fractional order with input delay. Laplace and inverse
Laplace transforms along with the Mittage-Leffler matrix function are applied to the proposed dynamical
system in Caputo’s sense and obtain a general solution in the form of an integral equation. Then we set
out conditions for the controllability of the underlying model, regarding the linear case. We then expound
controllability conditions for the nonlinear case with the aid of fixed point theorem of Schaefer and the Arzola-
Ascoli theorem. After converting the problem considered to a fixed point problem, we prove the observability
of the linear case using the observability Grammian matrix. The necessary and sufficient conditions, for the
nonlinear case, are investigated with the help of the Banach contraction mapping theorem. Finally, we add
some examples to elaborate our work.

Keywords: Controllability, Observability, Grammian matrix, Fractional differential equations, Fixed
point theorem

Introduction

In the recent past, fractional order differential equations have emerged as novel tools for modeling
nonlinear phenomena occurring in different branches of science and engineering fields, such as viscoelasticity
[1], electronic circuits [2], modified bituminous binders [3], epidemiology mechanism [4], and stochastic
models of stock market swing [5]. Models described in this way are more passable and appropriate compared
with integer order models for investigation of nonlinear phenomena. The theory of fractional order differential
equations has been investigated by Rodino and Delbosco [6] as well as by Lakshmikantam et al.[7-10].
Problems regarding stability analysis of fractional order systems have been discussed in [11, 12]. A wide
range of partial differential equations and integro-differential equations have been studied in the frame work
of fractional calculus, using Banach spaces [13]. The remarkable contributions of D. Baleanu et al. [14-23] in
different fields of science and engineering further enhanced the role of fractional calculus in modern research.
Also, we refer the interested reader to study the work of C. Cattani et al. [24-31].

Among other qualitative behaviors of dynamical systems, both controllability and observability are the
two key concepts that play a vital role in the analysis of control theory [32-34]. Controllability of linear
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finite dimensional systems and infinite dimensional systems have been discussed in [4, 35]. Controllability
of nonlinear systems with input-delay has been studied in [1, 2], while the controllability of fractional order
system in finite dimensional space has been investigated in [5, 32]. The time delay systems are the funda-
mental precipitating factors of the performance degradation and stability of fractional order systems [36-39].
It is therefore vital to investigate such effects on the dynamical behavior of the system. For detail study
about such situations see the work of Yan [40], Muthukumar and Rajivganthi [41] and Valliammal et al.[42].
To establish connection between our proposed model and the existing literature regarding controllability
of systems describing some real world phenomena, we put here a brief history of the recent work of some
authors in the following lines.

In [43], the authors have investigated the controllability as well as the observability of two dimensional
thermal flow in bulk storage facilities exploiting sensitivity fields. They have considered the convection
diffusion reaction (CDR) equation, which describes the dynamics of energy and mass in physical systems
like flow systems, heat exchangers, bulk food storage system and almost all kind of chemical reactions, see
[44-47] for detail. Physical phenomena, such as transmission of momentum, energy, mass etc occur either
inside the system or through the boundaries. The boundary controlled CDR systems investigated by the
authors in [43] is described by the PDE given by,

Y
(G +w97) = cavry 0. x 0,
Y = UDirichlet ON (O,t] X 6Qd1,
aYy

% UNeumann O (O;t] X 6Qd2-

The last two equations represent Dirichlet and the Neumann boundary conditions at the boundaries 9043
and 0€gq, respectively. The symbol, Y € R™ shows the state vector, ¢ is the time, v represents the
velocity vector, the diffusion coeflicient is denoted by ¢ and the first order reaction vector is symbolized by
ry. Similarly the symbols ugirichiet and Uneumann represent the respective input w and flux through the
boundaries 09241 and 0Q42. The authors here considered v constant in their system.

In [48] G. Joseph and C. Murthy presented some novel results regarding the controllability of LDS subject
to sparsity constraints on the input. They described that unwinding the sparsity constraint, the classical
results can be easily recovered for the unconstraint system. The discrete time LDS have proposed, whose
state yr € R at any time k is given by

Yr = Dyr—1 + Hhy,.

Here D € R™ "™ represents the transfer matrix, H € R"*" is the input matrix, hy € R” isthe input vector
being assumed to be sparse i.e ||hk|lo < s, for all values of k and Rp, Ry represent the respective ranks of
D and H. Their definition of s-sparse-controllability states that their underlying LDS is controllable if for
any initial and final state zo and x ¢, respectively there exists an input ||hg|lo < s, which steers the system
from the initial state o to any final state £ = zx in a finite duration of time K”.

In [49], M. Nawaz et al. have recently formulated controllability conditions of a NLFS having time-
delay in the state function described by two parameters, delayed Mittage-Leffler matrix functions utilizing
Schauder’s fixed point theorem. Their proposed fractional differential systems with state delay is defined as

‘DS, 2(t) = Az(t—v)+ Bu(t), telI=1[0,b, v>0, b>0,
z(t) = o), —v<t<O0.
The conforming nonlinear system has the form

{ DY, 2(t) = Az(t — v) + Bu(t) + f(t,2(t — v),u(t)),2(t) € R",t € I,
v>0,b>0,2(t) =¢t),—v <t <0,

where z : [-1v,b] — R"™ is continuously differentiable on the interval [0, b] such that b > (n — 1)r,0 < § < 1.
Matrices A and B have respectively orders n x n and n x m while v > 0 denotes the time-delay. The state

2



vector is represented by the symbol z(¢) € R™ and u(t) € R™ is the control function. Similarly the initial
state function is symbolized as ¢(t) and f : I x R™ x R™ — R is continuous and non-linear.

In [50] Y. Yi et al. investigated the controllability concerning non-linear fractional integro-differential
systems with input-delay exploiting the so-called Schauder’s fixed point theorem. Their proposed fractional
order integro-differential inclusion is given by

¢DIiz(t) = Lz(t) t—&— Mu(t) + Nu(t — p) + f(t,2(¢))
+h(t,2(t), [5 9(t, s, 2(s))ds),t € I =[0,c],
2(0) = 20, u(t) = o(t),—u <t <0.

In the above system 0 < j <1, LeR™™ M and N e R"™*™ and f: [ X R* - R" h: I x R" x R® - R"
and g : I x I x R™ — R" are all continuous functions.

