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Abstract: 13 

Mitochondrial DNA sequences (mtDNA) are often found as byproduct in hybrid enrichment 14 

data sets originally created to capture anchored hybrid enrichment (AHE) or ultra-conserved 15 

element (UCE) nuclear loci. The mtDNA sequences in these data sets are currently rarely 16 

used, even though mitochondrial genes such as COI, ND5, CytB, and 16S are of general 17 

interest and often not yet known and deposited in public databases. We developed 18 

MitoGeneExtractor to extract mitochondrial genes of interest from genomic libraries. Gene 19 

sequences are reconstructed through multiple sequence alignments of sequencing reads to 20 

an amino acid reference. We applied MitoGeneExtractor to recently published data created 21 

for UCE enrichment and were able to extract complete or nearly complete COI and ND5 22 

sequences for a large proportion of the sequencing libraries. MitoGeneExtractor can be used 23 

to extract mitochondrial protein coding genes from a wide range of next generation 24 

sequencing data sets. 25 

Key words: Data mining, DNA barcoding, data re-use, mitochondrial genes, COI, ND5   26 
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Introduction: 27 

Next generation sequencing (NGS) and high throughput sequencing have become standard 28 

tools in biological research and enable the generation of unprecedented amounts of 29 

sequencing data (Reuter, Spacek, & Snyder, 2015). Rapidly evolving sequencing technologies 30 

and relatively low sequencing costs of ~1,000 USD per genome (30 X coverage on Illumina 31 

platforms; genome.gov/sequencingcostsdata; accessed on 03.05.2021) allow researchers to 32 

investigate biological processes based not only on one or a few genes. Instead, millions of 33 

sequencing reads are generated per run in order to analyze thousands of loci or whole 34 

genomes, ranging from individual specimens to entire biological communities. The 35 

continuously dropping costs promise the growing exploitation of DNA sequence information 36 

in an application-oriented context such as medicine (Lecuit & Eloit, 2015), biomonitoring 37 

(Baird & Hajibabaei, 2012) or species conservation (Allendorf, Hohenlohe, & Luikart, 2010). 38 

Despite the clear trend towards increased cost-efficiency, generating and analyzing high-39 

throughput sequencing data is still resource demanding with regard to laboratory and 40 

computational costs, time and skills.  41 

NGS data potentially harbor much more information than is exploited over the course of the 42 

initial experiment. Although it is highly important to incorporate genomic complexity in 43 

biological studies, researchers might be particularly interested in specific genes. One 44 

example is the mitochondrial cytochrome oxidase I subunit (COI) gene, which is the most 45 

commonly used molecular marker in animal species identification (Hebert, Cywinska, Ball, & 46 

deWaard, 2003) and related fields, despite some limitations (Eberle, Ahrens, Mayer, Niehuis, 47 

& Misof, 2020). Fragments of this gene are further used to assess biotic communities in DNA 48 
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metabarcoding approaches, using either bulk samples of e.g. trapped invertebrates or free 49 

environmental DNA (eDNA) from samples such as water or soil (Cordier et al., 2021; 50 

Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 2012). Organellar DNA sequences 51 

are generally present in gDNA sequencing libraries due their high abundances in the cell and 52 

therefore in gDNA extracts (Bogenhagen & Clayton, 1974; Samuels et al., 2013) and can be 53 

found as byproduct in sequence capture/enrichment data sets (Allio et al., 2020; Amaral et 54 

al., 2015; Picardi & Pesole, 2012). Often, these organelle related reads are discarded or 55 

ignored during bioinformatic processing, potentially wasting this source of data. Studies that 56 

have extracted mitochondrial sequences from ultra-conserved genomic loci enrichment 57 

(UCE) data or anchored hybrid enrichment data are rare (e.g. Meiklejohn et al. 2014; Pie et 58 

al. 2017; Wang et al. 2017; Caparroz et al. 2018), probably due to the lack of conveniently 59 

applicable tools.  60 

Here, we describe an approach to make use of this sequencing byproduct in order to extend 61 

the utility of the constantly growing amount of sequencing data beyond the initial study 62 

purpose. By aligning DNA sequencing reads to an amino acid reference sequence (e.g. the 63 

COI gene), we are able to reconstruct in silico the corresponding COI or other mitochondrial 64 

sequences, if the mitogenome is sufficiently represented within the genomic read pool. This 65 

is especially important for the generation of sequence information in non-model organisms 66 

or taxonomic groups in which sample access can be difficult or even impossible, such as rare 67 

or extinct taxa. As such, these sources constitute an important but hitherto untapped 68 

contribution to the global DNA barcode databases like the Barcode of Life Data System 69 

(BOLD) (Ratnasingham & Hebert, 2007).  70 
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We selected mitochondrial genes as a case study due to their significance in biological 71 

research, because of their usually good representation in sequencing libraries, and since 72 

they are typically well conserved and indels are not expected within taxonomic groups.  73 

