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Abstract 8 

A digital twin is a virtual representation of a corresponding process of a physical object. In context of 9 

industry 4.0, a digital twin provides new opportunities for production optimization and failure 10 

prediction. Therefore, both industry and scientific research show increasing interest in digital twins. 11 

One of the most important sectors in the production value chain is material science, which plays a very 12 

important role for the product properties and processing strategies. However, the digital microscopic 13 

and macroscopic description of materials’ properties and its processing are currently not fully defined. 14 

Therefore, in order to implement materials into the digital representations of production processes, a 15 

throughout digital description of the material and its properties – a digital material twin – is presented 16 

in this paper. An extended digital material twin is further defined and includes the processing history. 17 

Thus, a throughout description of the material is enabled. The extended material twins can be 18 

connected to a process chain. Thus, we describe the concept for a comprehensive description of the 19 

materials’ properties within the production value chain. For more complex, data intensive, descriptions, 20 

a concept to reduce the data, the digital material shadow is introduced as well. Our approach defines 21 

a framework to thoroughly describe a material and its development during processing or production. 22 

1. Introduction 23 

In recent years, digitalization, data-driven approaches and database applications has drawn attention 24 

particularly in traditional manufacture industries [1]. Concepts for digitization of a physical process like 25 

a cyber physical system, allow a sensor-based monitoring and increase control of industrial process 26 

chains [2]. However, an optimization of the analyzed systems is only possible when the collected 27 

datasets are correlated by the system in real-time during the production process. Thus, the datasets 28 

and their mutual physical interdependencies should be described within the cyber physical system. 29 

Therefore, a domain knowledge, so called Digital Twins (DT), can be used. The concept of a DT was 30 

originally introduced in 2003 from Grieves et al. [3]. They described the DT as a digital representation 31 

of a physical product and divided it into three main parts: (i) the physical object, (ii) the digital 32 

replication and (iii) the data and information which connects both (Figure 1) [3]. The DT evolved during 33 

recent years is a dynamic digital replica of its physical counterpart [4] and a powerful tool to represent, 34 

monitor, diagnose and prognose a system, a production line, an object or a service [5]. The application 35 

of a DT efficiently helps from urban planning of smart cities, to support in the healthcare industry to 36 

improve the effectivity of certain drugs, or planning, performing and simulating surgeries [5-7].  37 
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Figure 1 - The concept of a digital twin 

Publications and patents dealing with the DT from 2003 to 2018 were reviewed by Tao et al.[5]. They 38 

found that the DT is used in several industries, for example design, production, prognostics or health 39 

management. Especially in production engineering, the DT has a great impact. The DT of production 40 

describes the full use of the relevant data from equipment, environments and history data from the 41 

previous generation of the products. This enables predictions on the product quality even before 42 

production takes place, hence the R&D resources for the product evaluation process can be reduced. 43 

One of the most important advantages of the DT is the information on the status of machine 44 

performance and production line feedback in real-time [6]. Compared to the traditional manufacturing, 45 

the DT provides an environment for product and system testing, which gives the manufacturer 46 

opportunities for predicting the issues before or during the production [10]. This optimization leads to 47 

improvement of the process plan control [9]. The DT can also be used to facilitate the production 48 

optimization. Uhlemann et al. presented a multimodal data acquisition and evaluation concept and 49 

proposed guidelines for the implementation of the DT to optimize production systems [11]. These are 50 

the basis for the Prognostics and Health Management (PHM), which was first applied in aircraft 51 

industry. Tuegel et al. summarized the current aircraft structural integrity and life prediction concepts 52 

and proposed a DT-based life assessment strategy, which enables a better management of an aircraft-53 

life series and a full-scaled data collection of the conditions of the aircrafts at any time [12]. Moreover, 54 

the digital twin approach can promote the adjustment of production operations based on both 55 

practical situation and simulation [13]. Bielefeldt et al. proposed a digital twin-based approach which 56 