In [51], Balachandran et al. reported the observability of a linear and nonlinear system of fractional order
0 < v < 1, using the Laplace transform, the Mittag-Leffler matrix function and the Banach contraction
mapping theorem. Their proposed dynamical fractional order system is given by

‘Dry(t) = My(t) + g(t-y(t)),t € J =[0,T7],
where M € R™ ™ and g : J x R — R is a nonlinear continuous function with linear observation

z(t) = Hy(t).

Where H is an appropriate order matrix.
In [52], D. Xu, Y. Li and W. Zhou established sufficient and necessary conditions for controllability and
observability of a linear systems with non-integer distinct orders. Their proposed dynamical system is given

by
( CDVyl(t) ) o ( M, 0 ) ( yl(t) >+ ( By )U(t)
Dy (t) ) 0 M Yya(t) By ’
where ¢D"y; (t) and <D*y; (t) are the Caputo derivatives of orders 0 < v < 1 and 0 < p < 1, respectively.
Here, y; € R™ and y» € R™ with n; + ny = n are the state vectors, M;;, B;;,7,j = 1,2 are constant
matrices and u € R is the input vectors. For some recent results on controllability and observability we also
refer the interested readers to see [53-57].
Inspired by the above work, in this paper we investigate the controllability and observability of fractional
order systems having input-delay using Schaefer’s Fixed point theorem, the Arzela-Ascoli theorem and the

Banach contracting mapping theorem. We add some examples to support our work at the end of the
manuscript.

Preliminaries

In this part of our manuscript we include some important definitions, lemmas, notations and preliminary
facts regarding fractional order derivatives, fractional order integrals, the Mittag-Leffler matrix function and
its derivative and a class of linear fractional order system having input-delay.

Definition 1. [8] “The Riemann-Liouville fractional derivative of a suitable function f(t) of order a > 0
with j —1 < a <j,j €N is define as

1 dj ! j—l—a
F(j—a)dtj/o (t—9) f(s)ds.

Here, j = 1+ [, [@] is the integer part of .

Def(t) =



Definition 2. [8] “The Caputo fractional derivative of a suitable function f(t) of order a >0, j—1 < a <
j,7 € N is define as

‘D f(t) = ! )/Ot(t—s)jo‘1f(j)(8)ds,j—1<oz§j.

I'(j —«
Here j =1+ [a], [a] is the integer part of . If 0 <« <1, then

D) = e [ = ) ds

Definition 3. [8] “The Riemann-Liouville fractional order integral of a function f(t) of order a > 0 is
defined as
1

— t —5)* L f(s)ds
i [ =

Definition 4. [8] “The Mittag-Leffler matrixz function for two parameters is expressed as

Igf(t) =

(At*) —i Atk a, >0
Bap N 0Fka+ﬂ @ ’

Here, A is an arbitrary square matriz. The monoparameteric Mittag-Leffler function can be achieved by
putting 8 =1 in the last equation, i.e

Eo1(At®) = E,(At®)

The Mittag-Leffler function satisfies the property: DYE,(At*) = AE,(At*)”.

Definition 5. [8] “The jth order derivative of the two parameter Mittag-Leffler function can be defined by
following expression

d‘ —j— « - ”
(T g (A1) = 7 By (At7), ] € N,

Definition 6. [58] “A mapping T : X — Y from one Banach space to another is said to be continuous if
for e >0 and each x € X one can find a small positive & in such a way that for each y € X
IT(y) — T(z)|ly <e¢, whenever ||y —x|x <= .

The mapping T is said to be uniformly continuous on A C X provided for every e > 0 there corresponds a
small positive § such that for all xz,y € A

IT(y) — T(z)|ly < e whenever ||y — x| x <.

Let us suppose that Ty : X — Y, A € A is a (finite or infinite) class of mappings from one Banach space
to another. These mappings are said to be equicontinuous on the set A, where Ais a subset of X, if for
every A > 0 one can associate a positive 0 however small, such that for any X € A and every two elements
x,y € A the following holds

lly — z||lx < 0 implies | T (y) — T(x)|ly < €.

Definition 7. [59] “Assume X and Y are two Banach spaces and D C X. Further let T : D —Y. We say
that the operator T is completely continuous if T is continuous and associates every bounded subset of the
set D to a relatively compact subset of the space Y 7.



Theorem 1. (Schaefer’s fixed point theorem)[58] “Condider X be a Banach space and T : X — X be a
continuous and compact mapping. Further assume the set

U {zeX:2=¢r()}.
0<¢<1

is bounded for some X € [0,1]}. Then the operator T has a fized point”.

Theorem 2. [58](Arzela-Ascoli theorem) “Consider K = [a,b] be a compact set in R, n>1. A set S C
C(K) is said to be relatively compact in C(K) if and only if S contains uniformly bounded and equicontinuous
functions on K.

Uniformly bounded means, one can find M > 0 such that

| f]l = sup|f(z)| < M,Vf €S
zeK

Equicontinuous means, for every e > 0, one can find § > 0 such thatV x,y € K andV f €S
|f(z) — f(y) < € whenever |x —y| < 4.

The Arzela-Ascoli theorem can be extended to the whole of R™, if it is assumed that the functions uniformly
approaches zero at infinity i.e. as |x| — co”.

Definition 8. [60] “A system is deemed to be controllable on [to,t¢], if for an initial state xy € R™ at t = to,
and final state x5 € R™ at t = ty, there corresponds an input control signal u(t) : [0,T] — R™, such that the
corresponding solution of the system satisfies x(to) = xo and x(ty) = xs,t € [to,ts]”.

Main results
Consider the fractional order system given below on a bounded domain,

‘D¥y(t) = Ky(t) + Lu(t) + Mu(t — q) + f(t,y(t),° D" 'y(t)),t € I = [0,d],
y(0) = yo, ¥'(0) =0, (1)

where 1 < v < 2; K is n X n matrix; L and M are n X m matrices and f is a nonlinear continuous function.
Utilizing the Laplace transform and its inverse along with the Mittag-Leffler function, the general solution
of the fractional order system (1) can be expressed as

y(t) = E, (Kt")yo + /0 (t—s)" "By, (K(t—s)" ") (Lu(t) + Mu(t — q) + f(t,y(t),° D" 'y(t)))ds.  (2)

Lemma 1. [61] For the case 0 <t < g, the solution (2) can be expressed as
¢
W) = BKE)+ [ (69 B (K 5 Luls)ds
0
t—q
+ / (t—q—s)" " E, (K(t—q—s)")M¢(s)ds

