References
1. O. L. Petchey, et al. , The ecological forecast horizon, and examples of its uses and determinants. Ecol Lett 18 , 597–611 (2015).
2. B. A. Melbourne, A. Hastings, Highly Variable Spread Rates in Replicated Biological Invasions: Fundamental Limits to Predictability.Science 325 , 1536–1539 (2009).
3. A. Giometto, A. Rinaldo, F. Carrara, F. Altermatt, Emerging predictable features of replicated biological invasion fronts.PNAS 111 , 297–301 (2014).
4. T. A. Perkins, B. L. Phillips, M. L. Baskett, A. Hastings, Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16 , 1079–1087 (2013).
5. J. L. Williams, B. E. Kendall, J. M. Levine, Rapid evolution accelerates plant population spread in fragmented experimental landscapes. Science 353 , 482–485 (2016).
6. J. L. Williams, R. A. Hufbauer, T. E. X. Miller, How Evolution Modifies the Variability of Range Expansion. Trends in Ecology & Evolution 34 , 903–913 (2019).
7. A. Kubisch, R. D. Holt, H.-J. Poethke, E. A. Fronhofer, Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos 123 , 5–22 (2014).
8. J. Clobert, M. Baguette, T. G. Benton, J. M. Bullock, Dispersal Ecology and Evolution (Oxford University Press, 2012).
9. J. Cote, et al. , Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. ECOGRAPHY40 , 56–73 (2017).
10. C. D. Thomas, et al. , Ecological and evolutionary processes at expanding range margins. Nature 411 , 577–581 (2001).
11. C. L. Hughes, C. Dytham, J. K. Hill, Modelling and analysing evolution of dispersal in populations at expanding range boundaries.Ecological Entomology 32 , 437–445 (2007).
12. B. L. Phillips, G. P. Brown, J. M. J. Travis, R. Shine, Reid’s paradox revisited: the evolution of dispersal kernels during range expansion. Am Nat 172 Suppl 1 , S34-48 (2008).
13. R. Shine, G. P. Brown, B. L. Phillips, An evolutionary process that assembles phenotypes through space rather than through time.Proceedings of the National Academy of Sciences 108 , 5708–5711 (2011).
14. R. A. Fisher, THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES.Annals of Eugenics 7 , 355–369 (1937).
15. Kolmogorov, Petrovskii, Piskunov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. Bull. Moscow Univ. Math. Mech. 1 , 1–25 (1937).
16. D. Bonte, et al. , Costs of dispersal. Biological Reviews 87 , 290–312 (2012).
17. O. J. Burton, B. L. Phillips, J. M. J. Travis, Trade-offs and the evolution of life-histories during range expansion: Evolution during range expansion. Ecology Letters 13 , 1210–1220 (2010).
18. V. Calcagno, N. Mouquet, P. Jarne, P. David, Coexistence in a metacommunity: the competition-colonization trade-off is not dead.Ecol Lett 9 , 897–907 (2006).
19. A. Chuang, C. R. Peterson, Expanding population edges: theories, traits, and trade-offs. Glob Chang Biol 22 , 494–512 (2016).
20. B. M. Ochocki, J. B. Saltz, T. E. X. Miller, Demography-Dispersal Trait Correlations Modify the Eco-Evolutionary Dynamics of Range Expansion. The American Naturalist 195 , 231–246 (2019).
21. T. E. X. Miller, et al. , Eco-evolutionary dynamics of range expansion. Ecology 101 , e03139 (2020).
22. B. L. Phillips, G. P. Brown, J. K. Webb, R. Shine, Invasion and the evolution of speed in toads. Nature 439 , 803–803 (2006).
23. A. D. Simmons, C. D. Thomas, Changes in dispersal during species’ range expansions. Am. Nat. 164 , 378–395 (2004).
24. E. Lombaert, et al. , Rapid increase in dispersal during range expansion in the invasive ladybird Harmonia axyridis .Journal of Evolutionary Biology 27 , 508–517 (2014).
25. E. A. Fronhofer, F. Altermatt, Eco-evolutionary feedbacks during experimental range expansions. Nat Commun 6 , 6844 (2015).
26. B. M. Ochocki, T. E. X. Miller, Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat Commun8 , 1–8 (2017).
27. M. Szűcs, et al. , Rapid adaptive evolution in novel environments acts as an architect of population range expansion.PNAS 114 , 13501–13506 (2017).
28. C. Weiss-Lehman, R. A. Hufbauer, B. A. Melbourne, Rapid trait evolution drives increased speed and variance in experimental range expansions. Nat Commun 8 , 1–7 (2017).
29. K. V. Petegem, et al. , Kin competition accelerates experimental range expansion in an arthropod herbivore. Ecology Letters 21 , 225–234 (2018).
30. A. L. Angert, M. G. Bontrager, J. Ågren, What Do We Really Know About Adaptation at Range Edges? Annual Review of Ecology, Evolution, and Systematics 51 , 341–361 (2020).