can detect, monitor and analyze the structural damage of commercial aircraft wings by taking the 57 

applied material into account and placing it into the focus of the model [14]. The digitalization of new 58 

material design has been pushed by various scientists. The open-sourced material database projects, 59 

such as Japan’s National Institute of Material Science [15] and Material Genome Initiative [16], which 60 

includes experimental and computational results of materials, provide the researchers the benefits for 61 

material data sharing, material sorting for specific purpose and new material design. However, the 62 

information of material processing, which includes the history of the material state, is not provided in 63 

those approaches. With the shortage of this information, a throughout digital material state 64 

description is difficult to provide and the application of the digital material description in production 65 

is also challenging.  66 

If we consider the material as the core of a processing chain, then the metadata which represents 67 

material properties from each processing step should be collected, analyzed and stored. Eventually, 68 

the analyzed results should also be applied as for digital description of material during processing and 69 

the results from individual processing steps should be connected for the representation of material in 70 

the processing chain. Moreover, in the processing chain, the change in material properties needs to be 71 

correlated to relevant datasets during processing. To fulfill the mentioned requirements and build up 72 

a comprehensive description of material development, the concept of a digital material twin (DMT) 73 

has been introduced and refined within the last years, to describe materials and its changes due to the 74 

processing steps. 75 
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In addition to the concept of DMT, we will further introduce the Digital Material Shadow (DMS), a 76 

concept to reduce the complexity of DMT. Based on Platon’s alegory of the cave, the shadow reduces 77 

the information of the physical object as only a 2D representation of its shape and movement are 78 

remaining (Figure 2). Hence, the shadow can be considered as a representation of certain 79 

characteristics from a specific point of view, e.g., changes in the rolling forces on material-intrinsic 80 

temperature responses.  81 

 

Figure 2 - Illustration of Platon’s allegory of the cave - the shadow as a representation of the physical world [17] 

2.1 Digital Material Twin 82 

Before the DMT is defined, we first define a substance or a mixture of substances that constitutes to 83 

an object as a material. The most important engineering materials are metals [19]. Today, steels have 84 

the highest technical significance of all materials with respect to production volume and variety of 85 

application. Accordingly, our following definitions describe steels, but can be extended to other 86 

materials such as ceramics, semiconductors and polymers. In general, material properties are not 87 

equal to the properties of a workpiece (the extrinsic properties), since the shape, roughness, stiffness 88 

etc., can have controversial correlation with the properties of the material itself (the intrinsic 89 

properties). Furthermore, the intrinsic properties are the reflection of the phase state (phase type, 90 

distribution and fraction, etc.) of a material, which is as well the reflection of the crystal lattice 91 

structure. Therefore, the first step for the DMT definition is to distinguish the intrinsic and extrinsic 92 

properties and excluding the extrinsic from all available information on the current state of a material 93 

(as shown in Figure 3).  94 

 

 

Figure 3 - Differentiation of exterior properties of the workpiece (extrinsic properties) and material properties (intrinsic 
properties) 

The intrinsic properties describe the current state of the material and reflect the crystal lattice 95 

structure and phase information. Therefore, Figure 3 can be used as an example, which is divided into 96 

three layers. In layer 1, the nanoscopic description of material will be considered. In this layer, a 97 
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description from atom point of view will be presented, in which the crystal structure and the crystal 98 

defects, distribution and diffusion of foreign atoms are described. This information is strongly 99 

correlated to the description in the following layers and have enormous impact of material properties 100 

in layer 2 and layer 3. Therefore, the nanoscale layer (layer 1) is the fundamental layer and the 101 

information in this layer should be provided for the following layers. 102 

layer 2 and layer 3 hold information of layer 1 and describes the material by its phases and further 103 

microstructural characteristics, like phase fractions, orientations, grain sizes and grain size distribution. 104 

