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Abstract. In this paper, we considered the global regularity for the 2D incompressible

anisotropic magnetic Bénard system with fractional partial dissipation. More precisely,

we established the global existence and regularity for the 2D incompressible anisotropic

magnetic Bénard system with only vertical hyperdiffusion Λ2β
2 b1 and horizontal hyperdif-

fusion Λ2β
1 b2 and (−∆)αθ, where Λ1 and Λ2 are directional Fourier multiplier operators

with the symbols being |ξ1| and |ξ2|, respectively. We prove that, for β > 1 and 0 < α < 1,

this system always possesses a unique global-in-time classical solution when the initial

data is sufficiently smooth.
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1. Introduction and Main Results

The 2D magnetic Bénard problem with full viscosity can be stated as



∂tu+ u · ∇u+∇π = µ∆u+ b · ∇b+ θe2,

∂tb+ u · ∇b = ν∆b+ b · ∇u,

∂tθ + u · ∇θ = κ∆θ + u · e2,

∇ · u = 0, ∇ · b = 0.

(1.1)

Where u = u(x, t)∈ R2 denotes the fluid velocity, b = b(x, t)∈ R2 the magnetic field,

π(x, t) the scalar pressure and θ(x, t) is the scalar temperature. The term e2 = (0, 1)T is
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the vertical unit vector. The positive parameters µ, ν, κ are the coefficients of dissipa-

tion, magnetic diffusion and thermal diffusivity. The forcing term θe2 in the momentum

equation describes the acting of the buoyancy force on fluid motion and u · e2 models the

Rayleigh-Bénard convection in a heated inviscid fluid.

If we ignore the thermal effects in the fluid motion, i.e. θ = 0, the 2D magnetic Bénard

problem (1.1) reduces to the well-known 2D magnetohydrodynamics (MHD) equations,

∂tu+ u · ∇u+∇π = µ∆u+ b · ∇b,

∂tb+ u · ∇b = ν∆b+ b · ∇u,

∇ · u = 0, ∇ · b = 0.

(1.2)

which describes the motion of electrically conducting fluids such as plasmas, liquid metals,

and electrolytes. The global regularity issue for the 2D MHD system has attracted much

attention (see, e.g., [10, 11, 28, 45, 54, 55, 57]). Very recently, Dong-Li-Wu in [14] obtained

the global regularity for the 2D MHD equations with partial hyperresistivity. The global

regularity for the 2D MHD equations with fractional dissipation and partial magnetic

diffusion was established by Dong-Jia- Li-Wu in [13]. There have been significant recent

developments on the MHD equations with partial or fractional dissipation. One can refer

to (see, e.g, [2–4, 6, 7, 9, 15–19, 25–27, 31–33, 43, 48–53]) for details and the references

therein.

If we ignore the magnetic field, that is b = 0, the system (1.1) becomes the standard

Bénard system, which has widely used to deal with convective motions in a heated fluid

(see,e.g., [1, 8, 12, 22, 30, 37, 47]) and references therein.

If we ignore the Rayleigh-Bénard convection term u ·e2 and let b = 0, then the system

(1.1) reduces to the 2D anisotropic Boussinesq equations.

∂tu+ u · ∇u = −∇π + µ∆u+ θe2,

∂tθ + u · ∇θ = κ∆θ,

∇ · u = 0.

(1.3)

The Boussinesq equations, which model geophysical flows such as atmospheric fronts

and oceanic circulation, play an important role in the study of Raleigh-Bernard convec-

tion (see [34, 46] etc. for more details). Similar to the 2D incompressible Navier-Stokes

equations[34], one can obtain the global well-posedness for the 2D standard Boussinesq

equations . But the global regularity result is open to the 2D inviscid Boussinesq equations
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expect the thermal is zero. Recently, mathematicians began to study the 2D Boussinesq

system with fractional dissipations, please see [20, 23, 24, 38] and the references there-

in. When both b = 0 and θ = 0, the system (1.1) is reduced to the 2D incompressible

Navier-Stokes equations which have been studied intensively.

The magnetic Bénard problem as a toy model comes from the convective motions in a

heated and incompressible fluid. As we know, in a homogeneous, viscous, and electrically

conducting fluid, the convection will occur if the temperature gradient passes a certain

critical threshold in two horizontal layers and the convection is permeated by an imposed

uniform magnetic field, normal to the layers, and heated from below. The magnetic Bénard

problem illuminates the heat convection phenomenon under the presence of the magnetic

field (see [21, 36, 41] for details). The magnetic Bénard problem couples the Boussinesq,

magnetic induction and thermal convection equations, and the system includes as particu-

lar cases the Navier-Stokes and magnetohydrodynamics equations. If the gradients of the

velocity, magnetic field and temperature remain bounded in all space, and the pressure

decreases at infinity at most like |x|−
1
2 , Miao[35] established the uniqueness theorems for

the unbounded classical solution of the magnetic Bénard system. By using the Galerkin

method, the regularity and analyticity of the solutions of the magnetic Bénard problem in

Rn(n = 2, 3) were obtained by Nakamura[42]. There are more works on magnetic Bénard

problem in two dimension such as [58–60] and the reference therein.

Very recently, the global well-posedness of 2D magnetic Bénard problem without ther-

mal diffusivity and with vertical or horizontal magnetic diffusion and the global regularity

and some conditional regularity of strong solutions are obtained for 2D magnetic Bénard

problem with mixed partial viscosity were considered by Cheng-Du in[5]. Ye[58] studied

the global regularity of the 2D anisotropic magnetic Bénard system with vertical dissiption.