31. P. Nosil, S. M. Flaxman, J. L. Feder, Z. Gompert, Increasing our ability to predict contemporary evolution. Nat Commun11 , 5592 (2020).
32. L. S. Nørgaard, et al. , An evolutionary trade‐off between parasite virulence and dispersal at experimental invasion fronts.Ecology Letters , ele.13692 (2021).
33. B. L. Phillips, G. P. Brown, R. Shine, Life-history evolution in range-shifting populations. Ecology 91 , 1617–1627 (2010).
34. R. Kassen, Experimental Evolution and the Nature of Biodiversity (Macmillan Learning, 2014).
35. B. Walsh, M. W. Blows, Abundant Genetic Variation + Strong Selection = Multivariate Genetic Constraints: A Geometric View of Adaptation.Annual Review of Ecology, Evolution, and Systematics 40 , 41–59 (2009).
36. R. D. H. Barrett, D. Schluter, Adaptation from standing genetic variation. Trends Ecol Evol 23 , 38–44 (2008).
37. M. C. Bitter, L. Kapsenberg, J.-P. Gattuso, C. A. Pfister, Standing genetic variation fuels rapid adaptation to ocean acidification.Nat Commun 10 , 5821 (2019).
38. A. Chaturvedi, et al. , Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia.Nat Commun 12 , 4306 (2021).
39. Y.-T. Lai, et al. , Standing genetic variation as the predominant source for adaptation of a songbird. Proc Natl Acad Sci U S A 116 , 2152–2157 (2019).
40. S. Matuszewski, J. Hermisson, M. Kopp, Catch Me if You Can: Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum. Genetics 200 , 1255–1274 (2015).
41. G. Zilio, et al. , Travelling with a parasite: the evolution of resistance and dispersal syndrome during experimental range expansion. bioRxiv , 2020.01.29.924498 (2020).
42. S. P. Otto, The evolutionary enigma of sex. Am Nat174 Suppl 1 , S1–S14 (2009).
43. J. Lehtonen, M. D. Jennions, H. Kokko, The many costs of sex.Trends in Ecology & Evolution 27 , 172–178 (2012).
44. R. Verdonck, D. Legrand, S. Jacob, H. Philippe, Phenotypic plasticity through disposable genetic adaptation in ciliates.Trends in Microbiology , S0966842X21001396 (2021).
45. Z. D. Blount, R. E. Lenski, J. B. Losos, Contingency and determinism in evolution: Replaying life’s tape. Science 362 , eaam5979 (2018).
46. B. Papp, R. A. Notebaart, C. Pál, Systems-biology approaches for predicting genomic evolution. Nat Rev Genet 12 , 591–602 (2011).
47. A. Duputié, F. Massol, I. Chuine, M. Kirkpatrick, O. Ronce, How do genetic correlations affect species range shifts in a changing environment? Ecology Letters 15 , 251–259 (2012).
48. R. Wichterman, The Biology of Paramecium (Springer US, 1986) https:/doi.org/10.1007/978-1-4757-0372-6 (January 29, 2020).
49. G. Zilio, et al. , Parasitism and host dispersal plasticity in an aquatic model system. J Evol Biol , jeb.13893 (2021).
50. J. Weiler, et al. , Among-Strain Variation in Resistance of Paramecium caudatum to the Endonuclear Parasite Holospora undulata: Geographic and Lineage-Specific Patterns. Front. Microbiol.11 , 603046 (2020).
51. T. Nidelet, O. Kaltz, Direct and correlated response to selection in a host-parasite system: testing for the emergence of genotype specificity. Evolution 61 , 1803–1811 (2007).
52. D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software67 , 1–48 (2015).
53. B. Rosenbaum, M. Raatz, G. Weithoff, G. F. Fussmann, U. Gaedke, Estimating Parameters From Multiple Time Series of Population Dynamics Using Bayesian Inference. Front. Ecol. Evol. 6 (2019).
54. E. A. Fronhofer, T. Kropf, F. Altermatt, Density-dependent movement and the consequences of the Allee effect in the model organismTetrahymena . Journal of Animal Ecology 84 , 712–722 (2015).
55. E. A. Fronhofer, N. Nitsche, F. Altermatt, Information use shapes the dynamics of range expansions into environmental gradients.Global Ecology and Biogeography 26 , 400–411 (2017).
56. J. Killeen, C. Gougat‐Barbera, S. Krenek, O. Kaltz, Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms. Molecular Ecology26 , 1734–1746 (2017).
57. D. Barth, S. Krenek, S. I. Fokin, T. U. Berendonk, Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome C oxidase I sequences. J Eukaryot Microbiol 53 , 20–25 (2006).
58. B. Carpenter, et al. , Stan: A Probabilistic Programming Language. Journal of Statistical Software 76 , 1–32 (2017).