An example is given in [18]. The local chemical compositional of C and Mn and microstructural 105 

parameters of complex phase steel CP800 are correlated and quantified, which provide a 106 

comprehensive and as well a quantitative description of layer 1 and layer 2 (Figure 4). Moreover, the 107 

approach provides the possibility for the description of the correlation between different intrinsic 108 

properties and leads to the comprehensive DMT construction.  109 

Furthermore, layer 3 of the metal can be considered as a statistic summary of all the unit cells in layer 110 

2, e.g., the Young’s modulus of the material in layer 3 can be considered as the average value of each 111 

unit cell from layer 2. Hereto, a 3-layered description is sufficient for the metal property description, 112 

which can be defined as intrinsic property of the material, as mentioned above.  113 

However, in all three layers, the properties which are related to the work piece (shape, roughness etc.) 114 

are neglected. If the material is applied in production, the properties which relate to the work piece 115 

should also be considered, therefore, the intrinsic properties and the properties of the work piece 116 

needs to be correlated. Therefore, we define the work piece properties as extrinsic property, which 117 

are excluded from the 3-layer description of material, as shown in Figure 3. Furthermore, the 118 

description of extrinsic property can also be applied for cross domain connection (or the combination 119 

of other Digital Twin in the production). However, a 3-layered description of intrinsic properties is 120 

sufficient for the material description, therefore, a detailed introduction of extrinsic properties and 121 

the correlation between intrinsic and extrinsic properties will not be presented in this work. 122 

 

Figure 4 - One example of correlation between hardness, microstructure and local chemical composition from [18]. The 

correlated EPMA, EBSD and hardness maps over a 64 × 32 μm area of CP800 steel: (a) C intensity map (unit of counts), 

(b) Mn intensity map (unit of counts), (c) Kernel average misorientation (KAM) map (3rd nearest neighbor), (d) image 
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Therefore, a material can be digitally described by this three-layered model with a high variation of 123 

parameters for a certain state. Moreover, the specific layers are correlated with one another, as shown 124 

in Figure 5. This digital description of the materials’ intrinsic properties can be defined as DMT, which 125 

represents the material in the virtual space. Furthermore, a simulative description should also be 126 

considered as a part of the DMT, making it possible to use the combination of physical and simulated 127 

datasets to increase the informational content, which further reduces the need for testing procedures 128 

[3]. To describe the change in material properties in a process chain, it is important that any process 129 

stop is connected to the previous (and subsequent) process steps. Since the DMT is a description of 130 

the material state which may change along the process chain, a DMT has to be described for each 131 

process step. 132 

 

 

Figure 5 - Schematic illustration of DMT: the intrinsic properties, which are irrelevant to the workpiece in 3 layers of 
one DMT 

To describe the connection of the DMT and the process, we need to extend the DMT. The extended 133 

DMT (eDMT) is shown in Figure 6 and includes the processing that resulted from the DMT. Moreover, 134 

the material state change in one processing chain can be described by connecting all the relevant 135 

eDMTs, as shown in Figure 7. 136 

quality (IQ) map, (e) phase map defined by IQ and KAM criterion, (f) hardness map. Grain boundaries (θ > 5°) are 

represented by black lines in (c)-(e).  
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Figure 6 - The DMT, which is extended with the correlated processing parameter (eDMT) 