—q

+ / By (K(t—q—s)) x f(s,(s),*D*~y(s))ds.
0

While for the case t > q, this solution can be expressed as
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y(t) = E(Kt")yo+ / (t—gq— )" LB, (K(t — g — 5)")M(s)ds

—4q

+ /0 _q[(t —8)' B, (Kt —8)")L+(t—q—s)" 'E, (K(t—q—s)")M]u(s)ds
+ /ti (t—s)" B, (K(t —s)")Lu(s)ds
+ /O [(t—8)" "B, (K(t—s)") x f(s,y(s), " D" "y(s))]ds. (4)

Lemma 2. [61] The fractional linear system given by

6D7y(t) = Ky(t) + Lu(t) + Mu(t), t€lI=10,d],
y(0) =y, ¢'(0)=0, (5)
u(t) =¢(t), —q¢<t<0,

is controllable on I, if and only if the controllability Grammian matrices W (t) in each of the following cases

are invertible.
Case (1): When 0 <t <gq

d
W(t) = /0 (d—s)"'E, (K(d—s)")LL((d — )" 'E, ,(K(d — 5)"))"ds

+ /dq(d —q— ) By (K(d—q—s)")MMT

—q

X ((d=q—5)"""E(K(d—q—s5)"))"ds. (6)
(7)
Case (2): When t > q
wi(t) = /Odq[(d =) By (K(d—5)")L+ (d—q—5)"" Eyy(K(d—q—s)")M]
X [(d=s)"" By (K(d = 8)" )L+ (d—q )" By (K(d - q—s)")M]" ds
+ d_q(d =) By (K(d = 5))LLT(d = 5 By (K(d = 5)7)) " ds, (5)

Lemma 3. [61] “The linear fractional system (5) is said to be controllable on I, iff
rank [L KL KL .. K" 'L M KM KM .. K" 'M]=n”

Lemma*. (Schaefer’s theorem ): Let X be a Banach space, f : X — X be continuous and compact.
Moreover assume the set S = {x € X : x = Af(z)}, A € [0,1]}, has a solution for X = 1 and all other
solutions for 0 < XA < 1 are unbounded.

To investigating the controllability of the system (1), we make the underlying hypothesis.
H;. The non-linear function f : I x R™ x R™ — R" is measurable and continuous, a positive constant p

exists such that
1£(s,9(s), D" 'y(s))| <p,Vtel (10)



Hs. For brevity we assume the following;:

o(t) = B, (Kt"),t €I, sup||voll = ko;

Uit s) = (t— )" B, (K(t —s)"),t € 1, supl|1 || = ka;
ba(t,q,8) = (t—q—8)" B (K(t—q—s)")tel, sup||ihz|| = ka;
Y3(t) = KE, 1 ;(Kt"),t €1, sup||vs|| = ks;
Yalt,s) = (t—s)" 7 E, ,_;(K({t—s)" ) tel sup||a|| = ka;
Us(t,q,8) = (t—q—3s)" T E,,_;(K({t—q—s)" ), tel, sup|ys|=ks;
be(t,s) = (t—s)’ " Ltel, supl|Ys|| = ke;
Ur(s.y) = f(s,y(s), “D" " 1y(s)).

Theorem 3. If the linear system in (1) is assumed controllable on the interval I and the hypothesis Hy, Hy
hold, then the nonlinear system of fractional order (1) is also controllable on I.

Proof. Case I. When t > ¢

To prove the theorem, we define the Banach space Y = {y : y(9,¢D¥(y) € (I, R")}, with norm |y =
max{|ly(®)|l, l|<D*y(t)||, ||u||}- Further utilizing the hypothesis Hy, Hs, the input u(t) of the system (1) for
an arbitrary solution y(.) can be defined as

U(t) = (wl(dvt)L+w2(d7Qat)M)TW_l(I)a 0 St S d_q; (11)
(1 (d, t)L)TW L, d—q<t<d;
where
d
®=w—%@m—/wﬁ@%@w%
0
and
d—q
W) = / (1(d, )L + a(d, g, 5)M) x (4 (d, )L + a(d, g, 5)M)Tds
Od d
+t/ %@ﬁﬂ@@di@ﬁﬁ+/i%WJWﬂ&w@
d—q 0

We define the nonlinear operator T': Y — Y, given by

0 t—q
Tyt) = doltyo+ / a(t,q,5)M(s)ds + / [n (¢, 5)L + s (t, ¢, 5) M]u(s)ds

t

+ (£, ) Lu(s)ds + /0 (1 (¢, 8)r(s5, )] ds. (12)

t—q

The operator defined above possesses a fixed point and this fixed point comprises a particular solution of
(1). Inserting (11) in (12) we obtain

TH©) = boltyo+ / st 5)L + (g, 5)M)]

X [1(d, s)L + b2 (d, q, s)M])T W~ dds
+ P (t, s)L(vi(d, S)L)TW_I(I)ds
+ /O [1(t, 8)7(s,y)]ds. (13)
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Clearly Ty(d) = y;. Further it means that if the nonlinear operator has a fixed point, then there exists an
input u(t) that steers the system from the initial state yo to the final state y; in time d.
Next we show that the operator T satisfies the Schaefer’s fixed point theorem. Our proof consists of

three steps:

Step I. In first step we show boundedness of the set £(T) = {y € Y : y = nTy,n € [0,1]}, in I. For an
arbitrary y € £(T') and 0 < n < 1, we have

y(t) = no(t)yo + n/o _q[wl(t,s)L + tho(t, q, 8) M)
(1 (d, 8)L + o(d, q,8) M]" W 1 ®ds

t
+ n/ 1 (t, 8)K (1 (d, s)L)TW 1 ®ds
t—q

X

vy / n (2, )e(s, y)]ds. (14)

Then utilizing hypothesis H; and Hy we have

and

d
[l < [yl + IPo@)l[lvoll +/0 (b1 (¢, s)ll 7]l ds,
< |yl + kollwol| + dk1p. (15)
0, —q <t <0
u(®)|| = { KallL]| + k2| M7 W@, 0<t<d—g (16)
(kLTI 12, d—qg<t<d.

