References
1. O. L. Petchey, et al. , The ecological forecast horizon, and
examples of its uses and determinants. Ecol Lett 18 ,
597–611 (2015).
2. B. A. Melbourne, A. Hastings, Highly Variable Spread Rates in
Replicated Biological Invasions: Fundamental Limits to Predictability.Science 325 , 1536–1539 (2009).
3. A. Giometto, A. Rinaldo, F. Carrara, F. Altermatt, Emerging
predictable features of replicated biological invasion fronts.PNAS 111 , 297–301 (2014).
4. T. A. Perkins, B. L. Phillips, M. L. Baskett, A. Hastings, Evolution
of dispersal and life history interact to drive accelerating spread of
an invasive species. Ecol. Lett. 16 , 1079–1087 (2013).
5. J. L. Williams, B. E. Kendall, J. M. Levine, Rapid evolution
accelerates plant population spread in fragmented experimental
landscapes. Science 353 , 482–485 (2016).
6. J. L. Williams, R. A. Hufbauer, T. E. X. Miller, How Evolution
Modifies the Variability of Range Expansion. Trends in Ecology &
Evolution 34 , 903–913 (2019).
7. A. Kubisch, R. D. Holt, H.-J. Poethke, E. A. Fronhofer, Where am I
and why? Synthesizing range biology and the eco-evolutionary dynamics of
dispersal. Oikos 123 , 5–22 (2014).
8. J. Clobert, M. Baguette, T. G. Benton, J. M. Bullock, Dispersal
Ecology and Evolution (Oxford University Press, 2012).
9. J. Cote, et al. , Evolution of dispersal strategies and
dispersal syndromes in fragmented landscapes. ECOGRAPHY40 , 56–73 (2017).
10. C. D. Thomas, et al. , Ecological and evolutionary processes
at expanding range margins. Nature 411 , 577–581 (2001).
11. C. L. Hughes, C. Dytham, J. K. Hill, Modelling and analysing
evolution of dispersal in populations at expanding range boundaries.Ecological Entomology 32 , 437–445 (2007).
12. B. L. Phillips, G. P. Brown, J. M. J. Travis, R. Shine, Reid’s
paradox revisited: the evolution of dispersal kernels during range
expansion. Am Nat 172 Suppl 1 , S34-48 (2008).
13. R. Shine, G. P. Brown, B. L. Phillips, An evolutionary process that
assembles phenotypes through space rather than through time.Proceedings of the National Academy of Sciences 108 ,
5708–5711 (2011).
14. R. A. Fisher, THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES.Annals of Eugenics 7 , 355–369 (1937).
15. Kolmogorov, Petrovskii, Piskunov, A study of the diffusion equation
with increase in the amount of substance, and its application to a
biological problem. Bull. Moscow Univ. Math. Mech. 1 ,
1–25 (1937).
16. D. Bonte, et al. , Costs of dispersal. Biological
Reviews 87 , 290–312 (2012).
17. O. J. Burton, B. L. Phillips, J. M. J. Travis, Trade-offs and the
evolution of life-histories during range expansion: Evolution during
range expansion. Ecology Letters 13 , 1210–1220 (2010).
18. V. Calcagno, N. Mouquet, P. Jarne, P. David, Coexistence in a
metacommunity: the competition-colonization trade-off is not dead.Ecol Lett 9 , 897–907 (2006).
19. A. Chuang, C. R. Peterson, Expanding population edges: theories,
traits, and trade-offs. Glob Chang Biol 22 , 494–512
(2016).
20. B. M. Ochocki, J. B. Saltz, T. E. X. Miller, Demography-Dispersal
Trait Correlations Modify the Eco-Evolutionary Dynamics of Range
Expansion. The American Naturalist 195 , 231–246 (2019).
21. T. E. X. Miller, et al. , Eco-evolutionary dynamics of range
expansion. Ecology 101 , e03139 (2020).
22. B. L. Phillips, G. P. Brown, J. K. Webb, R. Shine, Invasion and the
evolution of speed in toads. Nature 439 , 803–803
(2006).
23. A. D. Simmons, C. D. Thomas, Changes in dispersal during species’
range expansions. Am. Nat. 164 , 378–395 (2004).
24. E. Lombaert, et al. , Rapid increase in dispersal during range
expansion in the invasive ladybird Harmonia axyridis .Journal of Evolutionary Biology 27 , 508–517 (2014).
25. E. A. Fronhofer, F. Altermatt, Eco-evolutionary feedbacks during
experimental range expansions. Nat Commun 6 , 6844
(2015).
26. B. M. Ochocki, T. E. X. Miller, Rapid evolution of dispersal ability
makes biological invasions faster and more variable. Nat Commun8 , 1–8 (2017).
27. M. Szűcs, et al. , Rapid adaptive evolution in novel
environments acts as an architect of population range expansion.PNAS 114 , 13501–13506 (2017).
28. C. Weiss-Lehman, R. A. Hufbauer, B. A. Melbourne, Rapid trait
evolution drives increased speed and variance in experimental range
expansions. Nat Commun 8 , 1–7 (2017).
29. K. V. Petegem, et al. , Kin competition accelerates
experimental range expansion in an arthropod herbivore. Ecology
Letters 21 , 225–234 (2018).
30. A. L. Angert, M. G. Bontrager, J. Ågren, What Do We Really Know
About Adaptation at Range Edges? Annual Review of Ecology,
Evolution, and Systematics 51 , 341–361 (2020).
