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1 | INTRODUCTION

The theory of boundedness of classical operators, such as maximal operator, fractional maximal operator, Riesz potential, singu-
lar integral operator etc, studied by many mathematicians. These results are important in Harmonic analysis and can be applied
fruitful in many applications.
In this paper, we consider the generalized translate operator associated with the Laplace-Bessel differential operator

- 0 70
AB:Z@—F . P 71>0,...,7.>0.

i=1 i i=1 7! i
The Riesz potential /,,, (B-Riesz potential), associated with the generalized translate operator are investigated. At first, we prove
that the B-Riesz potential /,,, and their commutators for 0 < @ < n + |y| is bounded from the generalized weighted B-Morrey
space M., o, (R} ) to M, (R} ), where a/in+y) =1/p—-1/q,1 < p < (n+|yD/a, (¢, 0,) € Zl+§.y(RZ,+)’
i + ﬁ = 1. For x € R" and r > 0, let B(x, r) denote the open ball centered at x of radius r.

Let f € Lll"C(IR”). The maximal operator M and the Riesz potential I* are defined by

M f(x) = sup | B(x, )| / lfDldy,
>0 sl

f(dy

=y O0<a<n,
[Rn

I“f(x) =
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where | B(x, t)| is the Lebesgue measure of the ball B(x, ). The operators M and I* play an important role in real and harmonic
analysis (see, for example“z,43 and"8),

In the theory of partial differential equations, Morrey spaces M, ;(R") play an important role. In 33 they were introduced by
C. Morrey and defined as follows: For0 < A <nand 1 <p< oo, f € MM(IR") if f € LL"C(R") and

_2
11y, = W e = 50D r 71 ey < 00

xeR”, r>0
If =0, then M, ;(R") = L, (R"), if A = n, then M, ;(R") = L (R"), if 2 <0 or 4 > n, then M, ;,(R") = ©, where © is the
set of all functions equivalent to 0 on R”".
These spaces appeared to be quite useful in the study of the local behaviour of the solutions to elliptic partial differential
equations, apriori estimates and other topics in the theory of partial differential equations.
Also by WM, ,(R") we denote the weak Morrey space of all functions f € WLLOC(IR”) for which

_2
up r 7’ ”f”WLp(B(x,r)) < oo,

”f”WMM = ”f”WMM(R") = S
’ ’ x€R", r>0

where W L (R") denotes the weak L,(R") spaces.
F. Chiarenza and M. Frasca® studied the boundedness of the maximal operator M in Morrey spaces M pa(R") (see, also®D),
Their results can be summarized as follows:

Theorem 1. Let0 <a<n,0<Ai<nandl <p< .
i) If 1 < p < oo, then M is bounded from M, ;,(R") to M, ;(R").
ii) If p =1, then M is bounded from M, ,(R") to WM, ,(R").
The classical result by Hardy-Littlewood-Sobolev states that if 1 < p < ¢ < oo, then I” is bounded from L,(R") to L (R")

if and only if & = ﬁ - g and for p = 1 < g < oo, I is bounded from L;(R") to W L (R") if and only if & = n — g. In, D. R.
Adams studied the boundedness of the Riesz potential in Morrey spaces and proved the follows statement (see, also)

Theorem 2. Let0<a<n,05/1<nand13p<%.

i) Ifl<p< %, then condition - — - = ﬁ is necessary and sufficient for the boundedness 1 from M, ;(R") to M, ;(R").

1_1
P4

ii) If p = 1, then condition 1 — é = ﬁ is necessary and sufficient for the boundedness 1* from M, ;(R") to WM, ;(R").

Ifa= g - g, then 4 = 0 and the statement of Theorem [2|reduces to the abovementioned result by Hardy-Littlewood-Sobolev.

If in place of the power function r* in the definition of M ».2(R") we consider any positive measurable weight function w(r),
then it becomes generalized Morrey space M, ,(R").