Several tools such as Phyluce (Faircloth, 2016), MITObim (Hahn, Bachmann, & Chevreux, 74 

2013), Trimitomics (Plese et al., 2019), MitoZ (Meng, Li, Yang, & Liu, 2019) or Mitofinder 75 

(Allio et al., 2020) already exist, which aim to reconstruct and extract in silico mitochondrial 76 

sequences or even whole mitogenomes from genomic read pools. All the mentioned tools 77 

are based on assembly results: for example, MITObim aims to reconstruct whole 78 

mitogenomes from genomic NGS data sets, relying on the genome assembler MIRA 79 

(Chevreux, Wetter, & Suhai, 1999). Based on an iterative selection of reads matching a 80 

current intermediate sequence and an assembly of these currently selected reads, MITObim 81 

tries to reconstruct mitochondrial genomic regions starting from a seed sequence (Hahn et 82 

al., 2013). 83 

The Phyluce pipeline was originally designed to extract UCEs and to subsequently perform 84 

phylogenetic analyses with these loci (Faircloth, 2016). Phyluce uses the output of assembly 85 

tools such as Trinity (Grabherr et al., 2011) by aligning the produced contigs to a bait (or 86 

oligonucleotide probe) reference sequence. Initially designed for standard enrichment baits 87 

for UCE loci, Phyluce can in principle be used to extract other loci as well, dependent on the 88 

input bait reference. Trimitomics assembles mitochondrial genomes from transcriptomic 89 

data (Plese et al., 2019) and MitoFinder is designed to assemble simultaneously both UCE 90 

and complementary mtDNA from raw UCE capture libraries (Allio et al., 2020) by using the 91 
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meta-assembler metaSPAdes (Nurk, Meleshko, Korobeynikov, & Pevzner, 2017) or IDBA 92 

(Peng, Leung, Yiu, & Chin, 2010).  93 

Assembly guided sequence reconstruction approaches have several drawbacks: i.) 94 

assemblies are highly parameter dependent, ii.) the quality of assemblies quickly drops if 95 

read coverage values are low (see results of this study). iii.)  An assembly process is always 96 

computationally intensive, especially for large data sets. This can prevent or at least hamper 97 

the fast and efficient sequence reconstruction for hundreds or thousands of individuals/taxa. 98 

iv.) Existing approaches rely on reference sequences from a closely related species or at least 99 

seeding sequences such as the barcode region. Finally, (v) in the presence of NUMTs (nuclear 100 

mitochondrial DNA), a sequence variation is introduced which can prevent a successful 101 

assembly of the reads. In preliminary analyses, we have found that MITObim suffers from 102 

this problem. Potentially, implementing another assembler than MIRA within MITObim 103 

could produce better results for multi allelic data and uneven read coverage. Altogether, 104 

assemblers require a substantial amount of sequence reads for being able to reconstruct the 105 

target region, particularly in the presence of only partially similar sequences such as NUMTs. 106 

The here presented workflow does not require the assembly of reads but instead is based on 107 

an alignment of the DNA sequencing reads to an amino acid reference. For this purpose, we 108 

developed the tool MitoGeneExtractor, which utilizes the program Exonerate 109 

(ebi.ac.uk/about/vertebrate-genomics/software/exonerate) to align DNA reads to a 110 

provided amino acid reference (Figure 1). MitoGeneExtractor uses the Exonerate output (i.e. 111 

vulgar file format, containing information about the start/end position of the read alignment 112 

in the reference, whether the forward or the reverse complement orientation aligned and 113 

http://ebi.ac.uk/about/vertebrate-genomics/software/exonerate
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an alignment score) to generate a multiple sequence alignment (MSA) of the reads. Due to 114 

the degeneracy of the genetic code, this allows a considerable DNA sequence variation of 115 

reads that can successfully be aligned to the reference. This makes it possible to use the 116 

same amino acid reference for a broad spectrum of taxa in particular when mining genes 117 

from the conserved mitochondrial genome. The subsequently resulting MSAs can be used to 118 

reconstruct a consensus gene sequence for the individual sample. When implemented in a 119 

data analysis management system such as Snakemake (Köster & Rahmann, 2012), it is 120 

possible to analyze and extract sequence information from hundreds or even thousands of 121 

genomic DNA data sets automatically and simultaneously. 122 

We tested our approach with a large avian data set from Harvey et al. (2020), which upon 123 

publication had been used for a comprehensive phylogenomic analysis of songbirds 124 

(Passeriformes) in a tropical biodiversity hotspot. With the presented approach, we were 125 

able to reconstruct sequence information (≥ 90 % of the sequence) for two mitochondrial 126 

genes, the cytochrome c oxidase 1 (COI) and NADH dehydrogenase subunit 5 (ND5) gene for 127 