In Figure 7, the concept of the eDMT is used to describe a simple process chain (and all the eDMTs in 137 
this process chain form one Digital Process Chain), which includes a rolling process and a subsequent 138 
annealing process. At the beginning of a process chain, occasionally no “preprocessing” is given, so we 139 
can also start the process chain with a DMT. Furthermore, certain properties of the DMT change within 140 
the process (while others remain). At first, the raw material goes through a rolling treatment to adjust 141 
its mechanical properties for the application. In this process, the overall chemical composition of the 142 
material remains the same, while parameters like dislocation density and the shape of grains change, 143 
in relation to the processing parameters. The same is valid for the subsequent annealing process, 144 
where again some parameters change while others remain constant. This shows that several 145 
parameters are connected along the process chain. For each eDMT within the process chain, a high 146 
variety of properties can be evaluated or simulated. This leads to a high complexity when the eDMTs 147 
need to be connected to one another, and correlations need to be found. In order to identify 148 
correlations, numerical, analytical or data-based models can be used. However, for controlling material 149 
state variation during processing in real time, a highly efficient data-based model needs to be 150 
designated and evolved for specific aspect from the material, by which the relevant datasets and the 151 
model for the dataset-correlation within each eDMT will be selected and collected; in other words, the 152 
eDMT must be reduced. This new data-based model can be applied not only for monitoring of the 153 
target intrinsic properties, but also for the material-science-based diagnostic of the target property 154 
deviation and adjustment, as well as prognostic of the target property based on the processing 155 
parameter and history information. Furthermore, data exchange between this model and the models 156 
from other knowledge domains in production technology (e.g. the model for above mentioned layer 3 157 
in production) should also be taken into consideration. Therefore, apart from eDMT, we propose 158 
another concept for the material digitalization in the production, the Digital Material Shadow (DMS).  159 
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Figure 7 - Comparison of the Physical Process Chain and Digital Process Chain (formed by three (e)DMTs) 

2.2 Digital Material Shadow 160 

In one production process, one intrinsic property of material is important and needs to be monitored, 161 

which will be defined as target property in the following discussion. This target property of the 162 

component is influenced not only by the treatment parameters during the process, but also affected 163 

by the fluctuation of other relevant material properties itself. First of all, the dataset of processing 164 

parameters and the sensor-collected dataflow of temperatures, forces, etc., which are correlated to 165 

the target property, must be automatically defined and correlated throughout the processing, while 166 

the irrelevant processing parameters should be ignored. Furthermore, if a detailed eDMT would be set 167 

up, the size and the complexity of the dataset collections of the eDMT would be enormous, e.g., for a 168 

10 µm grain size material each mm³ would require a complex CP-FEM treatment of 1 million grains 169 

throughout the processing steps. Therefore, for one production process with respect to target 170 

property, the relevant datasets from eDMT should be correlated. Thus, we use the term “shadow” in 171 

analogy to Platon’s allegory of the cave as a reflection of the object characteristic and introduce 172 

another concept: The Digital Material Shadow (DMS) as an interaction approach of the reduced eDMT 173 

model and external sensor dataflow, which will be introduced in the following chapters. 174 

2.2.1 Definition of Digital Material Shadow  175 

In chapter 2.1, we defined DMT as a 3-layered description of a material intrinsic property. Furthermore, 176 

if one property is selected as target property and set as observation point of the DMT, the correlated 177 

datasets should be extracted for the description of the characteristics of DMT under this certain 178 

observation point. Taking Figure 4 (cf. [18]) as an example, the target property of the DMT would be 179 

considered as hardness. In this case, for one single unit, the mechanical property was applied as one 180 

observation point, afterwards, the extracted properties (in this case, chemical composition and 181 

information of microstructure, e.g.  grain size, phase fraction, precipitation etc.) and the correlation 182 

between target property and extracted properties were presented for the description of DMT’s target 183 

property for this single unit. One example of the correlation in this case is the Hall-Petch relation [19], 184 

which describes the correlation between yield strength and grain size.   185 

With the addition of the single unit, the target property of the material is described. Furthermore, with 186 

application of artificial intelligence (AI) approaches, more potentially unknown correlations can be 187 

identified. Thus, more datasets and correlation models (apart from chemical composition and 188 

microstructure) from different layers can be introduced.  189 
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Moreover, if the observation point is changed, the different properties would be presented from layers. 190 

E.g., if the phase fraction were considered as one aspect, then from all 3 layers, the correlated models 191 

and datasets (e.g. heterogeneity of chemical composition, crystal structure and information of 192 

precipitations etc.) would be observed, as shown in Figure 8. 193 

 