The global regularity of the 2D magnetic Bénard system with zero thermal conductivi-

ty obtained by Ye[59]. Yamazaki-Kazuo[56] established global regularity of generalized

magnetic Bénard problem. Ma[40] investigated the global regularity for the 2D magnetic

Bénard fluid system with mixed partial viscosity.
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In this paper, we focus on the 2D incompressible magnetic Bénard problem with only

partial fractional magnetic diffusion and thermal diffusivity as follows

∂tu+ u · ∇u = −∇π + b · ∇b+ θe2,

∂tb1 + u · ∇b1 = −νΛ2β
2 b1 + b · ∇u1,

∂tb2 + u · ∇b2 = −νΛ2β
1 b2 + b · ∇u2,

∂tθ + u · ∇θ = −κΛ2αθ + u · e2,

∇ · u = 0, ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x), θ(x, 0) = θ0(x).

(1.4)

Where u = (u1, u2) denotes the velocity field and b = (b1, b2) the magnetic feild. Here,

Λγ
i (i = 1, 2) denote the directional fractional operators defined via the Fourier transform

Λ̂γ
i f(ξ) = |ξi|γ f̂(ξ), i = 1, 2.

Where ξ = (ξ1, ξ2) and Λ = (−∆)
1
2 denotes the Zygmund operator. In addition, we use

Λs(s > 0) to denote the 2D fractional Laplace operator,

Λ̂sf(ξ) = |ξ|sf̂(ξ).

For simplicity, we take ν = κ = 1.

The purpose of this paper is to establish the global well-posedness for the system (1.4)

with any sufficiently smooth initial data (u0, b0, θ0), when β > 1 and 0 < α < 1. More

precisely, the main results of this paper states as follows

Theorem 1.1. Consider the system (1.4) with β > 1 and 0 < α < 1. Assume the initial

data (u0, b0, θ0) ∈ Hs(R2) with s ≥ 3 and ∇ · u0 = ∇ · b0 = 0. Then system (1.4) has a

unique global solution (u, b, θ) satisfying, for any T > 0,

(u, b, θ) ∈ L∞(0, T ; Hs(R2)), b ∈ L2(0, T ; Ḣs+β(R2)), θ ∈ L2(0, T ; Ḣs+α(R2)).

(1.5)

The rest of this paper is constructed as follows. In section 2, we will give some notation

and preliminaries. In section 3, we will prove our main result. The proof of Theorem 1.1

will be divided into three subsections.
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2. Notation and preliminaries

For convenience, we will give some notations before we prove our main result, which

are used throughout this paper. We denote

∥f∥Lp(R2) = ∥f∥p,
∂f

∂xi
= ∂if,∫

fdxdy =

∫∫
R2

fdxdy,

and

∥f1, f2, · · ·, fn∥2L2(R2) = ∥f1∥22 + ∥f2∥22 + · · ·+ ∥fn∥22.

Next we will give some auxiliary lemmas. First we recall the classical commutator esti-

mate(See,e.g., [29]).

Lemma 2.1. Assume that s > 0. Let 1 < r < ∞ and
1

r
=

1

p1

+
1

q 1

=
1

p2

+
1

q 2

with

q1, p2 ∈ (1,∞) and p1, q2 ∈ [1,∞]. Then,

∥[Λs, f ]g∥Lr ≤ C(∥∇f∥Lp1∥Λs−1g∥Lq1 + ∥Λsf∥Lp2∥g∥Lq2 ). (2.1)

Where C is a constant depending on the indices s, r, p1, q1, p2 and q2.

The next lemma is very useful to establish the global bound of ∥∇b∥Lp .

Lemma 2.2. Assume that β > 0, t > 0. Considering the following equations,
∂tu+ (−∆)βu = f,

u(x, 0) = u0(x).

(2.2)

Then the solution of it can be expressed as

u(x, t) = Kβ(·, t) ∗ u0 +

∫ t

0
Kβ(·, t− τ) ∗ f(·, τ)dτ.

Where the kernel function is defined via the Fourier transform

Kβ(x, t) =

∫
Rn

e−t|ξ|2βeix·ξdξ,

and Kβ(x, t) satisfies the following properties:

(i)For any t > 0,

Kβ(x, t) = t
− n

2βKβ(xt
− 1

2β , 1).

(ii)For any integer m > 0, 1 ≤ r ≤ ∞ and any t > 0,

∥∇mKβ(x, t)∥Lr(Rn) ≤ Ct
− m

2β
− n

2β
(1− 1

r
)
.
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In particular, when β = 1, K1(x, t) is the classical heat equation kernel. One can refer

to [39] for the proof. We omit it here.

The following Hörmander-Mikhlin multiplier lemma plays an important role in esti-

mating the global bound of the current density(see,e.g.,[44]).

Lemma 2.3. Let h be a bounded function on Rn which is smooth except at the origin. Let

k be a multi-index. Such that

|∇kh(ξ)| ≤ C|ξ|−|k|, 0 ≤ |k| ≤ n

2
+ 1. (2.3)

Then h is a Lp multiplier for all 1 < p < ∞, or the operator Th defined by

T̂hf = hf̂ , f ∈ L2 ∩ Lp,

is bounded from L2 ∩ Lp to L2 ∩ Lp.

3. Global regularity for the 2D incompressible magnetic Bénard problem

In this section, we will prove Theorem 1.1. The Theorem 1.1 is proved through three

stages. The first step is to establish the H1-estimate, which relies on the equations of

the vorticity ω = ∇ × u and the current density j = ∇ × b. Second we will prove the

global bound of ∥∇b∥L∞
t Lp , ∥∆b∥L1

tL
p , ∥ω∥L∞

t Lp and ∥∇θ∥L∞
t Lp with any 2 < p < ∞.

Finally, we will achieve the global bounds of ∥∆j∥L1
tL

∞ , ∥ω∥L∞
t L∞ and ∥∇θ∥L∞

t L∞ , and

then complete the proof of Theorem1.1.