In view of (15) and (16), (14) will give

ly @]

IN

_|_

IN

X

t—q
kollyoll +/0 [Eul| LI+ Ko || M R || LI+ ko | MWl @ ds
t

t
/t kl||L||(k1||L||)T||W71””(I)Hds+/O [k1plds,
—q

kollyoll + W =HI[(ko | LIl + kol | M) (| LI| + k2l MIDT + KZILIILT]
(ly1ll + E1llyoll + dk1p) + dkip = 1. (17)

Further, by Definition (5), we can obtain

y(j)(t)

X

+

Which further gives

()0 + 1 / alt, )L+ st 0. 5)M]

[Wa(d, s)L + s(d, g, s)M]" W™ ®ds + / Ya(t, s)L(¥a(d, s)L)TW ' 0ds
t—q

. / Rba(t, s (5, y)]ds. (18)

ly @I < Esllyoll + dI(Rall LIl + ks || M) (kal| LI| + ks || M|)T + &3] L[| L]]

< AW THINlyall + Eallyoll + dkip) + dkap = 7s. (19)

8



Utilizing definition (2) we have

PO < s [ (sl (20)

Hence °D"y(t) is bounded. It means that {7 is bounded as well because |ly|| = maz|||y||, ||*D"yl|, ||u|l]-
Step II. In this step we prove that the operator 1" is completely continuous. To do this we assume that
By = {y € Y;|ly|| < s}, which is mapped into equicontinuous family by 7. Then for any y € B, and
t1,to € I with 0 < t; < t3 < d one gets

[Ty(t2) — Tyt < vl tz) Yo (t)llyoll

+ H/ [(¥1(t2, )L + o (ta, q, 5)M)]
x <w1<d, s)L + ¢2(d, g, s)M)T W~ @ds||
t1—
[ 100 )L+l 0. 5)M) = () D+ vl ) M)
0
X (¢1 (da S)L + Q/JQ(dv q, S)M)TW_1¢dS||
ty
+ |l [1(t2,8)L — 1 (t1, 8) L) (1 (d, s) L)W L @ds|
ti—q
t1
+ : [W1(t2, 8) — 1(t1, )7 (s, y)ds||
12
+ H q/}1(t27S)¢)7(Say)d5||
t1
to
+ |l [ a(te, s)L(¥i(d,s)L) WO (21)
t1

In view of (21), (11) can be written as

ITu(ts) — Tu(ty)] <

0, —q <t <0;

(& (ds £2) L + o (d, g, £2) M) — (22)
(61(d, )L+ a(do g, D)MW @], 0<t<d—g

(1 (d, t2) ) = (@ d ) DI [W @], d—g<t<d.

This further implies that

1°D"Ty(t2) — “D"Ty(t)| <

Iyl otz )Ty P+ o)

t1 4 '
HWHH/O (1e(ta, s)(Ty)9) — g (t1, s)(Ty) ) ds]|.
Evidently,

Jim [|[(Ty)(t2) — (Ty) ()] = 0,

lim [[(T2)Y (t2) — (T2)9 (1)) — 0

to—t1

lim {|°D"(Ty)(t2) — (“D"Ty)(t1)[| — 0.

to—tq



Hence, the equicontinuous family of functions, {(Ty) : y € Bs} is uniformly bounded. Next we show that
the operator T is compact. For any y € B, and a real number € such that 0 < € < ¢ where t € [0,d] we
define

T)(®) = do(t)yo+ /0 it 9) L+ a(t g, 5)M]
X (1(d, s)L 4+ o(d, q, s) M)TW 1 dds

t—e
+ Y1(t, s)L(11(d, s)L)" W~ @ds
t—q

+ / T (t, syr(s, y)lds. (24)

as above we obtain that {(T.y) : y € By} is an equicontinuous family of functions that fulfill the uniform
bounded condition. Therefore, one has

t—q

[(Ty)#) = Tey) D < |l [th1(t, )L + 1o (t, g, ) M]

t—e—gq

X (Y1(d, )L +a(d, g, 5)M)T W Dds|

t
+ | /ti V1 (t, 8)L(Y1(d, s)L)TW 1 dds||

+ ” . W}l(tvs)q/W(Svy)]dS”y

e[ WHIN@N e [1LI| + Fal [ M) (| LI| + Ro[|M1)T + R LIILT ]
+  €kip. (25)

IN

Utilizing the above we obtain

t—q
I [Wa(t,s)L +1s(t, q,s)M]

—e—q

x (Y1(d, s)L + ¥a(d, q, s) M)W~ dds||

1 e L D)W |

1Ty () = (Tey) D (@)l

IN

+ o [Walt, s)vn(s,m)lds],

t—e

< ellW IR [(Ral L] + ks || M) (ko | LI+ k2| MDT

+ kika| LI L] + ekap. (26)
Applying definition of Caputo derivative we have
1§ D”((Ty)(tz —“D"(Tey) (1))l <
||||/ be(t, s)[(Ty) D (t) — (Toy) D) (t)ds]|.

Distinctly,

lim [[(Ty)(t) = (Tey) @) = 0,

lim [|(Ty) (1) = (Ty) P ()] = 0,

lim [1°D" (Ty)(t) — “D¥(Ty) (1) | = 0.
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Hence, by the Arzela-Ascoli theorem {(Ty)(t) : y € Bs} is compact in Y.
Step III. The last step to show that T is continuous. We make two more hypothesis:
(H3) Let Y = {yla Y2, ~-~7yn}7hmn—>oo Hyn - y(t)” =0.

(Hy) Let z = max{||ynl, |unll; | D ynl }, # is a positive constant. Utilizing the above hypothesis we obtain
Ftyn(0,° DY V(1)) < f(t (), "DV Vy(t),ie
V7(8, Yn) Vr(s,y).

<
<

Now by Fatou-Lebesgue theoerm

I(Ty)®) — T)O] < | / B[ | LI| + Rl MG L]+ kM) + K2 L))
< W / (W (0 g (9))) — (W20, y(9))))d0 s |
- / (@or(5:9m)) — (br(s, ) s (25)

Utilizing similar approach as above we also have
t
1(Tya) () = (Ty) P @)l < H/O kal(kal | LI| + ks || M) (ka || LI| + ks || M) + kika | L][ILT ]
X HW’IIIII/0 (W2 (0, yn(0))) = (7 (9, y(9))))dV | ds]

+ okl / (@r(5,9m)) — (r(s, 9)))ds]. (20)

Making use of definition (2), one obtain

1°D" (Tyn)(t) = D" (Ty(@))| <
1

R ST L D (4) — (T D1(£)ds
=gl | vt )(T0) 9 0) = () 0)s]. (30)

Clearly

Tim [[(Tya)(5) = (Ty) ()] =0,
lim |(Tyn) 9 (1) — (T9) P ()] = 0,
lim [|°D"(Ty)(t) — “D"(Ty)(t)] = 0.

n—oo
This clearly indicates the continuity of 7. Hence following the Arzela-Ascoli and Schaefer’s fixed point
theorems, one may easily deduce that the operator T is continuous and possesses a fixed point Y in Bi.
Further this fixed point Y is the solution of the system (1). It is therefore concluded that (1) is controllable
on [ for the case t > q.