31. P. Nosil, S. M. Flaxman, J. L. Feder, Z. Gompert, Increasing our
ability to predict contemporary evolution. Nat Commun11 , 5592 (2020).
32. L. S. Nørgaard, et al. , An evolutionary trade‐off between
parasite virulence and dispersal at experimental invasion fronts.Ecology Letters , ele.13692 (2021).
33. B. L. Phillips, G. P. Brown, R. Shine, Life-history evolution in
range-shifting populations. Ecology 91 , 1617–1627
(2010).
34. R. Kassen, Experimental Evolution and the Nature of
Biodiversity (Macmillan Learning, 2014).
35. B. Walsh, M. W. Blows, Abundant Genetic Variation + Strong Selection
= Multivariate Genetic Constraints: A Geometric View of Adaptation.Annual Review of Ecology, Evolution, and Systematics 40 ,
41–59 (2009).
36. R. D. H. Barrett, D. Schluter, Adaptation from standing genetic
variation. Trends Ecol Evol 23 , 38–44 (2008).
37. M. C. Bitter, L. Kapsenberg, J.-P. Gattuso, C. A. Pfister, Standing
genetic variation fuels rapid adaptation to ocean acidification.Nat Commun 10 , 5821 (2019).
38. A. Chaturvedi, et al. , Extensive standing genetic variation
from a small number of founders enables rapid adaptation in Daphnia.Nat Commun 12 , 4306 (2021).
39. Y.-T. Lai, et al. , Standing genetic variation as the
predominant source for adaptation of a songbird. Proc Natl Acad
Sci U S A 116 , 2152–2157 (2019).
40. S. Matuszewski, J. Hermisson, M. Kopp, Catch Me if You Can:
Adaptation from Standing Genetic Variation to a Moving Phenotypic
Optimum. Genetics 200 , 1255–1274 (2015).
41. G. Zilio, et al. , Travelling with a parasite: the evolution
of resistance and dispersal syndrome during experimental range
expansion. bioRxiv , 2020.01.29.924498 (2020).
42. S. P. Otto, The evolutionary enigma of sex. Am Nat174 Suppl 1 , S1–S14 (2009).
43. J. Lehtonen, M. D. Jennions, H. Kokko, The many costs of sex.Trends in Ecology & Evolution 27 , 172–178 (2012).
44. R. Verdonck, D. Legrand, S. Jacob, H. Philippe, Phenotypic
plasticity through disposable genetic adaptation in ciliates.Trends in Microbiology , S0966842X21001396 (2021).
45. Z. D. Blount, R. E. Lenski, J. B. Losos, Contingency and determinism
in evolution: Replaying life’s tape. Science 362 ,
eaam5979 (2018).
46. B. Papp, R. A. Notebaart, C. Pál, Systems-biology approaches for
predicting genomic evolution. Nat Rev Genet 12 , 591–602
(2011).
47. A. Duputié, F. Massol, I. Chuine, M. Kirkpatrick, O. Ronce, How do
genetic correlations affect species range shifts in a changing
environment? Ecology Letters 15 , 251–259 (2012).
48. R. Wichterman, The Biology of Paramecium (Springer US, 1986)
https:/doi.org/10.1007/978-1-4757-0372-6 (January 29, 2020).
49. G. Zilio, et al. , Parasitism and host dispersal plasticity in
an aquatic model system. J Evol Biol , jeb.13893 (2021).
50. J. Weiler, et al. , Among-Strain Variation in Resistance of
Paramecium caudatum to the Endonuclear Parasite Holospora undulata:
Geographic and Lineage-Specific Patterns. Front. Microbiol.11 , 603046 (2020).
51. T. Nidelet, O. Kaltz, Direct and correlated response to selection in
a host-parasite system: testing for the emergence of genotype
specificity. Evolution 61 , 1803–1811 (2007).
52. D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting Linear
Mixed-Effects Models Using lme4. Journal of Statistical Software67 , 1–48 (2015).
53. B. Rosenbaum, M. Raatz, G. Weithoff, G. F. Fussmann, U. Gaedke,
Estimating Parameters From Multiple Time Series of Population Dynamics
Using Bayesian Inference. Front. Ecol. Evol. 6 (2019).
54. E. A. Fronhofer, T. Kropf, F. Altermatt, Density-dependent movement
and the consequences of the Allee effect in the model organismTetrahymena . Journal of Animal Ecology 84 ,
712–722 (2015).
55. E. A. Fronhofer, N. Nitsche, F. Altermatt, Information use shapes
the dynamics of range expansions into environmental gradients.Global Ecology and Biogeography 26 , 400–411 (2017).
56. J. Killeen, C. Gougat‐Barbera, S. Krenek, O. Kaltz, Evolutionary
rescue and local adaptation under different rates of temperature
increase: a combined analysis of changes in phenotype expression and
genotype frequency in Paramecium microcosms. Molecular Ecology26 , 1734–1746 (2017).
57. D. Barth, S. Krenek, S. I. Fokin, T. U. Berendonk, Intraspecific
genetic variation in Paramecium revealed by mitochondrial cytochrome C
oxidase I sequences. J Eukaryot Microbiol 53 , 20–25
(2006).
58. B. Carpenter, et al. , Stan: A Probabilistic Programming
Language. Journal of Statistical Software 76 , 1–32
(2017).