Figure 8 - Correlation for determination of target property: hardness (black) and phase fraction (red), ∑represents the 

summarization of different properties in one unit  

Furthermore, if the extensions are considered, then not only the parameters of the treatment, but also 194 

the datasets, which are collected by sensors during the processing, must be included into the reduced 195 

model. One example is the hardness as target property from  Figure 8. The processing area is 196 

considered as one monitoring area of one eDMT. Furthermore, in this monitoring area of eDMT, one 197 

sub-monitoring area is further divided with monitoring range of one sensor (here, the sub-monitoring 198 

area is defined as single_unit). Through the target property (e.g. in Figure 9, the hardness during 199 

processing), a dataset collection (chemical composition, microstructure, etc.) from different layers of 200 

DMT is created and correlated with processing parameters (time, temperature, force and atmosphere 201 

etc.) from the extension for the description of the microstructure changes (or phase transformation) 202 

during the process. Subsequently, the correlation between the material properties and the processing 203 

parameters will be analyzed and applied as models for the DMS description. One the one hand, with 204 

the approach introduced in [18], or the other empirical/physical models, the correlation between 205 

hardness, microstructure and inhomogeneity of local chemical composition can be described (same 206 

for other mechanical properties, e.g. for yield strength, Hall-Petch relation, which is applied for 207 

correlation between chemical composition, grain size and yield strength). Hence, for this single unit, 208 

the material property change, which is observed, can be correlated to various deviations of material 209 

properties from all three layers. On the other hands, the changes of the processing parameters which 210 

are collected by the sensors and the correlation between parameters and material properties will be 211 

analyzed. E.g. the impact of the temperature fluctuation on local chemical composition due to diffusion 212 

can now be analyzed and quantified. This impact can further be transmitted to other correlated 213 

properties with help of the above-mentioned models.  With these correlations, the target property can 214 

be manipulated through adjusting processing parameters or the other correlated material intrinsic 215 

properties, as well as prognosing through pre-given parameters.  216 

If all the single units are integrated as one collection, then the whole effective processing area of the 217 

treatment is described as one digital trace (with respect only to the material properties and treatment 218 

parameters, which are correlated with the observed material properties) of one material processing 219 

(see Figure 9). 220 
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Therefore, a DMS can be defined as one reduced model of DMT or eDMT for the observation of target 221 

property of the material, analogously to the shadow in Figure 2, which reflects the characteristics of 222 

the physical object. Moreover, the DMS can be applied along the process chain (or the eDMT chain) 223 

for the monitoring and, with help of AI or data science approaches, for diagnostics or prognostics of 224 

the target property. 225 

 

Figure 9 - Schematic illustration of eDMT observation with target property “hardness”  

2.2.2 One Use case of DMS in Internet of Production (IOP): Press Hardening 226 

In this chapter, press hardening is selected as one example for DMS application. One of the products 227 

which will be produced by press hardening is B-pillar. For material of B-pillar, one of the most 228 

important properties is the capacity to dissipate energy are important aspects for the protection of 229 

passengers in the event such as site impact or rollover. Therefore, the mechanical properties of the 230 

material such as tensile strength (Rm) and hardness are of interest and should be monitored, 231 

diagnosed and prognosed during the press hardening process. Here, we take tensile strength (Rm) as 232 

an example and defined as one Target Property for the following definition. With help of the 3 233 

layered description of the DMT, 2 intrinsic properties which are correlated to the target property are 234 

taken out (chemical composition and microstructure information). 235 
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Figure 10 - Schematic illustration DMS of Press hardening: target property monitoring through reduced eDMT and 

dataflow collected by sensors  

As shown in Figure 10, the sensor which monitors one sub-area of the material, collects the 236 

information of the local chemical composition (or shows the heterogeneity of the chemical 237 