Step1. Global H1 bound for (u, b, θ).

Proposition 3.1. Assume that (u0, b0, θ0) satisfies the conditions stated in Theorem1.1.

Then system (1.4) has a global solution (u, b, θ) obeys the following bounds uniformly,

for any t > 0,

∥u, b, θ∥22 +
∫ t

0
∥Λβ

2 b1, Λβ
1 b2, Λαθ∥22 dt ≤ C(∥u0, b0, θ0∥22)

∥ω, j, ∇θ∥22 +
∫ t

0
∥Λβ

2∇b1, Λβ
1∇b2, Λα+1θ∥22 dt ≤ C(∥u0, b0, θ0∥2H1),

(3.1)

where C > 0 is a constant, depending on t and the initial data.

Proof. Multiplying the equations (1.4)1∼4 by u, b1, b2 and θ, respectively and taking

the L2 inner product, integrating by parts, using the divergence-free conditions ∇ · u = 0

and ∇ · b = 0, adding the resulting equations together, yield that

1

2

d

dt
∥u, b, θ∥22 + ∥Λβ

2 b1, Λβ
1 b2, Λαθ∥22 = 2

∫
u2θ dxdy ≤ C∥u, θ∥22. (3.2)

Where we have used the fact that∫
b · ∇b · u dxdy +

∫
b · ∇u · b dxdy = 0.
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Applying the Gronwall’s inequality, we obtain the L2 bound for u, b, θ as follow

∥u, b, θ∥22 +
∫ t

0
∥Λβ

2 b1, Λβ
1 b2, Λαθ∥22 dt ≤ C(∥u0, b0, θ0∥22).

To establish the global H1 bound, we consider the equation of the vorticity ω = ∇×u

and the current density j = ∇× b, combining the equation (1.4)4, which satisfy

∂tω + u · ∇ω = b · ∇j + ∂1θ,

∂tj + u · ∇j + Λ2β
1 ∂1b2 − Λ2β

2 ∂2b1 = b · ∇ω +Q(u, b),

∂tθ + u · ∇θ = −Λ2αθ + u2.

(3.3)

Where

Q(u, b) = 2∂1b1(∂1u2 + ∂2u1)− 2∂1u1(∂1b2 + ∂2b1).

Dotting the equations (3.3)1∼3 with ω, j and Λ2θ, respectively and integrating by parts

yield

1

2

d

dt
∥ω, j, Λθ∥22 + ∥Λβ

2∇b1, Λβ
1∇b2, Λα+1θ∥22 =

∫
∂1θω dxdy +

∫
u2Λ

2θ dxdy

−
∫

[Λ, u · ∇]θΛθ dxdy +

∫
Q(u, b)j dxdy

= I1 + I2 + I3 + I4.

(3.4)

Where we have used the fact∫
b · ∇j · ω dxdy +

∫
b · ∇ω · j dxdy = 0.

Using Hölder’s and Young’s inequality, the term I1 can be bounded as

I1 =

∫
∂1θω dxdy ≤ ∥ω, Λθ∥22,

similarly,

I2 =

∫
u2Λ

2θ dxdy ≤ ∥ω, Λθ∥22.

Applying Hölder’s, Young’s and Gagliardo-Nirenberg inequalities, we can estimate the

term I3 as follow

I3 =−
∫

[Λ, u · ∇]θΛθ dxdy ≤
∫

|∇u||Λθ|2 dxdy ≤ ∥∇u∥2∥Λθ∥24

≤ ε∥Λα+1θ∥22 + Cε∥ω, Λθ∥22 + Cε∥θ∥22.

Now we will estimate the term I4, we rewrite it as

I4 = 2

∫
∂1b1(∂1u2 + ∂2u1)j dxdy − 2

∫
∂1u1(∂1b2 + ∂2b1)j dxdy = I41 + I42.
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Applying Hölder’s, Young’s and Gagliardo-Nirenberg inequalities, we can find that

I41 =2

∫
∂1b1(∂1u2 + ∂2u1)j dxdy ≤ C∥ω∥2∥j∥24 ≤ ε∥∇j∥22 + Cε∥j∥22∥ω∥22,

furthermore,

∥j∥22 ≤ C∥∂1b2, ∂2b1∥22 ≤ C(β)∥b, Λβ
2 b1, Λβ

1 b2∥
2
2.

And

∥∇j∥22 ≤ C∥∂1j, ∂2j∥22 ≤ Cε∥j∥22 + ε∥Λβ
2∇b1, Λβ

1∇b2∥22.

Combining the above two estimates with I41, we infer that

I41 ≤ ε∥Λβ
2∇b1, Λβ

1∇b2∥22 + Cε∥b, Λβ
2 b1, Λβ

1 b2∥
2
2(1 + ∥ω∥22). (3.5)

Similarly,

I42 ≤ ε∥Λβ
2∇b1, Λβ

1∇b2∥22 + Cε∥b, Λβ
2 b1, Λβ

1 b2∥
2
2(1 + ∥ω∥22). (3.6)

Inserting the estimates of I1 ∼ I3 and (3.5) ∼ (3.6), choosing ε small enough, we obtain

1

2

d

dt
∥ω, j, Λθ∥22 + ∥Λβ

2∇b1, Λβ
1∇b2, Λα+1θ∥22 ≤ Cε∥b, Λβ

2 b1, Λβ
1 b2, θ∥22(1+ ∥ω, j, Λθ∥22).

Applying the Gronwall’s inequality leads to

∥ω, j, ∇θ∥22 +
∫ t

0
∥Λβ

2∇b1, Λβ
1∇b2, Λα+1θ∥22 dt ≤ C(∥u0, b0, θ0∥2H1).