85 % and 80 % of the samples, respectively. We compared MitoGeneExtractor with 128 

MitoFinder (Allio et al., 2020) regarding the sequence reconstruction success and 129 

computational time. Further, we evaluated the taxonomic assignment based on our 130 

reconstructed sequences obtained with MitoGeneExtractor. As no full-length COI sequence 131 

information was present for any of the bird species in NCBI, we evaluated our approach via 132 

the comparison of our reconstructed sequences with COI barcodes from BOLD 133 

(Ratnasingham & Hebert, 2007) and compared our taxonomic assignment inferred via the 134 

reconstructed barcodes with the taxonomic assignment of the initial study from Harvey et al. 135 

(2020). 136 
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Material and Methods: 137 

During the initial study of Harvey et al. (2020), the authors generated target enrichment data 138 

of UCEs and exons for 1,993 individuals. Their final data set comprised 1,287 neotropical bird 139 

species, represented by 1-38 individuals per species. We used this data set to attempt the in 140 

silico reconstruction of complete COI and ND5 sequences for all of the 1,993 individuals. The 141 

DNA extracts were obtained from genomic resource collections at natural history museums 142 

and from field excursions. gDNA extracts were enriched for UCEs and conserved exons and 143 

sequenced on Illumina HiSeq platforms (Harvey et al., 2020). 144 

Obtaining and pre-processing of data: 145 

Raw sequence data was downloaded from the NCBI Sequence Read Archive PRJNA655842 146 

using prefetch from the SRA-toolkit v 2.11.2 (http://ncbi.github.io/sra-tools/). The sra files 147 

were transformed to the fastq format with fastq-dump (SRA-toolkit). We specified the 148 

options --split-e in order to extract the data in separate files, if paired-end read data was 149 

generated, and --readids to retain unique read sequence IDs. Paired-end read information 150 

cannot be exploited with Exonerate because each read is individually aligned to the 151 

reference, either in forward or reverse complement orientation. Therefore, we 152 

concatenated paired-end libraries and treated them as single-end libraries. This artificially 153 

doubled read numbers in paired-end libraries (Table S1, S2) but allowed to retain one read 154 

of a read pair, when the other read was discarded during quality trimming. Raw sequencing 155 

reads were quality trimmed using the cutadapt v 1.18 (Martin, 2011) wrapper script 156 

TrimGalore! v 0.0.6 (https://github.com/FelixKrueger/TrimGalore) with auto-detection of 157 

Illumina adapters and a quality cut-off at Phred < 20. Fastq files were transformed to the 158 

http://ncbi.github.io/sra-tools/
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fasta format using bash shell commands. Data transformation and quality processing was 159 

conducted within a Snakemake workflow in order to improve reproducibility of data 160 

analysis.  161 

Generation of reference protein sequences: 162 

The NCBI protein database (https://www.ncbi.nlm.nih.gov/protein/) was searched for full 163 

length sequence information of the COI and ND5 genes for all passerine birds 164 

(Passeriformes). All sequences were downloaded and one sequence per genus was retained. 165 

The sequences were visually inspected with AliView v 1.26 (Larsson, 2014) and irregular 166 

sequences (which corrupted the alignment) were removed. Then, the sequences were 167 

aligned (385 for COI and 331 for ND5) using the MUSCLE algorithm (Edgar, 2004) and the 168 

resulting consensus amino acid sequences were used as reference for the MSAs. 169 

Alignment of reads – MitoGeneExtractor 170 

We developed MitoGeneExtractor which creates consensus gene sequences in the following 171 

three steps. In step one, MitoGeneExtractor calls Exonerate, which needs to be installed 172 

independently, to align the amino acid reference sequence to the input (i.e. quality filtered) 173 

DNA reads (both input files are expected to be in fasta format). Two important Exonerate 174 

command line parameters, which alter the alignment settings, can be specified when calling 175 

MitoGeneExtractor and are passed to Exonerate: the genetic code used for translating the 176 

reads prior to the alignment and the frameshift penalty. Further, the user can specifiy the 177 

minimum alignment score threshold used by Exonerate, if desired. In step two, 178 

MitoGeneExtractor uses the Exonerate output in vulgar format (see Exonerate manual for 179 

details) to create an alignment of all input reads. Parameters can be specified to control e.g. 180 
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the minimum coverage and the minimum alignment score relative to the read length to 181 

control the alignment quality. Finally in step three, MitoGeneExtractor determines 182 

consensus sequences for the gene of interest and provides the user with an alignment fasta 183 

file and the desired consensus sequence as final output.  184 

When calling MitoGeneExtractor, the most time-consuming step is the generation of the 185 

Exonerate vulgar files (although this only takes on the order of 30 seconds for 1 million reads 186 

using a single core on a modern laptop). For existing vulgar files, the MSAs are generated by 187 