Definition 1. Let w(r) positive measurable weight function on (0, o0) and 1 < p < co. We denote by M
Morrey spaces, the spaces of all functions f € LL"C(R”) with finite quasinorm

»o(R") the generalized

n

ror
”f”MW“(R”) = Sup J—

112 Bory-
reRnpso @(r) LB

T. Mizuhara?, E. Nakai®»(2) and V. S. Guliyev!# obtained sufficient conditions on weights @, and w, ensuring the bound-
edness of integral operators T from M, , (R") to M, , (R"). In 23 the following statement was proved, containing the result
in¥Z and in the general setting of metric measure spaces obtained in32(#%),

In#52 and“>, the authors obtained sufficient conditions on weights @, and w, for the boundedness of the singular integral
operator T' from M, , (R") to M,, ,, (R"). In 33 the following doubling conditions were imposed on @(r):

o) <o) < cor), (1)

whenever r <t < 2r, where ¢ > 1 does not depend on ¢ and r, jointly with the condition:

/ wm)% < Col(r) @)
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for the maximal or singular integral operator and the condition

o)

/ oL < e 3)
for potential and fractional maximal operators, where C > 0 does not depend on r.
In"?, the following statements were proved.
Theorem 3. “J Let 1 < p < oo and w(r) satisfy conditions (I)-(2). Then the operators M and singular integral operator T are
bounded in M,, ,(R").
Theorem 4. ' Let 1 <p<0,0<a < g, and () satisfy conditions (I)) and (3). Then the operators M* and I* are bounded

n n : 1 _ 1 a
from M, ,(R") to M, ,,(R") with P

n

The following statement, containing the results in®2,35, was proved in#. Note that Theorems[5|and[6|do not require condition

@

Theorem 5. ¥ Let 1 < p < co and w, (r), w,(r) be positive measurable functions satisfying the condition

(e

dt
/wl(t)T < cpwy(r) 4
with ¢; > 0 not depending on 7 > 0. Then the operators M and singular integral operator T' are bounded from M, , (R") to
M, (R™).
20

Theorem 6. 4 Tet0<a<n,1<p< oo, L=l _andw,(r , w,(r) be positive measurable functions satisfying the condition
p 7 n 1 /) p ying

oo

/t”’wl(t)% < ¢ w,(r). (®)]

Then the operators M* and I* are bounded from J\/lpqw1 (R™) to Mq,WZ(IR").

The maximal operator and potential operator related topics associated with the Laplace-Bessel differential operator have
been investigated by many researchers, see B. Muckenhoupt and E.Stein%, 1. Kipriyanov2®, K. Trimeche®?, L. Lyakhov3l, K.
Stempak®*, A.D. Gadjiev and I.A. Aliev!?, V.S. Guliyev!®!? V.S. Guliyev and J.J. Hasanov®?’, J.J. Hasanov%%, A. Serbetci, 1.
Ekincioglu>'194l' and others.

In this paper we consider the generalized translate operator generated by the Laplace-Bessel differential operator Az in terms
of which the B-maximal operator and the B-Riesz potential are investigated in the generalized weighted B-Morrey spaces.

We obtain for the operator I,, to be bounded from generalized weighted B-Morrey space M p,wl,wl.y(RZ, L) to
Mq,wb%’y(ﬂ%z’ ) and from generalized weighted B-Morrey space Ml,wl,w,y(RZ, ) to weak generalized weighted B-Morrey space
WMq,wz,w,y(Rz,+ :

The structure of the paper is as follows. In first section, we present some definitions and auxiliary results. In second section,
we introduced generalized B-Morrey spaces. In Section 3, the boundedness of the fractional B-maximal operator on generalized
weighted B-Morrey space Mpku(ﬁ,y(RZ, o Mq,wz,w,y(RZ, ;) is proved. In Section 4, the main result of the paper which is the
Hardy-Littlewood-Sobolev theorem for B-Riesz potential in the generalized weighted B-Morrey space established. In finaly
section, the boundedness of the B-singular integral operator from generalized weighted B-Morrey space M (RZ’ o
M (IRZ’ ,) is proved.

D@5,y

Pw1,@Y

2 | DEFINITIONS, NOTATION AND PRELIMINARIES

Suppose that R" is n-dimensional Euclidean space, x = (x,,...,x,) € R", |x|*> = Z:':] xiz, X' = (xg,...,x,) € RE, X" =
(Xps1s s X,) ERE x =(x',x")€R", n > 2, Ry, ={x= X" eR" x;,>0,...,x, >0}, 1 <k<n E(x,r)={ye

IRZ&; x =yl <r}, E,= EQO,r),y =57 71 > 07 > 0 |yl =7, + ... + 7, and (x)7 =x§‘ ---xi".
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For measurable E C R} _, suppose |E|, = /E(x’)ydx, then |E,|, = w(n, k, e, Q = n+ |y|, where

k,+’
n—k k F(ﬂ)
_ , _ T2 2
a)(n,k,y)—/(x ydx = H ~
E, i=1 F E

Denote by T* the generalized translate operator ( B-translate operator) acting according to the law