In addition, according the above inequality, one can easily check that∫ t

0
∥∇θ∥∞ dt ≤

∫ t

0
∥θ, Λα+1θ∥22 dt ≤ C. (3.7)

Where C is a constant depending on t and the initial data.

Step2. Global bound for ∥∇b∥L∞
t Lp , ∥∆b∥L1

tL
p , ∥ω∥L∞

t Lp and ∥∇θ∥L∞
t Lp with any

2 < p < ∞.

In this section, we will establish global bound of ∥∇b∥L∞
t Lp , ∥∆b∥L1

tL
p , ∥ω∥L∞

t Lp and

∥∇θ∥L∞
t Lp with any 2 < p < ∞. The integral form of b1 and b1 will be used to establish

some a priori estimates. The process of this section is more complex.

Proposition 3.2. Assume that (u0, b0, θ0) satisfies the conditions stated in Theorem1.1.

Then system (1.4) has a global solution (u, b, θ) obeys the following bounds, for any T > 0,

∇b ∈ L∞(0, T ; Lp(R2)), b ∈ L∞(0, T ; L∞(R2)),

θ ∈ L∞(0, T ; L∞(R2)), ∇θ ∈ L∞(0, T ; Lp(R2)),

ω ∈ L∞(0, T ; Lp(R2)),∇j ∈ L1(0, T ; Lp(R2)).

(3.8)
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Where 2 < p < ∞.

Proof. To show this proposition, we will make full use of the special structure of the

nonlinear terms in the equation of b, which was previously considered in [13], we give

details for the completeness. We write the equations of b1 and b2 in the integral form

b1 = K2
β(t) ∗2 b01 +

∫ t

0
K2

β(t− τ) ∗2 (b · ∇u1 − u · ∇b1) dτ,
(3.9)

b2 = K1
β(t) ∗1 b02 +

∫ t

0
K1

β(t− τ) ∗1 (b · ∇u2 − u · ∇b2) dτ,
(3.10)

where K2
β and K1

β denote the 1D inverse Fourier transform of e−|ξ2|2βt and e−|ξ1|2βt ,

respectively, namely

K2
β(x2, t) =

∫
R
eix2ξ2e−|ξ2|2βt dξ2, K1

β(x1, t) =

∫
R
eix1ξ1e−|ξ1|2βt dξ1,

and the convolution notations are defined as follow

K2
β(t) ∗2 b01 =

∫
R
K2

β(x2 − y2, t)b01(x1, y2) dy2,

K1
β(t) ∗1 b02 =

∫
R
K1

β(x1 − y1, t)b01(y1, x2) dy1.

If we know the bound of ∥∂2b1∥p and ∥∂1b2∥p, by divergence free condition ∇ · b = 0,

one can be easily to obtain the estimate for ∥∇b∥p. Due to the divergence free conditions

∇ · u = 0 and ∇ · b = 0, we find that

b · ∇u1 − u · ∇b1 = ∂1(b1u1) + ∂2(b2u1)− ∂1(b1u1)− ∂2(u2b1) = ∂2(b2u1 − u2b1),

(3.11)

similarly,

b · ∇u2 − u · ∇b2 = ∂1(b1u2 − b2u1).
(3.12)

By virtues of (3.9) and (3.11), one has

∂2b1 = ∂2(K
2
β(t) ∗2 b01) +

∫ t

0
∂22K

2
β(t− τ) ∗2 (b2u1 − u2b1)(τ) dτ,

and then taking the Lp norm with respect to x each side, we obtain

∥∂2b1∥p ≤ ∥K2
β(t)∥1∥∂2b01∥p +

∫ t

0
∥∂22K2

β(t− τ)∥L1
x2
∥(b2u1 − u2b1)(τ)∥p dτ. (3.13)

According to lemma2.2, we have

∥∂22K2
β(t− τ)∥L1

x2
≤ C(t− τ)

− 1
β . (3.14)
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Where C is a constant depending only on β. Thanks to the Hölder’s inequality and

Sobolev’s inequality, we deduce

∥(b2u1 − u2b1)(τ)∥p ≤ C∥u∥2p∥b∥2p ≤ C(∥u∥2 + ∥ω∥2)(∥b∥2 + ∥j∥2). (3.15)

Furthermore, inserting the estimates (3.14) and (3.15) into (3.13) yields

∥∂2b1∥p ≤ C∥∂2b01∥p + Ct
1− 1

β (∥u∥L∞
t L2 + ∥ω∥L∞

t L2)(∥b∥L∞
t L2 + ∥j∥L∞

t L2)

≤ Ct
1− 1

β + C.

(3.16)

Similarly,

∥∂1b2∥p ≤ Ct
1− 1

β + C. (3.17)

Consequently, one has

∥∇b∥p ≤ C(∥∂2b1∥p + ∥∂1b2∥p) ≤ Ct
1− 1

β + C. (3.18)

Furthermore, thanks to the Sobolev’s inequality, we infer that,

∥b∥∞ ≤ C(∥b∥2 + ∥∇b∥p) ≤ Ct
1− 1

β + C, (3.19)

for any p > 2. In addition, one can easily check that

∥j∥p ≤ ∥∇b∥p ≤ C(∥∂2b1∥p + ∥∂1b2∥p) ≤ Ct
1− 1

β + C.

Next we will establish the bound for ∥θ∥L∞
t L∞ . Multiplying the equation (1.4)4 by |θ|p−2θ

and integrating over R2, we obtain

1

p

d

dt
∥θ∥pp +

∫
Λ2αθ|θ|p−2θ dxdy =

∫
u2|θ|p−2θ dxdy ≤ C∥u2∥p∥θ∥p−1

p ≤ C(∥u∥2 + ∥ω∥2)∥θ∥p−1
p .

(3.20)

One can refer to [dong-wu-xu-ye8] to find∫
Λ2αθ|θ|p−2θ dxdy > 0.