Case II. When 0 <t < ¢:
We define the Banach space ¥ = {y : y, *DI¥~Vy, € (1, B")}, with norm ]| = maz{ gl I°D* )1l ]}
Then utilizing an arbitrary solution y(.) of (1) and the hypothesis Hy, Hs the input signal u(¢) can be ob-
tained as

(w2(da qvt)M)TW_l(I), —q <t< d— q;
ulh) =40 d—g<t<o; (31)
(¢1(d, t)L)Twil(I), 0<t<d,

11



where 4
S =y1 —Yo(t)yo — [ 1(d,s)r(s)ds.
0

Define the nonlinear operator T': Y — Y by

Tyt) = wo(t)yo+/0w1(t78)LU(8)d8+ _qwz(t,q,S)MMS)ds

+ / [ (8, s)ubr (s, )l ds. (32)

The above defined operator has a fixed point that is a particular solution of (1). Plugging (31) in (32) we
obtain

Ty(t) = vo(t)yo + /O V1(t, )Ly (d, s)L)TW 1 dds

t—q t
+ ba(t,q,s) M (92(d, g, ) M)W~ ®ds +/ [1(t, 8)¥7(s, y)]ds. (33)
—q 0
Clearly T'y(d) = y;. Further it means that if the nonlinear operator has a fixed point, then there exists an
input u(t) that steers the system from the initial state y to the final state y; in time d.

Next we show that the operator T' satisfies the Schaefer’s fixed point theorem. Our proof consists of
three steps
Step I. In first step we show boundedness of the set £(T) ={y €Y :y =nTy,n € [0,1]}, on I.
For an arbitrary y € £(T) and 0 < < 1 we have

y(t) = mbo(thyo+1 A (b, 5)L(r (d, $) L)W= Dds
+ n h ¢2(t’Q7S)M(d7QaS)M)TW_1(I)dS +WA [¢1(t73)¢7(3,y)]d8- (34)

—q

Then utilizing hypothesis H; and Hy we have

d
[ <yl + 1o (@)l lmoll +/0 (loa(, 9)[ll[v7(s) ) ds
< lwall + Eallyoll + dkap, (35)
and . )
ke M [WRl[|@f,  —g<t<d-—g
lu(®)ll = 4 0, d—q<t<0; (36)
ke LW [, 0<t<d.

In view of (35) and (36), (34) will give

N

t
ly@I < koHyolH/O k| LN R L)W @]l ds

+

t—q t
| Rl a ) s + [ aplds,

—q
kollyoll + (KENLINLT|| + K31 M11]| M7
W= Iyl + kullyoll + dkp] + dkip = 3. (37)

IN

X

12



Further, by Definition (5)
t
W0 = s+ [ Gt )L (L)W ads
0
t—q
+ 77/ Vs(t,q, s)M(d, q,s)M)" W' 0ds
—q

t
0 [ [t s)on(s. s, (39)
0
which gives

Iy O < ksllyoll + [dkakal LI LT || + dkoks|[ M || M7 ]

AWMy || + Eallyoll + dkap) + dkap = 7a. (39)
Utilizing definition (2) we have

DY < = / (keva)ds]. (40)

Hence, °D¥y(t) is bounded. It means that T is bounded as well because ||y|| = max[||y|l, ||<D"yll, ||ul||]-

Step II. Here we show that T' is completely continuous operator. Suppose Bs = {y € Y; ||ly|| < s}, which
is mapped into equicontinuous family by T. Then for any y € Bs and t1,t2 € I with 0 < t; < to < d we
show that T'Bj is uniformly bounded

[Ty (t2) = Ty(t) < [ldo(t2) = vo(t)[19ol

+ / (b2, 8)T — (11, 5) L] % (41 (d, 5)D)TW 1@

0

[Wa(t2, q, 5)M — a(t1, q,5)M](1p2(d, q,5) M)W

[Ya(t2, s) L(vo(d, s) L)W'

ta—q

[?/J2(t2, q,8)M (¥2(d, q,s) M)W 1 ®

/
+ /Ot (W1 (t2, s) — U1 (t1, 8)|Wor(s, y)ds
A

+

.\

t

+ ’ Y1 (ta, $)r(s,y)ds. (41)

t1
In view of (41), (31) can be written as

[(Tu)(t2) — (Tu)(t1)]| <
[(wQ(dv q, tQ)M) - (wQ(dv(Ltl)M)]TW_l(I)? —q S t S d —q,

0, d—g=<t<0, (42)
[(1(d, t2)L) — (1 (d, 1) L)W 19,0 < t < d.
This further implies that
[°D*Ty(tz2) — “D"Ty(t1)|| <
1 t2 _
()
IIF(J._V)IIII ; (Ve(t2, 5))(Ty) Y ds||+ (43)
th A ‘
”m”” | (V6(t2, 8)(Ty)D) — s (tr, 5)(Ty)D)ds||.

13



Consequently,

Jim (T9)(t2) — (Ty) ()] 0,

Jim ([(T2)( (£2) = (T2) @ (12))]] = 0

lim |[*D"(Ty)(t2) = (“D"Ty)(t1)|| = 0.

to—t1

Hence, the equicontinuous family of functions,{(Ty) : y € B} is uniformly bounded. Next we show that the
operator T' is compact. For any y € B, and a real number € such that 0 < e < t where ¢ € [0, d] we define

(Tye)(t)
+

+

ol

t—e
t)yo+/0 V1 (t, s)L(1(d, s)L)TW 1 ®ds

t—e—q

/

wQ(tu q, S)M(l/}Z(d, q, S)M)TW_ICI)CZS

/0 Tt s)e (s, p)lds.

(44)

as above we obtain that {(T.y) : y € Bs} is an equicontinuous family of functions that fulfill the uniform
bounded condition. Therefore, we can infer

(Ty) () = (Tey) @)

Utilizing the above we obtain

I(Ty) P () = (Tey) D (@)l

<

IN

IN

t
[ it s)L(¥i(d, 5) L) W™ ds|
t—e
t—q
|| wZ(tuQ7S)M(¢2(daQ7s)M)TW_1(I)dSH
t—e—q
t
| . [1(t, 8)¥7(s, y)lds],

el ILIIET I + RSN MII MW |9 + ekap.

t
I watt ) Leba (d, 5)L)TW s
t—e
t—q
|| / s(t, . $)M(a(d, g, $)M)TW " dds|
t—e—q

1] st opin(s.tasl,

elkrkal LINLT I + oks [ MW @] + ekap.