MitoGeneExtractor in a few seconds, allowing a fast re-analysis with adjusted parameters 188 

once the vulgar files are already produced. Exonerate writes alignment information to the 189 

vulgar file only for those reads that could successfully be aligned to the target gene. From 190 

this information MitoGeneExtractor determines not only the MSA of successfully aligned 191 

reads, but also the corresponding consensus sequence. The MSA of reads can be used for 192 

subsequent data exploration and analyses. 193 

For this study, we installed Exonerate version 2.2.4 and called MitoGeneExtractor with the 194 

options -t 0.5 (consensus threshold; i.e. an unambiguous nucleotide in the consensus 195 

sequence is inferred only if it is supported by 50% of the nucleotides at this site), -r 1 196 

(minimum relative alignment score; alignment score from Exonerate divided by the length of 197 

the alignment) and -n 0. Setting the -n parameter to a value greater than 0 would instruct 198 

MitoGeneExtractor to include bases of the read beyond the alignment region Exonerate has 199 

found. Less conservative parameter combinations were tested as well, and the resulting 200 

statistics can be found in supplementary tables S1-S4. Depending on the analyzed taxon, the 201 

genetic code (parameter -C) used by Exonerate needs to be adjusted. The genetic code is 202 
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supplied by the corresponding integer, according to the synopsis from Osawa, Jukes, 203 

Watanabe, & Muto (1992) and Jukes & Osawa (1993), also adapted by NCBI 204 

(https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi).  205 

Evaluation: 206 

We first evaluated the general sequence reconstruction success in terms of recovered 207 

nucleotides for each of the 1,993 samples. Based on the data set of Harvey et al., (2020), we 208 

compared the COI and ND5 consensus sequences mined with MitoGeneExtractor with the 209 

sequences mined with MitoFinder v. 1.4 (Allio et al., 2020) regarding number of 210 

reconstructed sequences, their completeness and computation time. MitoFinder assemblies 211 

were generated by the assembly tool IDBA (Peng et al., 2010) in paired-end mode (except 212 

for 41 single-end libraries), using the mitogenome of Eremophila alpestris (NCBI 213 

PRJNA636471, downloaded 09.09.2021) as reference and the vertebrate mitochondrial code 214 

(-o 2). To assess the run time of both tools, a data subset (n = 100) was re-analyzed, 215 

including only samples which were known to perform well (i.e. a complete coding region of 216 

COI was reconstructed with both tools). Analyses were run on a Linux based HPC server and 217 

10 cores were provided for each program. MitoFinder samples were assembled using 10 GB 218 

of RAM (-m 10) per sample. 219 

The nucleotide recovery in each reconstructed gene sequence obtained with both tools was 220 

visualized with the python3 (Van Rossum & Drake, 2009) package seaborn (Waskom, 2021). 221 

The violin plots show the estimated kernel density curve of the data distribution (bandwidth 222 

scale factor=0.04).  223 
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Nucleotide recoveries of at least 90 % of the full length of the corresponding gene were 224 

treated as a successfully reconstructed gene sequence. To test whether the reconstructed 225 

COI sequences can be used to correctly identify the corresponding species, we queried the 226 

sequences against the NCBI nucleotide database. Since no full-length sequence information 227 

was available for COI and ND5 for any of the corresponding species, (NCBI nucleotide 228 

database accessed on 03.05.2021), a direct comparison of the full length sequences was not 229 

possible. Therefore, we extracted the 658 bp barcode region from the reconstructed COI 230 

sequences (nucleotide positions 45 - 702, flanked by the primer pair of Folmer, Black, Hoeh, 231 

Lutz, & Vrijenhoek, 1994) and compared the barcode sequences to entries in BOLD 232 

(Ratnasingham & Hebert, 2007). The in silico generated barcodes were taxonomically 233 

assigned using BOLDigger v.1.2.2 (Buchner & Leese, 2020) and our inferred taxonomic 234 

assignment was compared with the taxonomic assignment from Harvey et al. (2020). We 235 

included only COI barcodes without any gaps in the barcode region (= 1,611) although for 236 

species identification purposes also shorter barcodes or slightly incomplete sequences can 237 

be sufficient. For those samples in which the best BOLD hit did not match the species 238 

assignment of Harvey et al. (2020), we used the R package ‘bold’ (Chamberlain, 2021) to 239 

check whether COI sequence information for the species was present at all in BOLD. 240 

Results: 241 

Data extraction, quality filtering: 242 

When used as single-end libraries (i.e. paired-end libraries were concatenated), the 1,993 243 

libraries downloaded from NCBI yielded in total 14,215,651,594 reads, with 6,431,834 244 

(median) per library. Read numbers ranged from 2,984 to 32,059,194, presenting a very 245 



13 
 

heterogeneous test data set. After quality trimming, 6,298,529 (median) per sample were 246 

retained (Table S1; for individual sample statistics, see Table S2). 247 

 248 

Cytochrome c oxidase subunit one: 249 

Per sample, 2,927 (median) reads were successfully aligned to the COI reference with 250 