Applying the Gronwall’s inequality, we obtain

∥θ∥p ≤ C(t,u0,b0, θ0).

Taking the limit as p → ∞ yields

∥θ∥∞ ≤ C(t,u0,b0, θ0).
(3.21)
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Applying the operator ∇ to both sides of the equation (3.3)3, taking the inner product

with the resulting equating by |∇θ|p−2∇θ and multiplying the equation (3.3)1 by |ω|p−2ω,

integrating over R2 and adding them together, we obtain

1

p

d

dt
∥ω, ∇θ∥pp +

∫
Λ2α∇θ|∇θ|p−2∇θ dxdy

=

∫
∇u2|∇θ|p−2∇θ dxdy +

∫
∇(u · ∇θ)|∇θ|p−2∇θ dxdy

+

∫
b · ∇j|ω|p−2ω dxdy +

∫
∂1θ|ω|p−2ω dxdy

= J1 + J2 + J3 + J4.

(3.22)

Employing the Hölder’s inequality, the term J1 can be bounded as

J1 =

∫
∇u2|∇θ|p−2∇θ dxdy ≤ C∥∇u2∥p∥∇θ∥p−1

p .

Integrating by parts, the term J2 can be bounded as

J2 =

∫
∇(u · ∇θ)|∇θ|p−2∇θ dxdy =

∫
∂k(ui∂iθ)|∇θ|p−2∂kθ dxdy

=

∫
∂kui∂iθ|∇θ|p−2∂kθ dxdy +

∫
ui∂ikθ|∇θ|p−2∂kθ dxdy

=

∫
∂kui∂iθ|∇θ|p−2∂kθ dxdy

≤ ∥∇θ∥∞∥∇u∥p∥∇θ∥p−1
p .

According the estimate (3.19), we find that

J3 =

∫
b · ∇j|ω|p−2ω dxdy ≤ C∥b∥L∞

x,t
∥∇j∥p∥ω∥p−1

p .

Similar as J1, one can easily check that

J4 =

∫
∂1θ|ω|p−2ω dxdy ≤ C∥∂1θ∥p∥ω∥p−1

p .

Combining the estimate for J1, J2, J3 and J4 with (3.7) and (3.22) , we have

d

dt
∥ω, ∇θ∥p ≤ C∥∇j∥p + C∥ω, ∇θ∥p, (3.23)

where we have used the fact ∫
Λ2α∇θ|∇θ|p−2∇θ dxdy > 0.

If

∫ t

0
∥∇j(τ)∥p dτ > 0, the Gronwall’s inequality implies the desired estimate. Next we will

establish the global bound for ∥∇j(τ)∥L1
tL

p . We are first to estimate ∥∂22b1∥p. Applying
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the operator ∂22 to both sides of the equation (3.9) leads to

∂22b1 = ∂22K
2
β(t) ∗2 b01 +

∫ t

0
∂22K

2
β(t− τ) ∗2 (b · ∇u1 − u · b1) dτ.

Similar as we handled for ∥∂2b1∥p, taking the Lp-norm each side, we find that

∥∂22b1∥p = ∥∂22K2
β(t) ∗2 b01∥p +

∫ t

0
∥∂22K2

β(t− τ)∥L1
x2
∥(b · ∇u1 − u · b1)∥p dτ.

Thanks to the Hölder’s and Sobolev’s inequalities, we have

∥(b · ∇u1 − u · ∇b1)∥p ≤ ∥b∥∞∥ω∥p + ∥u∥2p∥∇b1∥2p ≤ C∥ω∥p + C∥u, ω∥2∥j, ∇j∥2.

By lemma2.2 and invoking (3.14), we deduce that

∥∂22b1∥L1
tL

p = ∥∂22K2
β(t) ∗2 b01∥L1

tL
p + Ct

1− 1
β (∥ω∥L1

tL
p + 1).

Thanks to the Young’s inequality for convolution, on has

∥∂22K2
β(t) ∗2 b01∥L1

tL
p ≤ ∥∂22K2

β(t)∥L1
tL

1
x2
∥b01∥p ≤ Ct

1− 1
β ∥b01∥p.

Furthermore,

∥∂22b1∥L1
tL

p ≤ Ct
1− 1

β (∥b01∥p + ∥ω∥L1
tL

p + 1). (3.24)

Similarly, applying the operator ∂11 to both sides of the equation (3.10), one can easily

check that

∥∂11b2∥L1
tL

p ≤ Ct
1− 1

β (∥b02∥p + ∥ω∥L1
tL

p + 1). (3.25)

Using the similar methods to ∂22b1, we can infer that

∥∂12b1∥L1
tL

p = ∥∂2K2
β(t)∥L1

tL
1
x
∥∂1b01∥p + ∥∂22K2

β(t− τ)∥L1
tL

1
x2
∥∂1(b2u1 − u2b1)∥L1

tL
p

≤ Ct
1− 1

2β ∥∂1b01∥p + Ct
1− 1

β (∥ω∥L1
tL

p + 1).

(3.26)

Similarly,

∥∂12b2∥L1
tL

p ≤ Ct
1− 1

2β ∥∂2b02∥p + Ct
1− 1

β (∥ω∥L1
tL

p + 1). (3.27)

According to (3.24) ∼ (3.27) and the divergence free condition ∇ · b = 0, we obtain

∥∇j∥L1
tL

p ≤ ∥∂22b1∥L1
tL

p + ∥∂11b2∥L1
tL

p + ∥∂12b1∥L1
tL

p + ∥∂12b2∥L1
tL

p

≤ Ct
1− 1

2β + Ct
1− 1

β (∥ω∥L1
tL

p + 1).