T"f(y)=Cy,k/.-./f((x’,y’)ﬂ,X”—y”) dv(p),
0 0

1
where  (x;, 7)), = (x} - 2xycosf + yHr, 1 < i < k, (X9, =

) < <
((xl,yl)ﬂl, s (xk,yk)ﬂk), dv(p) = 1‘[1 sin™' g, dp, ...dp,, 1 <k <nand

kK T <ﬂ)
_k 2 2k
C=1": [[ ——= = S0k k).
i=l T (7—> d
2
We remark that the generalized translate operator T* is closely connected with the Bessel differential operator B (for example,
n=k=1see n>1,k=1see?and n, k > 1 see?! for details).
Let LP,W(RZ +) be the space of measurable functions on IRZ + with finite norm

1/p
Wlle,,, = ”f”vawvy([R:d_) = (/ |f(x)|pfpp(x)(x’)ydx> , I<p<oo.
R

For p = oo the space L, (R} ) is defined by means of the usual modification

1o, =11l = ess sup ()| £ (L.
i : XGRZ.Jr

Definition 2. The weight function ¢ belongs to the class A, (R} ) for 1 < p < oo, if

1
sup (lE(x,r)l;‘ / qﬂ’(y)(y’)ydy>
xERZY+,r>0 Bler)

X (IE(x, i / <p"’/(y)(y’)ydy> <o
E(x,r)
and @ belongs to A, (R} ), if there exists a positive constant C such that for any x € R} _ and r > 0
EGn)! / ()Y dy < Cess sup ——

veEer @)
E(x,r)

Definition 3. The weight function (¢, ,) belongs to the class A, (R} Qforl <p<oeo,if

1 / b ’
sup —_— P, )de>
xeR! >0 < |E(x, r)|yE( : g

/ wI”'(y)(y’)ydy)’ < oo

(x,r)

1
X <
|E(x, 1),
E
The generalized translate operator 77 generates the corresponding B-convolution

(f ® &)x) = / FOIT* g1 ) dy,

n
de—
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for which the Young inequality

If @l <Ifll, lgl, » 1<pa<r<o,
holds.

Lemma 1. Forall x € RZ’ .. the following equality is valid

/ TYg(x)(y') dy = / g(\/2?+2?,...,\/Ziﬁi,z")du(z,?),

E, E((x.0).0)

(x - z,?)

Lemma 2. Forall x € RZ’ .. the following equality is valid

where E((x,0),7) = {(z, ') € R" X (0, 00)* : <t}

/ T'gx)eMM, x, (MG dy

k+

E((x,0),r)

= / g(\/z%+2?,...,\/Zi+Zi,z”>(p(z,?)M‘/}( (z,2)dVv(z, 7)),
R(0,00)*

(x - z,?)

Lemmas [T]and [2) are straightforward via the following substitutions

where E((x,0),7) = {(z,z') € R" X (0, 00)* : <t}

z!" :x”,z[_z y; cosa;, z_[:yisgmi, O0La<mi=1,...,k,
YER] ., 2/ =(Z,.... %), (2,2) ER"X(0,00), 1 <k <.

Definition 4. "8 Let 1 < p < coand 0 < 4 < Q. We denote by M, ;
the Laplace-Bessel differential operator the set of locally integrable functions f(x), x € R

(RZ’ ) Morrey space (= B-Morrey space), associated with

Z o with the finite norm

1/p
1w, = sup <r” / 111 ]"(x)(y’)ydy> .
>0, xe Z}

Define the B-maximal operator of f by

M, f(x) = sup |E, | / [ £1 1)) dy,

E

»

and the fractional B-maximal operator by

M,,f(x) = sug) |E,|y5_1 /Ty[|f| 1)/ Ydy, 0<a<O,
E

and the B-Riesz potential by
I, f(x)= / U120 dy, 0<a<Q.
R+
We write M, f(x) = M, f(x) in the case where a = 0.
Let w and @ positive measurable weight functions. The norm in the spaces M
forms,

(RZ’ ) and M IRZ’ ) defined in two

p-w,y pw,@,Y (

1/p

/Ty[lfl PG ydyl

E

Q

t
= su —_—
I, = 300 o

1
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and
1/p

! / 11| Pe)G Y dy
(E(0,1)

1l m,,,,, = p
P0.Qy XGRZ,# 0 CUU)”@“L

Py

-e . =0
Ifw@=r7»thenM,, (R )=L, (R ), ifo®)=17,0<1<Q,then M, (R} )=M,, (R} ).
Denote by M. ! the sharp maximal function defined by

ME 1) = sup |EO, 0l / T2 £ () = f 000GV dy,
E(0,)

where fro(x) = [EQ,0;" [ T f)(/') dy.
E(0,1)
B — BMO space, BMO, (R, ), defined as the space of locally integrable functions f* with finite norm

1flawo, = sup  1EODL! / T £ — Fronl(Vdy < co.