Applying definition of Caputo derivative we have
1D ((Ty) P (t2) — (Tey) D (11))I| <

R D (1) — (TN @ (£)ds
Il | ol ) = @) 0)s).

Distinctly,

tim (Ty)(®) ~ () ()] = 0,
lim 1(Ty) D () — (Tey) 9 ()] = 0,
lim [1°D" (Ty)(t) — “D¥(Ty) (1) | = 0.

14



It follows form Arzela-Ascoli theorem {(Ty)(t) : y € Bs} is compact in Y.

Step III. To show that T is continuous, we assume the following:

(H3) Let Y = {ylay27 --'7yn}7hmn—>oo Hyn - y(t)” =0.
(Hy) Let z = maz{||ynll; |lunll, |°D*ynll}, # is a positive constant. Utilizing Hs — Hy, we have

Fltyn(8),°DY Ny, (1)) < flty(1), DY Vy(t)) e
w7(sayn) < 1/)7(57y)~

Now by Fatou-Lebesgue theorem

1(Tyn)(t) = (Ty)(@)]l /O RRILINLT + &S M M)

IN

X

(e T /:((%(ﬁ,yn(ﬁ))) — (¢7(9,y(9))))dd||ds

b ok / (r(5,9m)) — (r(s, 9)))ds]

Utilizing similar approach as above we also have

I(Tya) V() = (TP @) < /0[/f1k4||LIIHLTII+k2k5HMIIIIMTI|]

X

W / (W (09 (9))) — (o (0, y(9))))d0 s

. / (Wr(5,9m)) — (r (5, 9)))ds].

Making use of definition (2), one obtain
[0 (Tyn)(t) — D" (Ty) (1) <
=1 | ol $)(Ty)D (1) — ()9 (1))ds].
Clearly
im [[(Ty,)(0) ~ (Ty)(D)] =0.
lim [[(7,) 9 (1) — (Ty) (1) = 0,
lim [[*D¥(Ty,)(t) — “D*(Ty)(1)] = 0.

(49)

(50)

Hence, T is continuous. So, by Arzela-Ascoli and Schaefer’s fixed point theorem, it can be concluded the
operator T is continuous and has a fixed point Y in B,. Further, this fixed point Y is the solution of the

system (1). We conclud that (1) is controllable for 0 <¢ < gon I .

Observability

O

A property of dynamical system that measure how well internal states of a system can be obtained from
the information of its external outputs. For observability of our proposed model we assume that u(t) = 0,
because it has been shown in [62] that observability of a system is independent of the input signal w(t).

After this change is made and adding a linear observer, the system (1) obtains the form,
“D"y(t) = Ky(t) + f(t,y(t), D"~ y(t)),t € I = [0,d],
y(0) =y,  ¥'(0)=0,
z(t) = Hy(t).
15
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Where 1 < v < 2; K is n X n matrix and f is a nonlinear continuous function.

4.1. Linear Case:

Definition 9. The time invariant linear system in (51) is said to be observable at time t € I, if z(t) =
Hy(t) = 0 implies that y(t) = 0.

Theorem 4. The linear system in (51) is observable in I, if and only if the observability Grammian matriz

d
Q(0,d) = / E,(K*'t")H*HE,(Kt")dt (52)
0
s possitive definite.

Proof. By applying the Laplace transform, the Mittag-Leffler function and the initial conditions, the solution
of the linear system in (51), is given by

y(t) = Ey(Kt")yo, (53)

using this equation, we have z(t) = HE, (Kt")yo, and
d
=01 = [ ==

t
— / B, (Kt)H" HE, (Kt")yodt
0

= ySQ(Ov d)y07

clearly Q(0,d) is symmetric and the equation is quadratic in yo. If Q(0,d) is positive definite and z(t) =
y5Q(0,d)yo = 0, then yo = 0. Hence, the linear system in (51) is observable. If Q(0, d) is not positive definite,
then there exist some non-zero yo such that y3Q(0,d)yo = 0. Which implies that y(t) = E, (Kt")yo # 0, but
Izl = 0 = y = 0, which in turn implies that the system is not observable. Hence the required proof. O

4.2. Nonlinear Case:

For the observability of the nonlinear system (51), one needs to estimate the unidentified state y(t) at
the current time ¢ from the information of the system output z(t) in [¢, t], where ¢ denotes past time.

Definition 10. The nonlinear system (51) is callee observable at time t if one can determine t < t, in such
a way that state of the system at time t can be estimated from the information of the system’s output through
the interval [t,t]. If a given system is observable for allt € I, we call it completely observable.

Let the nonlinear system (51) possesses a distinctive solution for some initial condition y = y(to),
to € (,t), and is given by

y(t) = B (K(t —t0)")y(to) + /t (t—5)" "' By, (K(t = 5)") f(t,y(t), "D~ y(s))ds, (54)
it is solved for y(to) by assuming [F, (K (t — tp)”)] is invertible, we obtain
y(to) = [By (K (t = to)")] ™ [y(t) — /tl(t = 8) T By (K (t = 5)") f(t,y(t), "D~ y(s))ds], (55)

it in turn will give

2(to) = [E, (K (t — to)")] ' [Hy(t) — H/t (t =)' By, (K(t = 5)") f(t,y(t), "D y(s))ds],

1 v— v cmyv— v
= [E,(K(t—to)")]? [Hy(t) — H " (t—s) 1Ev,u(K(t —8)") f(t,y(t),“D 1y(s))ds] X B, (K(t—10)").
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Integrating the above equation form ¢ to ¢, after multiplying it by F, (K*(t —to)")H*, we obtain
t
/ [E, (K (t—to)")J2E, (K*(t — to)")H*2(to)dto
z

_ / By (K (t — to)" ) H* Hy(t) B, (K (t — to)" )dtq

t

to

—/{ B, (K*(t —to)")H*H x (/ (t—s)" " B, (K(t—s)") x f(t,y(t),cD”_ly(s))ds>
X EV(K(t — to)u)dto

- /tt By (K*(t — to)")H* HE, (K (t — to)")dtoy(t)

- / (b= 8 B (K~ 9)°) % £t y(0), *D*y(s))

x </t EV(K*(tto)”)H*HEl,(K(tto)”)dt())ds.
Which implies that,

ﬂ (B, (K (t — o)) By (K* (t — to)" ) H* 2(to) dto
! (56)

= Q1) — [ (t—s)"" By (K(t—s)") x f(t,y(t),"D""y(s)) x Q({, s)ds.