(3.28)

Which together with (3.23) and the Gronwall’s inequality implies that

∥ω, ∇θ∥p ≤ C

∫ t

0
∥∇j∥p dτ + C. (3.29)
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Step3. Global bound for ∥∇j∥L1
tL

∞ , ∥ω∥L∞
x,t

and ∥∇θ∥L∞
x,t

and the proof of Theorem1.1.

In this section, we will prove the crucial global bound for ∥ω∥L∞
x,t
, which make sure the

global bound of ∥u, b, θ∥Hs .

Proposition 3.3. Assume that (u0, b0, θ0) satisfies the conditions stated in Theorem1.1.

Then system (1.4) has a global solution (u, b, θ) obeys the following bounds, for any T > 0,

∇j ∈ L1(0, T ; L∞(R2)), ω ∈ L∞(0, T ; L∞(R2)),∇θ ∈ L∞(0, T ; L∞(R2)).

(3.30)

Proof. We will use the special structure of the nonlinear terms in the equation of

b and the Hörmander-Mikhlin multiplier theorem to prove this proposition, which was

previously used in [13], for the completeness, we give the proof as follows.

We first to estimate ∥∇j∥L1
tL

∞ . Thanks to the embedding inequality, for any σ >

0, p >
2

σ
, we have

∥∇j∥∞ ≤ C(∥∇j∥2 + ∥Λσ∇j∥p). (3.31)

Therefore, it suffices to prove that for σ > 0,

∥Λσ∇j∥L1
tL

p < ∞.

We are first to show ∥Λσ
2∂22b1∥L1

tL
p < ∞. Applying the operator Λσ

2∂22 to the integral

form of b1, taking L1
tL

p
x-norm, and using Young’s inequality for convolution, we find that

∥Λσ
2∂22b1∥L1

tL
p
x
≤ ∥Λσ

2∂22K
2
β(t)∥L1

tL
1
x
∥b01∥p + ∥Λσ

2∂22K
2
β(t)∥L1

tL
1
x
∥b · ∇u1 − u · ∇b1∥L1

tL
p
x
.

By lemma2.2, one has

∥Λσ
2∂22K

2
β(t)∥L1

x
≤ Ct

−σ+2
2β ,

furthermore, for 0 < σ < 2(β − 1), we have

∥Λσ
2∂22K

2
β(t)∥L1

tL
1
x
≤ Ct

1−σ+2
2β .

Employing Hölder’s and Sobolev’s inequalities, we infer that

∥b · ∇u1 − u · ∇b1∥L1
tL

p
x
≤ ∥b∥L∞

x,t
∥ω∥L1

tL
p
x
+ ∥u∥

L∞
t L2p

x
∥j∥

L1
tL

2p
x

≤ C∥ω∥L1
tL

p
x
+ C(∥u∥L∞

t L2 + ∥ω∥L∞
t L2)(∥j∥L1

tL
2 + ∥∇j∥L1

tL
2)

≤ C.

Combining the above inequalities, we obtain

∥Λσ
2∂22b1∥L1

tL
p
x
≤ Ct

1−σ+2
2β . (3.32)
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Similarly,

∥Λσ
1∂11b2∥L1

tL
p
x

≤ ∥Λσ
1∂11K

1
β(t)∥L1

tL
1
x
∥b02∥p + ∥Λσ

1∂11K
1
β(t)∥L1

tL
1
x
∥b · ∇u2 − u · ∇b2∥L1

tL
p
x

≤ Ct
1−σ+2

2β .

(3.33)

Next we will estimate the term ∥Λσ
2∂12b1∥L1

tL
p
x
. Using the similar methods to ∥Λσ

2∂22b1∥L1
tL

p
x
,

we find that

∥Λσ
2∂12b1∥L1

tL
p
x

≤ ∥Λσ
2∂2K

2
β(t)∥L1

tL
1
x
∥∂1b01∥p + ∥Λσ

2∂22K
2
β(t)∥L1

tL
1
x
∥∂1(b2u1 − u2b1)∥L1

tL
p
x

≤ Ct
1−σ+1

2β + Ct
1−σ+2

2β .

(3.34)

According to the special structure of the nonlinear terms in the equation of b, one has

∥Λσ
1∂12b2∥L1

tL
p
x

≤ ∥Λσ
1∂1K

1
β(t)∥L1

tL
1
x
∥∂2b02∥p + ∥Λσ

1∂11K
2
β(t)∥L1

tL
1
x
∥∂2(b1u2 − u1b2)∥L1

tL
p
x

≤ Ct
1−σ+1

2β + Ct
1−σ+2

2β .

(3.35)

Next we will bound the difficult terms ∥Λσ
1∂12b1∥L1

tL
p
x
, ∥Λσ

1∂22b1∥L1
tL

p
x
, ∥Λσ

2∂12b2∥L1
tL

p
x

and ∥Λσ
2∂11b2∥L1

tL
p
x
. These terms can not be handled as the above estimates. Taking

∥Λσ
1∂22b1∥L1

tL
p
x
for example, when we apply the operator Λσ

1∂22 to the integral form of b1,

Λσ
1 has to be applied to b · ∇u1 −u · ∇b1. However, we have no bound for Λσ

1∇u1. Fortu-

nately, we can resort to the Hörmander- Mikhlin multiplier theorem stated in Lemma2.3.

We can define it as

T̂hf(ξ) = h(ξ)f̂(ξ), h(ξ) =
|ξ1|σ|ξ2|2

|ξ21 |1+
σ
2 + |ξ22 |1+

σ
2

.

One can easily check that h(ξ) satisfies the conditions stated in lemma2.3. Then we can

handle the term ∥Λσ
1∂22b1∥p as

∥Λσ
1∂22b1∥p = ∥ThΛ

σ
2∂22b1 + ThΛ

σ
1∂12b2∥p ≤ C(∥Λσ

2∂22b1∥p + ∥Λσ
1∂12b2∥p).