>0, xeR”
e+ EQ.)

or
7 lawo, =inf _swp EQ.0L [ |77 = I/ ay <o

>0, xeR”
ke E0.1)

The following theorem was proved in.
Theorem 7. i) Let f € L’{’;(RZ D If
1/p
sup <|E(0, f)|;1 / |77 f(x) - fE(O,;)(X)lp(J/')de>

>0, xeR”
k+ E0,f)

= ”f”BMON < oo,

then forany 1 < p < o0
1/ Nasso, < 1/ s, < Apllfllano,

where the constant A, depends only on p.
ii) Let f € BMO, (R} .- Then, there is a constant C > 0 such that
t
|fe0.n = FE0n| < Clif Mo, In o 0<2r<t
where C is independent of f, x,r and t.

Lemma 3. ®'Let1 <p<o,p€A, (R} ), be BMO,R] ). Then

”T'b(x) —bron

L, ,,(EQr)

16l garo, ®  sup
" xeR!,.r>0 lellz, e

3 | B-RIESZ POTENTIALS IN GENERALIZED B-MORREY SPACES WITH TWO-WEIGHTS

Theorem 8. Let0) < a < 0,1 < p < %, % - :11 = g, (9, p,) € Zl+§,y(RZ,+)’ % + ;% = 1 and w,(r), w,(r) be positive
measurable functions satisfying the condition

— < Cay(1). (6)
[l |l L, Eorm T

/ o Mol o gr

Then I, , is bounded from M

D.01,Q1,Y

(R? ) to M

407,077 "
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Proof. Let f € M (R;+). Then

P.@1,P15Y
I, f(x)=1,,f(x)+1,,[(x).

Firstly, we estimate 1, , f1(x). By using the Holder’s inequality we have

L fiol < [ Tl 2wy

E(0.1)

-1
<Y [ ey

E(0,2/+11)\ E(0,2/1)

-1 S\ @ 1/p
<y (2fr> < / Tylf(x)l”(p’{(y)(y’)’dy>

E(0,2+11)\ E(0,2/1)

, 1/p
@," MONd y)

X
A/

EQ2D\E©,21)
-1
< C”f“L,,,wl‘y(E(OJ))“(pzlle(E(O,t))'
By the inequality (6)), we obtain

Ia,yfl

Lygp 1 (EQ, t)) clis ”anl-r(E(‘W

SCIfNL (Eon

P@1Y

[s9)
| () ”LW(E(O,t)) / a)l(r)||§01 “Lp.r(E(Ov’)) ﬂ

o, “LP L(E©.) [£7 ||L,, JEQr) T
. 4 :

S ClfNlpq wz(f)||(l’2||quy(E(o,r))~

P97

Hence, we have

1
a,yfl (E(Ot)) ”f”M

Now we estimate I, , f>(x). By using the Holder’s inequality, we get

Loy poron /wz(f)“(Pz”L (E©0.0)

I, Fr0)] < / T2V dy
R? \EQO.)

(2/n)° / T’ £l dy

J=0 EQ2 D\E0.2/1)

o , 1/p
(21)" ( / o (y)(y’)ydy>
j=0

J E0,211)\ E(0,271)

1/p
><< / Tylf(x)l”(p’f(y)(y’)’dy>

E0.2+1)\E(0,271)

oo}
0)1(")||(/’1||LP_V(E(0,r)) dr

<Cllfly,, ., /
t

I () [I L, (E©.r) r

Thus, from the inequality (6), we get
oy L0l < Cllifllp,, @20

P@1.P1Y

So, from (8) and (@), we have

wa

ayfl‘ Ia,ny

< Clliflia,,,,,, ,22OleallL, £

Ly g, (EQ. r)) Ly, (EQ.0) Ly, (EQ.0)

Q)

®)

©))
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Finally I, f € M (R} ,) and

4,002,027

Lof|,,  <CIflly

P01.01.7
q.0).02.7

O

Corollary 1. Let0<a < Q,1 <p< %, - (R™)

toL,, ,(R").