—

Now, in case the matrix Q(f,t) is invertible, i.e., the linear system in (51) is observable, then from the last
equation we obtain

y(t) = Q'(L,¢t) / [E,(K(t — s)")?E,(K*(t — s)")H*2(s)ds
e (57)
+Q 7' (t, ) /t (t—s)" "By, (K(t—s)") x f(t,y(t),"D" " 'y(s)) x Q(t, s)ds
Let
Gi(t,t,5) = Q L, t)[E,(K(t — 8))*E,(K*(t — s)")H*,
Ga(t,t,s) = Q' (L t)E, . (K(t — 5)")Q(E,s),
we obtain
y(t) = /t G (b7, 5)2(s)ds + /t (t— 8)"1Ga(t, 1, 5) x f(t y(t),“ D"~ y(s))ds. (58)

The above equation represents relation between the state variable y(t) and the system output z(¢) over the
interval [f, ], hence the following is deduced.

Theorem 5. The nonlinear system (51) is (a) observable globally at time t and (b) observable completely
if the conditions given below fulfil.

e det(Q(L,1)) > ¢, for some positive c.
e One can associate a unique and continuous solution for any z of (57) in [L,t], for some t < t,

1. The situation of an observable system at time t, and

17



2. The situation of completely observable system Vt.

The time ¢ in (58), is not necessarily fixed, so it can be replaced by ty. After this change is incorporated
and the resultant equation is substituted in (55), one obtain

u(to) = (B (K (t — to)")]* [ / Gi(tto, 5)=(s)ds + / (t = )" Galt, to5) x F(t,y(t),*D"y(s))ds

. o o (59)
~ [ = 9 B (= 9700, D (o).
Let
Gs(t,to,s) = [E,(K(t — to)")] 'Gi(t, to, 5),
Gult,to,s) = [E,(K(t —t0)")] ' [Galt, to, s) — Ev (K (t — s)")].
After these assumptions are made, (58) reduce to
y(to) = t Gs(t,to, 5)z(s)ds + /t (t = )" Galt, to, 5)f(t,y(t), "D y(s))ds. (60)

This equation demonstrate that the same results are also valid if we replace (58) by (60) in theorem (5)
with a simple change of variable. Next, we apply the Banach’s contraction theorem to the nonlinear system
given by

“Dy(t) = Ky(t) + e (1, y(2), "D y(), o
z(t) = Hy(t).
where € is a positive constant. Assume that there exist constants L > 0 and 0 < £ < 1, such that
£t u,v) = £t a,0) < Kllu —al| + L]lv -] (62)

Theorem 6. The nonlinear system (61) is (a) observable globally at time t and (b) observable completely
if the conditions given below fulfil.
e det(Q(t,t)) > ¢, for some ¢ > 0.

e A positive constant € < % in [t,t], for some t < t,

1. The situation of an observable system at time t, and

2. The situation of completely observable system for all t.
Proof. A general solution of the nonlinear system (61) with y = y(¢¢) as an initial condition, using Laplace
transform, inverse Laplace transform and the Mittag-Leffler matrix function is given by

t

y(t) = Ey(K(t —t0)")y(to) + 6/ (t =) By (K(t = 5)") f(t,y(t),“D" " y(s))ds, (63)

to
it is solved for y(ty), obtaining

t

y(to) = [Ey (K (t —t0)")] ' [y(t) - 6/ (t = )" By (K (t = 5)") f(t,y(t).D"~"y(s))ds], (64)

to
After some calculation just like we obtain (57) from (55), the next equation is derived from (64) is given by

y(t) = Q7 '(t,1) / [E,(K(t— )" )*E,(K*(t — s))H"2(s)ds
! (65)

+eQ (1, t)/{ (t—5)" "By (K(t = 5)") x f(t,y(t),“D""y(s)) x Q(E, s)ds.

18



Using (65) in equation (64), we obtain

y(to) = [Ev(K(t — to)")]fl[Qfl(t,t)/E (B, (K(t —s)")PE, (K*(t — )" ) H*2(s)ds
+eQ(E, t)/{ (t—8)" " B, (K(t—s)") x f(s,y(s),°D" 'y(s)) x Q(L, s)ds (66)

—e / (t— )" B, (K (t — 5)")f(s,y(s) D"y (s))ds].

to

It can be concluded from the last equation, that the system (61) is observable. For this it is sufficient to
prove that Q(, -) is invertible and there exists a unique solution of (66). If it is assume that there exists
two such solutions say y, 7,y # § of (66) for a given z then utilizing (62) we have

ly(to) — 4(to)| < e|[Bu(K(t —to)")) '] |Q" tt!/ $) VB, (K (t—5)")] |Q(, s)|
(| £(s,9(s), D" 1y(s)) = f(s,5(s), "D~ 1g(s))

+e|[ELK(E—1o) 1\/ P B (Kt 5)°)
(67)
< [|£(s,y(s)° D" y(s)) = f(s,5(s)° D"~ y(s))|1ds
€, /C
<= - —q
< (1) x (E = 1) x [7—F7]ly — 9l
€ - y K _
+ b0 x (=B X [Tl Iy — 1]
where
G t) = max |[E,(K(t —t0)")] Q7N E )] x | By (K(t— 5))Q(E5)]
T<to<s<t
LI = max [[BK(E—t0)")] " Bu(K(t - 5)")]
t<to<s<t (68)
¢
|I| = dt|.
t
A little bit simplification will give
_ e(t — )Lt t)K _
_ <2 Ty — gl
y(to) — y(to)|l < S0 = D) ly — 9 (69)
Where £(t,t) = £1(,t) + £1(E,t). If
e(t —t) et t)K
oi—cn b (70)
then the equation (66) has a unique solution and the system (61) is observable. O

Example:
Given a non-linear fractional order system

D"y(t) = Ky(t) + Lu(t) + Mu(t — q) + f(t,y(t), "D y(t)),t > 0,
y(0) = 50,5'(0) =0, (71)
u(t) = ¢(t), —j <t <0,
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where j —1 <v <j,tel and