composition in this area). Furthermore, the dataflow which represents the temperature (T), time (t) 238 

and force (F) in this area are also collected by the sensors. If the first layer of eDMT is considered, then 239 

the atom behavior (both substitutional solid solution atoms and interstitial solid solution atoms) during 240 

the processing will be correlated to the sensor collected dataflow (T, t and F), and the tensile strength 241 

from the first layer can be described with the following correlation: 242 

𝜎1~𝜎(𝐶, 𝑇, 𝑡, 𝐹) (2.1) 

where C represents local chemical composition. Moreover, if we consider the second layer of the eDMT, 243 

then the relevant microstructure information (Mi) of this monitored area can be predicted by 244 

implementing time-dependent dilatometer data, and with help of the T and t, with the following 245 

correlation: 246 

Mi   Mi(C, T, t) (2.2) 

where C represents local chemical composition. Moreover, the microstructure can also be affected by 247 

the implementation of the force, F (e.g. strain-induced martensite formation and dislocation density) 248 

and the interactive effect of F, T and t (e.g.  recrystallization). Therefore, the correlation (2.2) can be 249 

rewritten as followed: 250 

Mi   Mi’(C, T, t, F) (2.3) 

Therefore, the tensile strength in the 2nd layer can be described as followed: 251 

𝜎2~𝜎(𝑀𝑖′(𝐶, 𝑇, 𝑡, 𝐹)) (2.4) 

Eventually, the tensile strength of this sub-area can be described as the summary of both 𝜎1 and 𝜎2: 252 

𝜎𝑠𝑢𝑏~ 𝜎1 + 𝜎2 = 𝜎(𝐶, 𝑇, 𝑡, 𝐹) +  𝜎′(𝑀′(𝐶, 𝑇, 𝑡, 𝐹)) (2.5) 

If all the sub-areas, which are monitored by the individual sensor, are considered, then the target 253 

property (in this example, tensile strength) is monitored and can also be prognosed by the dataflow 254 

collected by the sensors. In this case, the DMS is created by the collaboration of reduced eDMT model 255 

and the sensor-dataflow in real-time, which represents the target property change during the 256 

processing, as shown in Figure 10. The DMS also provides the opportunity for the real-time 257 

manipulation of the target properties: if the range of target property is defined, then the parameters: 258 
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T, t and F can be adjusted for the designated target property. Furthermore, if the measured property 259 

of the material exceeds the range of the target property, then the target property deviation can be 260 

backtracked through parameters (e.g. T, t and F) or other correlated intrinsic properties for main cause 261 

of the problems (diagnose). 262 

3 Conclusion and Summary 263 

In this work, two concepts for digital material description are introduced: digital material twin (DMT) 264 

and digital material shadow (DMS). A DMT describes the material state by providing its intrinsic 265 

properties which are not relevant to the workpiece (which are defined as extrinsic properties in this 266 

work) and correlation in 3 layers along the material length scale (nanoscopic, microscopic and 267 

macroscopic) with help of both experimental and simulation datasets. Furthermore, the DMT is 268 

extended as eDMT with the parameter dataset of the material processing, which leads to the 269 

subsequent DMTs in the processing chain. A material state change in one processing chain can be 270 

described by connecting all the relevant eDMTs (eDMT chain). DMS is introduced for reducing the data 271 

complexity of eDMT or eDMT chain, which also provides the possibility of material state monitoring in 272 

real-time during the processing. The monitoring function can be realized through the reduction of the 273 

eDMT to target property and the implementation of the sensor dataflow in real-time. The target 274 

property can further be diagnosed and prognosed with help of AI or data science approaches. 275 

Moreover, DMS is applied on the process of press hardening, in which the target property is monitored, 276 

diagnosed and prognosed with help of the correlation models with intrinsic properties and collected 277 

sensor dataflow. A deep collaboration of experts in relevant fields enables an efficient design and 278 

application of eDMT and DMS.  279 
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