MitoGeneExtractor. Mean base coverage of the alignments (normalized by gene length) 251 

ranged from 0 to 16,644 nucleotides per position. The amino acid sequences of avian COI 252 

typically comprise 517 amino acids, resulting in 1,551 nucleotides, including the stop codon. 253 

If a sequence segment is not covered by reads, MitoGeneExtractor inserts gaps in the 254 

consensus sequence. In case nucleotides cannot be inferred unambiguously according to the 255 

consensus threshold (here: 50 %), Ns are inserted. We first evaluated the COI sequences 256 

based on the number of recovered nucleotides. From 1,993 analyzed samples, we 257 

reconstructed complete full-length COI sequences for 621 specimens (= 31.2 %). In total, we 258 

were able to generate 1,682 COI sequences with a base recovery of at least 90 % of the full 259 

gene length (Figure 2). First evidence for correctly reconstructed sequences with exon 260 

character is the absence of stop codons within the open reading frame (ORF). We detected 261 

26 stop codons within the 1,993 sequences that were not found at the 3’ end of the 262 

reconstructed sequences. Only 7 samples failed completely (= 0.35 %) and 158 COI 263 

sequences showed a poor base recovery of lower than 60 %. We extracted 1,611 full length 264 

COI barcodes from the COI gene sequences (Figure 2). All reconstructed COI consensus 265 

sequences can be found in supplementary file 2. 266 

 267 
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NADH dehydrogenase subunit five: 268 

Per sample, 3,277 (median) reads aligned to the ND5 reference sequence, with a mean base 269 

coverage ranging between 0 and 12,694 bases per position. The avian coding region of the 270 

ND5 gene can have 605-608 amino acids, depending on the taxon of interest (e.g. Gao et al., 271 

2021; Gao, Yin, & Zhu, 2021). Based on visual inspection of our results, we found that the 272 

reconstructed ND5 genes in our data set typically comprised 605 amino acids (including stop 273 

codon). Based on that, we recovered ND5 sequences with a base coverage of ≥ 90 % from 274 

1,595 specimens (80 %). Despite this overall high sequence recovery success, only a small 275 

proportion, i.e. 174 sequences were recovered in full length, which is low compared to the 276 

COI gene (Figure 2). In total, 21 stop codons were detected in this data set, which were not 277 

located at the 3’ end of the sequence. Only 13 samples (0.65 %) failed completely, i.e. no 278 

reads were mapped to consensus sequence and 200 reconstructed sequences showed a 279 

nucleotide recovery of less than 60 % of the complete gene sequence.  280 

All reconstructed ND5 consensus sequences can be found in supplementary file 3. 281 

 282 

Comparison to MitoFinder: 283 

We compared the performance of MitoGeneExtractor with the existing tool MitoFinder 284 

(Allio et al., 2020), which was designed to assemble mitogenomes from NGS sequence data. 285 

For 981 samples, COI sequence information was assembled, from which 719 full length 286 

genes were reconstructed (36.08 %).  287 

ND5 sequence information was assembled for 674 samples (33.8 %), but no gene was 288 

completely assembled (highest nucleotide recovery = 1,782 positions). 289 
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Although MitoFinder was able to reconstruct a slightly higher number of full-length COI 290 

genes, the overall assembly success was inferior to the sequence reconstruction with 291 

MitoGeneExtractor. For the majority of samples, no sequence information was recovered, 292 

contrasting the generally high reconstruction rate obtained with MitoGeneExtractor, which 293 

is consistent for both mitochondrial genes (Figure 3). 294 

We selected 100 samples which showed full-length COI gene reconstruction with both tools, 295 

MitoGeneExtractor and MitoFinder and compared their computation times. 296 

MitoGeneExtractor reconstructed the 100 COI consensus sequences in 00:26:49 minutes on 297 

10 cores including the time consuming Exonerate alignment step, whereas MitoFinder 298 

required 24:26:38 hours for the assembly and gene extraction on the same computer and 299 

using the same number of cores. 300 

Evaluation based on taxonomic assignment: 301 

From the 1,611 full length COI barcode sequences, we obtained a similar taxonomic 302 

assignment as first hit, i.e. the same bird species as in Harvey et al. (2020), for 1,031 303 

individuals (64 %). The sequence identity to database entries of these barcodes ranged from 304 

92 – 100 % similarity. 56 samples showed a similar taxonomic assignment to that in Harvey 305 

et al. (2020), which was not the first hit in BOLD but was present among the 20 best hits 306 

(Figure 4). From these 1,087 ‘correctly’ assigned samples, 998 showed barcode identities of 307 