Combining the global bounds (3.32) and (3.35), we obtain

∥Λσ
1∂22b1∥L1

tL
p
x
≤ C(∥Λσ

2∂22b1∥L1
tL

p
x
+ ∥Λσ

1∂12b2∥L1
tL

p
x
) ≤ Ct

1−σ+1
2β + Ct

1−σ+2
2β . (3.36)

Using the similar method to ∥Λσ
1∂22b1∥p, and according to (3.33) and (3.34), one can easily

check that

∥Λσ
2∂11b2∥L1

tL
p
x
≤ C(∥Λσ

1∂11b2∥L1
tL

p
x
+ ∥Λσ

2∂12b1∥L1
tL

p
x
) ≤ Ct

1−σ+1
2β + Ct

1−σ+2
2β . (3.37)
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Due to the divergence free condition ∇ · b = 0, in a same manner as ∥Λσ
1∂22b1∥p, we have

∥Λσ
2∂12b2∥L1

tL
p
x
≤ C(∥Λσ

1∂12b2∥L1
tL

p
x
+ ∥Λσ

2∂22b1∥L1
tL

p
x
) ≤ Ct

1−σ+1
2β + Ct

1−σ+2
2β . (3.38)

Similarly,

∥Λσ
1∂12b1∥L1

tL
p
x
≤ Ct

1−σ+1
2β + Ct

1−σ+2
2β . (3.39)

Combining the estimates of (3.32) ∼ (3.39), we obtain

∥∇j∥L1
tL

∞
x

≤ C(∥∇j∥L1
tL

2
x
+ ∥Λσ∇j∥L1

tL
p
x
) < ∞.

Furthermore, taking the limit as p → ∞ in (3.29), one has

∥ω, ∇θ∥∞ ≤ C

∫ t

0
∥∇j∥∞ dτ + C < C. (3.40)

Where C is a constant depending on t and the initial data. Finally, we will prove the

Theorem1.1. Applying the operator Λs to the equations of (1.4), dotting the resulting

equations with Λsu, Λsb1, Λ
sb2 and Λsθ respectively and taking the L2 inner product, we

obtain

1

2

d

dt
∥Λsu, Λsb, Λsθ∥22 + ∥ΛsΛβ

2∇b1, ΛsΛβ
1∇b2, Λs+αθ∥22

= −
∫

[Λs,u · ∇]uΛsu dxdy +

∫
Λs(b · ∇b)Λsu dxdy +

∫
ΛsθΛs

2u dxdy

−
∫

[Λs, u · ∇]b1Λ
sb1 dxdy +

∫
Λs(b · ∇u)Λsb dxdy −

∫
[Λs, u · ∇]b2Λ

sb2 dxdy

−
∫

[Λs, u · ∇]θΛsθ dxdy +

∫
Λsu2Λ

s
2θ dxdy

=

8∑
i=1

Li.

(3.41)

To start with L1, thanks to the lemma2.1, we find that

L1 = −
∫

[Λs,u · ∇]uΛsu dxdy ≤ C∥∇u∥∞∥Λsu∥22 ≤ C∥ω∥∞∥Λsu∥22.

Due to the divergence free conditions ∇ · u = ∇ · b = 0, employing lemma2.1, we can

estimate the terms L2 and L5 together as

L2 + L5 =

∫
Λs(b · ∇b)Λsu dxdy +

∫
Λs(b · ∇u)Λsb dxdy

=

∫
[Λs, b · ∇]bΛsu dxdy +

∫
[Λs, b · ∇]uΛsb dxdy

≤ C∥∇b∥∞∥Λsb∥2∥Λsu∥2 + C(∥∇b∥∞∥Λsu∥2 + ∥∇u∥∞∥Λsb∥2)∥Λsb∥2

≤ C(1 + ∥ω∥∞)∥Λsu, Λsb∥22.
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Applying lemma2.1, we infer that

L4 = −
∫

[Λs, u · ∇]b1Λ
sb1 dxdy

≤ C(∥∇u∥∞∥Λsb1∥2 + ∥∇b1∥∞∥Λsu∥2)∥Λsb1∥2

≤ C(1 + ∥ω∥∞)∥Λsu, Λsb∥22.

Similarly,

L6 = −
∫

[Λs, u · ∇]b2Λ
sb2 dxdy

≤ C(∥∇u∥∞∥Λsb2∥2 + ∥∇b2∥∞∥Λsu∥2)∥Λsb2∥2

≤ C(1 + ∥ω∥∞)∥Λsu, Λsb∥22.

And

L7 = −
∫

[Λs, u · ∇]θΛsθ dxdy

≤ C(∥∇u∥∞∥Λsθ∥2 + ∥∇θ∥∞∥Λsu∥2)∥Λsθ∥2

≤ C(1 + ∥ω∥∞)∥Λsu, Λsθ∥22.

Using Hölder’s inequality, the terms L3 and L8 can be bounded as

L3 =

∫
ΛsθΛs

2u dxdy ≤ C∥Λsu, Λsθ∥22,

and

L3 =

∫
Λsu2Λ

s
2θ dxdy ≤ C∥Λsu, Λsθ∥22.

Inserting the estimates of L1 ∼ L8 into (3.41), combining the proposition3.1, proposi-

tion3.2 and proposition3.3 with the Gronwall’s inequality, we obtain, for any T > 0,

∥Λsu, Λsb, Λsθ∥22 +
∫ T

0
∥ΛsΛβ

2∇b1, ΛsΛβ
1∇b2, Λs+αθ∥22 dt ≤ C. (3.42)

Where C is a constant depending on t and the initial data.