11 ~ .
Pl %, (91,9, € A1+p1“},([R{Z’+). The operator 1, , is bounded from L,,.,

Corollary 2. LetO0<a < Q0,1 <p< (R™)

toL,, ,(R").

01 1 _a ~ )
PO (91,9, € A1+pi,,y(RZ,+)' The operator M, , is bounded from L,, .,

4 | COMMUTATORS OF B-RIESZ POTENTIAL IN B-MORREY SPACES WITH TWO
WEIGHTS

In this section, we consider commutators of the B-Riesz potential defined as the following equality
10.1,1700 = [ (460 =B TS0 Yy, 0 <a <O
R+

Given a measurable function b the operator |b, I, | is defined by

014,170 = [ 1660 =BT 7y, 0<a <.
R+
Theorem 9. Let0<a < 0,1 < p< %, i -1l 5.b€ BMO,[R} ). (#1.9)) € ZH}%J(IRZ&), @ € A,,(R? ) and o,(r),
@,(r) be positive measurable functions satisfying the condition (6). Then |, I, «y| 1s bounded from M 1.0, SR Do Mq,wz’%y.

Proof. Let f € M, ., (RY, ). Then

|b,Ia,y|f<x)=< / + / )Tyub—b(x)]f(x>||y|“—Q(y’>ydy
EQ. R! \EQO.0)

= F(x,t) + Fy(x,1).

Firstly, we estimate F;(x,?). By using the Holder’s inequality, we have

Fi(x,n = / T|[b = b()1f (O 1y1*~ (/Y dy
E(0,1)

-1
<Y (2@)7° / 2116 — b1 £ 01V dy

JEm EO2+ N\ E©0.21)

-1 /v
<) (ZJt)a_Q< / ITyb(x)—blp’<pf‘(y)(y’)ydy>

j==o0

E(0,27+11)\ E(0,271)

1/p
X < / T’ If(X)I”(/)l(y)(y')ydy>
E(02+1 1)\ E(0,2/1)

-1
<C ||b||BMoy ”f”mep].y(E(O’t))”qoz”L,“,(E(O,t))'
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By the inequality (6}, we obtain

IFll., (g0 <€ 16l 3aro, 1/ 1l

4927

(E0.1))

pP@1sr

< Cllbllgmo, If Nz, 2o =

[Se]
lleall, (E(0,1)) /wl(")”q’l”L,,‘,(E(O,r))ﬂ
pory o;()]le, ”LW(E((),t))

- 1

| I L,,(EOr) r

<C ||b||BMoy ||f”Mp_mwl’ywz(t)”(I’z||quy(E(o,;))-

Hence we have
1F ., 0 < CIblano, I1f 11y
Now we estimate F,(x, ). By using the Holder s inequality, we get

OOl @a Iz, E0.0)- (10)

P09 1Y

B0 < / (b = I F DIy dy
R \EO)

<Y (20)° / T7(1b — b(x) || £ DG dy
=0

E(0.2+ D\E(0,2/1)

oo 1/p
<YE0( [ ma-wetonyay)

J=0 E(0.21+11)\ E(0,2/1)

1/p
X ( / T If(X)I”fpl(y)(y’)ydy>
E0,21*1)\ E(0,2/1)

[e5)
oMol o dr
< CliBllgao, 1/ lIna,,, ., / —
t

lleall L, Eom T

Thus y the inequality (6)), we get

Fy(x,1) < C bllgago, 1/ lag,,, , @20 (11)
Therefore, from and (TT)), we have
”lb’ Iu.ylf Ly, (EQ.0) = ”Fl”LW S(E©,) + ”FZHLWZV(E(OI))
<C ”b”BMo ”f”MPw o ywz(t)”(Pz”L (E©0,1))*
Finally, we get |b,1, | f € Mq’wzq%y(lR" ) and
”lb’ ay'f”Mq,mz.'ﬂzJ S C ”b”BM07 ”f”Mf””]Wl«V'
O
Corollary 3. Let0 <a < Q, 1 <p< &, i ; =2.b€ BMO,(R!)), (¢,.¢,) € A, (R! )and @, € A, (R! ). The
operator |b, I, | is bounded from L,,,R)wL,, (R") ’
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