≥ 97 %, which is a commonly applied threshold for species delimitation based on COI (Hebert 308 

et al., 2003). Eight samples were morphologically assigned by Harvey et al. (2020) only to 309 

genus level, preventing a taxonomic comparison on species level. 310 
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The 524 samples with a diverging taxonomic assignment and a sequence similarity of the 311 

first BOLD hit between 86.88 – 100 %, were mainly assigned to the same genus (427 312 

individuals) as in Harvey et al. (2020). These 524 samples represented 443 taxa (439 species 313 

and four morphotaxa on genus level), for which in most cases (402 species), no COI 314 

sequence information was available in BOLD (Figure 4). Altogether, 97 reconstructed COI 315 

barcode sequences were not assigned to the same genus as in the original study. In most of 316 

these cases (77), the sequence similarity to database entries was below 95 %.  317 

Notably, 15 individual samples (13 morphotaxa) were molecularly assigned to different 318 

genera with a high sequence similarity ranging from 97-100 %, such as the sample referred 319 

to as Sclerurus caudacutus in Harvey et al. (2020), which has a barcode identity of 97.36 % to 320 

Poospiza lateralis or the sample Aphrastura spinicauda, which has a barcode identity of 321 

98.84 with Poospiza thoracica in BOLD. Interestingly, we found COI sequences in BOLD for 322 

four of these taxa (Aphrastura spinicauda, with 17 % divergence from the sequences in the 323 

study under the same name, Lepidocolaptes falcinellus (13 % divergence), Phyllomyias 324 

virescens (17 % divergence), or Sclerurus caudacutus (18 % divergence).  325 

Discussion: 326 

MitoGeneExtractor shows a high sensitivity and specificity when mining reads from NGS 327 

sequencing libraries. The success of sequence reconstruction mainly depends on the number 328 

of reads of the specific gene that are found in the NGS library. The decreased gene sequence 329 

reconstruction success of the ND5 gene with both tools, MitoGeneExtractor and MitoFinder, 330 

might be due to a lower number of reads for this locus in the sequencing library compared 331 
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to the COI gene, which could be explained if the COI gene was enriched in the study of 332 

Harvey et al. (2020), even though this was not mentioned in the publication.  333 

Comparing MitoGeneExtractor and MitoFinder, both reconstruct roughly the same number 334 

of full-length COI sequences. Including sequences with a nucleotide recovery of ≥ 90 %, 335 

MitoGeneExtractor reconstructed about twice as many COI sequences compared to 336 

MitoFinder. This pattern is consistent with the reconstruction success of the ND5 gene and 337 

highlights the potential drawback of assembly-guided sequence reconstruction: if the read 338 

coverage at a given position is too low, the extension of the reconstructed sequence is 339 

aborted, preventing the potential usage of reads, which cover subsequent positions of the 340 

gene. For specific genes of interest, MitoGeneExtractor is more efficient and faster than 341 

assembly guided tools such as MitoFinder, which aim to assemble complete mitogenomes. 342 

For the reconstruction of the same 100 COI sequences, MitoGeneExtractor was 54 x faster 343 

than MitoFinder. 344 

Due to the high sequence identity between COI barcode reference database entries and our 345 

generated COI barcodes for most taxa, we conclude that our approach of sequence 346 

reconstruction works and that NGS read data can be exploited beyond the initial study 347 

purpose. The majority of detected stop codons occur at the end of the extracted gene 348 

sequences. If not, they should either result from sequencing errors or from incorporating 349 

reads from nuclear mitochondrial pseudogenes (NUMTs) (Gaziev & Shaikhaev, 2010). Again, 350 

read depth is crucial for a reliable reconstruction in assembly or MSA based approaches. In 351 

high coverage regions, these ‘wrong’ reads will be overruled by reads originating from the 352 

true loci and parameter settings might play a subordinate role (see Tables S3, S4). In gene 353 
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regions which are covered only by a low number of reads, incorrect nucleotides have a 354 

higher likelihood of contributing to the resulting consensus sequences. MitoGeneExtractor 355 

has different options to handle these issues: using the coverage filter parameter 356 

--minSeqCoverageInAlignment demands a minimum number of reads for the computation of 357 

consensus sequences. More parameters exist which allow to find a trade-off between 358 

sensitivity and specificity, e.g. the – r and – n parameters (see the MitoGeneExtractor 359 

manual for details). Decreasing the specificity will improve base recovery but potentially 360 

introduces erroneous bases (Table S3, S4). Therefore, the increase of this parameter should 361 

be done only based on previous observations, followed by subsequent inspection of the 362 

alignments, and is generally not recommended. A certain trade off might be necessary since 363 

despite the high conservation of most mitochondrial genes, the first and last 30 bp of the full 364 

COI gene are often more variable in larger taxonomic groups.  365 

Since Exonerate produces an alignment score based on the number of aligned bases of the 366 

read to the reference, reads which only partially overlap with the reference at the beginning 367 

or the end might be omitted because they have a position-dependent low alignment score. 368 