In addition, we infer that

∥Λs+βb∥2 ≤ ∥Λs+β
1 b∥2 + ∥Λs+β

2 b∥2

≤ ∥Λs+β
1 b1∥2 + ∥Λs+β

1 b2∥2 + ∥Λs+β
2 b1∥2 + ∥Λs+β

2 b2∥2

(3.43)
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Due to the estimates (3.1) and (3.42) and the divergence free condition ∇ ·b = 0, we find

that

∥Λs+β
1 b1∥22 = ∥Λs−1

1 ∂2Λ
β
1 b2∥

2
2 ≤ ∥Λs

1Λ
β
1 b2∥

2
2 + ∥Λs

2Λ
β
1 b2∥

2
2

≤ C∥ΛsΛβ
1 b2∥

2
2 ≤ C∥Λβ

1 b2, Λs+1Λβ
1 b2∥

2
2

≤ C∥Λβ
1 b2, ΛsΛβ

1∇b2∥22.

Similarly,

∥Λs+β
1 b2∥22 ≤ ∥ΛsΛβ

1 b2∥
2
2 ≤ C∥Λβ

1 b2, Λs+1Λβ
1 b2∥

2
2 ≤ C∥Λβ

1 b2, ΛsΛβ
1∇b2∥22,

and

∥Λs+β
2 b1∥22 ≤ ∥ΛsΛβ

2 b1∥
2
2 ≤ C∥Λβ

2 b1, ΛsΛβ
2∇b1∥22.

Applying the similar method to handle ∥Λs+β
1 b1∥22, we have

∥Λs+β
2 b2∥22 = ∥Λs−1

2 ∂1Λ
β
2 b1∥

2
2 ≤ ∥Λs

2Λ
β
2 b1∥

2
2 + ∥Λs

1Λ
β
2 b1∥

2
2

≤ C∥ΛsΛβ
2 b1∥

2
2 ≤ C∥Λβ

2 b1, Λs+1Λβ
2 b1∥

2
2

≤ C∥Λβ
2 b1, ΛsΛβ

2∇b1∥22.

Inserting the above four estimates into (3.43), we obtain∫ T

0
∥Λs+βb∥2 dt ≤ C

∫ T

0
∥ΛsΛβ

2∇b1, ΛsΛβ
1∇b2∥22 dt+ C ≤ C.

Where C is a constant depending on t and the initial data. Which together with (3.42),

we complete the proof of Theorem1.1.
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[25] Q. Jiu, D. Niu, Mathematical results related to a two-dimensional magnetohydrody-

namic equations. Acta Math. Sci. Ser. B Engl. Ed., 26, 744-756, (2006).

[26] Q. Jiu, D. Niu, J. Wu, X. Xu, H. Yu, The 2D magnetohydrodynamic equations with

magnetic diffusion. Nonlinearity, 28, 3935-3955, (2015).

[27] Q. Jiu, J. Zhao, A remark on global regularity of 2D generalized magnetohydrody-

namic equations. J. Math. Anal. Appl., 412, 478-484, (2014).

[28] Q. Jiu, J. Zhao, Global regularity of 2D generalized MHD equations with magnetic

diffusion. Z. Angew. Math. Phys., 66(3), 677-689, (2015).

[29] T. Kato, G. Ponce, Commutator estimates and the Euler and the Navier-Stokes

equations. Comm. Pure Appl. Math., 41, 891-907, (1988).

[30] A. Kapustyan, A.V. Pankov, J. Valero, On global attractors of multivalued semiflows

generated by the 3D Bénard system. Set-Valued Var. Anal. , 20, 445-465, (2012).

[31] F. Lin, L. Xu, P. Zhang, Global small solutions to an MHD-type system: the three-

dimensional case. Comm. Pure Appl. Math., 67, 531-580, (2014).

[32] F. Lin, L. Xu, P. Zhang, Global small solutions to 2D incompressible MHD system.

J. Differential Equations, 259, 5440-5485, (2015).

[33] Z. Lei, Y. Zhou, BKM’s criterion and global weak solutions for magnetohydrodynam-

ics with zero viscosity. Discrete Contin. Dyn. Syst., 25, 575-583, (2009).

[34] A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, in: Cambridge Texts

in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, (2002).

[35] C. Miao, On the uniqueness theorems for the unbounded classical solution of the

magnetic Bénard system. Systems Sci. Math. Sci., 13, 277-284, (2000).

[36] G. Mulone, S. Rionero, Necessary and sufficient conditions for nonlinear stability in

the magnetic Bénard problem. Arch. Ration. Mech. Anal., 166, 197-218, (2003).

[37] T. Ma, S. Wang, Rayleigh-Bénard convection: dynamics and structure in the physical

space. Commun. Math. Sci. , 5, (2007).

[38] C. Miao, X. Zheng, On the global well-posedness for the Boussinesq system with

horizontal dissipation. Comm. Math. Phys., 321(1), 33-67, (2013).

[39] C. Miao, B.Q. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the frac-

tional power dissipative equations. Nonlinear Anal., 68(3), 461-484, (2008).

[40] L. Ma, Global regularity for the 2D magnetic Bénard fluid system with mixed partial

viscosity. Comput. Math. Appl., 76, 2148-2166, (2018).

[41] M. A. Nakamura, On the magnetic Bénard problem. J. Fac. Sci. Univ. Tokyo Sect.

IA Math., 38, 359-393, (1991).

[42] M. Nakamura, Regularity and analyticity of the solutions of the magnetic Bénard

problem. Adv. Math. Sci. Appl., 2, 117-137, (1993).

[43] X. Ren, J. Wu, Z. Xiang, Z. Zhang, Global existence and decay of smooth solution

for the 2D MHD equations without magnetic diffusion. J. Functional Analysis, 267,

503-541, (2014).



GLOBAL REGULARITY FOR THE 2D MAGNETIC BÉNARD 20
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