2 1 1 2 Y
K=1|3 5 2(,L=1|0|,M=1|0|,yt)= |y
5 1 7 2 3 Ys
And the nonlinear function f
0
F(t,y(t), c D" y(t) = 0

1
2et T (1+]y()[+]° DY~y (2))

Also by the Mittage-Leffler matrix function

o kikv
B (A7) = I( Izt1
k=0 +
We obtain
1 S1
E,,(K(d—s)")L=|la| ,E, . (K(d—q—3s)")M = |s2],
I3 S3
where
1 4(d—s)"  6(d—s)
L=yt Ty ey T
7(d—s)"  85(d—s)"
lo = + ey
I'(2v) I'3v)
2 (d—s)" 160 (d—s)*"
Iy = NORRSICT) N
2 T(d—q—s)"  9(d—q—s)*"
TR T T TR T3y
12(d—q—s)” 143(d—q—s)2“+
27 T (20) T (30)
3 31(d—q—s)"  264(d—q—s)°"
ST T T Ty T3y

Now the Grammian W (¢) in both the following cases for arbitrary d > 0 is nonsingular.
Case . 0<t<gq

d T
W(t) /0 (d—8)2('j—1) [ll lg lg} [ll l2 l3] ds

d—q
+ / (d—q— 5)2(”_1) [81 S 53]T [31 S 53] ds,

—q

d B hly Ll
/(d—s)2(”_1) Liy 13 lyls|ds
0 iy lols 12

d—q si s1s2 s183
+ / (d—q—s)2(”_1) $182 83 s283| ds.

—-q 8183 S283 3§
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Case II. t > ¢

W(t) = ’

d—q
/0 [(d — S)V_l([ll lg lg}T + (d —q— S)V_l [51 S9 33]
(A=)l o ] +(d—qg—s)"""[s1 s2 s3])ds

d
+ / [(d — S)y_l [ll Iy lg]T [ll Iy lg] ds,
d—q

)

X

i

+ ([d=s)(d—q—s)"""

+ ([d=s)(d—q—s)"""

d—q
/ [(d— 8)2(11—1) l1l2
0 lil3

l1lo
;3
lol3
1151
lasy
I351

1151
152

£ (d—g—s)PD

d
+ / (d— 5)20-D
d

—q

2
51
5182
5183
r 2
I
lilo

il

1133

5152
$5
S$983
lils
2
l2
l2l3

lils

lols

;3
l182 1183_
lasy  lass
1382 l3$3_
l231 1381_
l282 l382
l2$3 l383_
8183

s2s3 | |ds
s3
Ll
l2l3 ds.
3

Since the nonlinear fractional differential function f satisfy the aforementioned hypothesis, and the Gram-
mian matrices W (t) in both the cases are nonsingular. Hence by theorem (3) the system (71) is controllable
on L.

Example

We here construct a fractional order system (51) as follow,

2 -3 1
0
K=13 5 2|,f(t,y(t),"D" 'y(t)) = 1 (e [0,1].
2et 1 (1+]y(®)[+[*D¥~y(t)
5 1 7
Clearly f is continuous and for any y1,y2, 91,2 € R and ¢ € [0, 1]
o 1 o 1

[f(tyny2) = fE g1, 52)l < o (v — w2l + | — ), K= L= o

Also the Mittag-Leffler function for the given K and v = 3/2 is given by

X Kitsi

Baa(Kt*?) = ; T (ia+1)
a11(t) alg(t) alg(t)
= a21(t) a9 (t) a3 (t)
agl(t) as2 (t) ass (t)



and

[e%e) $1,34
Esjo(K*t3/?) = ; Ff(iai: 0
ar1(t) a2 (t) as(t)
= | a12(t) a2(t) asa(t)
aiz(t) ao3(t) ass(t)
Where
832 32 ¢9/2
ani(t) = ENVCARE TRV +1+..,
—43/2 —10 5, 3104 /2
ai(t) = N YT ﬁ+""
4132 1, 608 192
ai3(t) = 3V 5t - o5 V= + ey
43231 4 8032 t9/2
azl(t)zﬁ—i-g +%ﬁ+""
3/2 9/2
azz(t)zz??t\/;—l—?)t?’—f—gigt\/;—i—l—i-...,
8t3/2 9 . 8192 19/2
a23(t):§ﬁ+§ +%ﬁ+...,
asi(t) = 20 ©7 gy AT ee + ey
3 T 945 /7
41321, 3296 t9/2
agz(t):§ﬁ—§ 7%%4’...,
28 t3/2 28 . 1984 t9/?
a33(t)=§ﬁ+§ +1735ﬁ+1+....
We have
1
Q(0,1) = /0 E,(K*t")H*HE,(Kt")dt
1| ann(t) a21(t) asi(t) ai1(t) aia(t) a3(t)
= / a12(t) a22(t) as2(t) | H*H | a21(t) a2(t) a2s(t) | dt.
0 | a13(t) a23(t) ass(t) az1(t) asa(t) ass(t)

Which is positive definite for suitable H, i.e Q~1(0,1) exists. Hence by theorem (6), the system (51), is
observable.

Concluding Comments.

The present article explored the dynamical aspects & qualitative study of nonlinear fractional-order
system with input delay. We found general solution of the proposed dynamical system in the form of an
integral equation and proved controllability as well as observability for the linear case. The non-linear
problem has been transformed into a fixed-point problem and a set of necessary and sufficient conditions
for the controllability within two different domains 0 <t < ¢ and 0 > t > ¢, utilizing Schaefer’s fixed-point
theorem together with theorem of Arzela-Ascoli, have been established. We also explored the observability
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of the nonlinear case of our proposed dynamical system in the absence of control input u(t) using the Banach
contraction mapping theorem. For authentication of the method, we put an example at the end of the paper.

In the study of dynamical systems, the observability property plays and important role. In sensor
networking, it is used in the controller configuration of closed-loop feedback system as well as to reduce
the number of output sensors. Both the dynamical properties, controllability, and observability assist in
“Actuator & “Sensor selection. This further suggests that in minimum components we can get maximum
stability in the system and can observe a less noisy system. From a mathematical point of view, the Gramain
criterion is used to check the observability of a system. Observability Gramain informs us about the order. It
means that from Gramain criteria we get information from the most observable to the least observable state.
In a dynamical system, some states “p” can be easily observed given a state “q” or in certain situations,
some states possess less noise measurement as compared to other states [63, 64].
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