This can result in missing sequence information at the beginning/end of the reconstructed 369 

consensus sequence. In MitoGeneExtractor, the minimum alignment score (corrected for 370 

read length) can be adjusted with the parameter -r. If this value is decreased, reads with 371 

lower alignment score will be incorporated, which can result in more complete sequences. In 372 

our analyses of the ND5 gene, we were able to reconstruct more complete ND5 sequences 373 

when the minimum relative score -r was lowered from 1 to 0.8 (Table S4). Finally, the 374 

alignment files produced by MitoGeneExtractor should be visually inspected in uncertain 375 

cases in order to optimize the alignment quality thresholds. The default values provide a 376 
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good but conservative setting for a heterogeneous range of data sets, but must be adjusted 377 

for specific cases, particularly when read coverage is expected to be low. 378 

With the in silico reconstructed COI barcode sequences, 1,095 specimens were assigned to 379 

the corresponding morphotaxa, although the sequence similarity was in some cases clearly 380 

below 97 %, which is a commonly used as a species cutoff value (Hebert et al., 2003). 381 

Although the genetic divergence in the COI gene was shown to be generally low within avian 382 

species, higher intraspecific variability might be expected for tropical faunas which might 383 

contribute to the high genetic distances observed within our barcodes (Hebert, Stoeckle, 384 

Zemlak, & Francis, 2004). Diverging taxonomic assignments can further be the result of 385 

cryptic diversity or intraspecific divergence, which was reported for some of the taxa in 386 

Harvey et al. (2020). Furthermore, genetic differences in low coverage gene regions between 387 

the generated COI sequences and database entries might be the result of artefacts such as 388 

the incorporation of NUMTs reads (Gaziev & Shaikhaev, 2010), sequencing errors, or 389 

contaminations. In principle, difference with respect to a database can also be due to 390 

erroneous database entries. Interestingly, some specimens with different taxonomic 391 

assignments between Harvey et al. (2020) and our study, e.g. Aphrastura spinicauda, which 392 

was identified as Poospiza thoracica, have a very distinct morphological appearance, so that 393 

misidentification seems unlikely. Additionally, the overall divergence level might be inflated 394 

due to geographically biased sampling of taxa and their underrepresentation in databases 395 

(Kerr et al., 2009; Phillips, Gillis, & Hanner, 2019). Although birds are among the most 396 

intensively studied taxonomic groups, many of the here analyzed species are rare in the wild 397 

(most specimens were sampled at natural history collections), which explains the limited or 398 

even completely absent COI sequence information on NCBI/BOLD for some of the taxa. 399 
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Incomplete reference databases or wrongly assigned COI barcodes represent the major 400 

limitations of molecular species identification (Moritz & Cicero, 2004; Pentinsaari, 401 

Ratnasingham, Miller, & Hebert, 2020). One example for an ambiguous taxonomy found in 402 

data bases represent the Phylloscartes specimens, which were identified as Pogonotriccus 403 

individuals by us. According to The Global Biodiversity Information Facility (GBIF) 404 

(www.gbif.org, accessed 03.03.2022) the genus name Pogonotriccus is often synonymized 405 

with the genus Phylloscartes but both names are still in use although genetic differences 406 

were shown to be low (Tello, Moyle, Marchese, & Cracraft, 2009). 407 

Finally, the morphological species delimitation is not always consistent with genetic 408 

divergence and evolutionary history of a single gene (Bilton, Turner, & Foster, 2017; 409 

Weigand et al., 2017). Especially the disproportionally high biodiversity from tropical regions 410 

is (taxonomically) underexplored (Balakrishnan, 2005; Dirzo & Raven, 2003) and needs 411 

ongoing research effort to be resolved. 412 

This highlights the value of the opportunity to further exploit NGS data if researchers work 413 

with non-model organisms or taxa from which sample accession is difficult due to various 414 

reasons (e.g. ancient DNA, protected species, remote occurrence). Thus, nucleotide 415 

database managers may consider automatically running MitoGeneExtractor as a wrapper to 416 

routinely harvest genetic information, e.g. to add new barcode data to BOLD from the 417 

growing number of available NGS datasets, thus adding species entirely new to the database 418 

(as in the present example) or adding data that help in better monitoring genetic diversity at 419 

the population level. An important use case of MitoGeneExtractor should be the extraction 420 

of COI sequences from sequencing libraries in order to identify misidentifications of 421 
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specimen and contaminations in the sequencing library. Sequencing projects should use 422 

MitoGeneExtractor routinely to exclude these potential problems. 423 

One can imagine that the sequence information is even scarcer for genes other than COI, 424 

which are not commonly used as marker gene for population genetics or as molecular 425 

barcode for metazoans. In the case of the ND5 gene, only 50 full length DNA sequences for 426 

all passerine birds are deposited in the NCBI nucleotide database (accessed on 29.04.2021) 427 

from which 15 belong to Phylloscopus occisinensis, 15 to Phylloscopus griseolus and 15 to 428 

