loading page

No Title Found
  • John Terning
John Terning

Corresponding Author:[email protected]

Author Profile

Abstract

We investigate the IR dynamics of \({\cal N}=2\) SUSY gauge theories in 3D with antisymmetric matter. The presence of the antisymmetric fields leads to further splitting of the Coulomb branch. Counting zero modes in the instanton background suggests that more than a single direction along the Coulomb branch may remain unlifted. We examine the case of \(SU(4)\) with one or two antisymmetric fields and various flavors in detail. Using the results for the corresponding 4D theories, we find the IR dynamics of the 3D cases via compactification and a real mass deformation. We find that for the s-confining case with two antisymmetric fields, a second unlifted Coulomb branch direction indeed appears in the low-energy dynamics. We present several non-trivial consistency checks to establish the validity of these results. We also comment on the expected structure of general s-confining theories in 3D, which might involve several unlifted Coulomb branch directions.