Phylloscopus affinis, all from the same study.  429 

Besides the possibility of additional data mining from database resources, the approach can 430 

be used to extract reads originating from specific loci, although many more loci were 431 

sequenced in actual experiments (e.g. in hybrid enrichment experiments). Since the read 432 

origin is ‘identified’ via MSAs to an amino acid reference, only DNA sequences can be 433 

extracted that directly translate into amino acid sequences. Perfect candidates for such loci 434 

are eukaryotic organellar genes such as COI. Due to the degeneracy of the genetic code, 435 

many different individuals within a broad taxonomic spectrum can be analyzed with the 436 

same reference. The number of available amino acid sequences used to produce the 437 

consensus reference as well as the taxonomic level (e.g. order, class, phylum) can potentially 438 

influence the MSAs and the sequence reconstruction process: a very general consensus 439 

sequence (e.g. a vertebrate reference) can be more useful when analyzing a broader 440 

taxonomic spectrum of individuals, although less conserved sequence parts of the gene 441 

might be inaccurately reconstructed. The higher the taxonomic specificity of the reference 442 
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sequence, the more accurate the reconstructed DNA sequence. The taxonomic level of the 443 

reference as well as the parameters for the MSA have to be adjusted to individual needs. 444 

Currently, we advertise MitoGeneExtractor only for mitochondrial genes, since in the current 445 

implementation, indel information coming from Exonerate is not used and reads that align 446 

with indels are discarded. The assumption that no indels are present is well met for the 447 

majority of mitochondrial genes and taxonomic groups.  448 

Typical distances of sequencing reads to amino acid references, the potential presence of 449 

splicing variants and the fact that indels are not considered in the current implementation, 450 

limit the application of MitoGeneExtractor for eukaryotic nuclear genes. In contrast, its 451 

utility for extracting mitochondrial sequences has been demonstrated and opens the door to 452 

extract mitochondrial genes routinely from genomic sequencing resources such as hybrid 453 

enrichment data. We also tested MitoGeneExtractor on RNA-seq data (results not shown) 454 

and were able to reconstruct COI sequences.  455 

In conclusion, we demonstrated that extraction of sequencing reads from specific loci 456 

through alignment to an amino acid reference allows an accurate reconstruction of the 457 

corresponding DNA sequence for mitochondrial genes. When incorporated in workflow 458 

management tools such as Snakemake, sequence information can be generated for 459 

hundreds or even thousands of individuals within a broad taxonomic spectrum without the 460 

need for reference sequences of the same or closely related species. When researchers are 461 

interested in specific mitochondrial genes, MitoGeneExtractor is faster and more efficient 462 

than assembly guided software such as MitoFinder. In principle, the approach can be used to 463 

reconstruct any protein coding gene (organelle or prokaryotic genes, RNA-seq data, exon 464 
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sequencing data) and if gene/locus of interest contributed to the sequence read population 465 

within a given NGS library. Genomic resources from which good results are expected are 466 

sequencing libraries from hybrid enrichment experiments, transcriptomes and low coverage 467 

genomes, although the latter was not tested here. 468 
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Figures: 

 

Graphical abstract 

 

Fig. 1: Illustration of MitoGeneExtractor algorithm. DNA sequence reads are aligned to an 
amino acid reference taking into account the specified genetic code. With the alignment 
information coming from Exonerate, a multiple sequence alignment is produced from which 
the consensus sequence is inferred.   
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Fig. 2: Success of gene sequence reconstruction. Full length sequences were reconstructed 
for a large number of specimen (green plane), close to full length sequences, i.e.  ≥ 90 % of 
the complete coding DNA sequence, are available for most specimen (blue plane). For the 
taxonomic evaluation, COI barcodes were extracted and compared to the Barcode of Life 
Database. Left: COI gene sequences, right: ND5 gene sequences. 

 

 

Fig. 3: COI (left) and ND5 (right) reconstruction success with MitoGeneExtractor (blue) and 
MitoFinder (red). Density plots indicate the probability density curve of the data. Colored 
dots show the number of nucleotides in individual consensus sequences obtained with 
MitoGeneExtractor and MitoFinder. Diamonds indicate the median of reconstructed 
sequences with MitoGeneExtractor (COI = 1,545, ND5 = 1,755) and MitoFinder (COI = 0, 
ND5 = 0). 
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Fig. 4: Taxonomic assignment based on reconstructed COI barcode sequences. Numbers 
refer to individuals and their reconstructed barcode sequences. For species with barcode 
sequence information available in BOLD, the taxonomic assignment was consistent to the 
original study for a large proportion of the specimens. When a specimen was 
morphologically not determined on species level (yellow), a comparison was not possible. 

 

       

   

   

                      

                    

                        

    

                             

                               

                            

         

                   


