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Abstract. We are devoted to the study of a non-local nonhomogeneous
time fractional timoshenko system with frictional and viscoelastic damping
terms. We are concerned with the well-posedness of the given problem.
The approach relies on some functional analysis tools, operator theory, a
prori estimates and density arguments.

1. Introduction

Vibrations of beams are not always safe and welcomed because of their great
and irreparable damages effects. In this situation, researchers try to introduce
some damping mechanisms (viscous damping, thermoelastic damping, modal
damping, frictional damping, Kelvin-Voigt damping) in such a way that these
damaging and destructive vibrations are perfectly reduced. In other words,
an intensive investigation has been carried out to impose minimal conditions
to provide and guarantee stability of Timoshenko systems using several types
of dissipative mechanisms. Several authors studied and investigated problems
involving the previous mentioned type of dampings (local or global) where
different kind of stability have been showed. In this regard, we refer the reader
to the references [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62] and the references
therein.
As a classical and a simple model [1], Timoshenko studied the following

coupled hyperbolic system ρ1θtt − κ(θx − φ)x = 0, (x, t) ∈ (0, L)× (0,∞)
ρ2φtt = κ∗φxx + κ(θx − φ) (x, t) ∈ (0, L)× (0,∞),

(θx − φ) |x=Lx=0= 0, φx |x=Lx=0= 0,
(1.1)

describing the transverse vibration of a beam. where L is the length of the
beam in its equilibrium configuration. The function θ models the transverse
displacement of the beam and φ models the rotation angle of its filament. The
coeffi cients ρ1, ρ2, κ and κ

∗ are respectively the density, the polar moment
of inertia of a cross section, the shear modulus and the Young’s modulus
of elasticity. Timoshenko system (1.1) was generalized and studied by many
authors. As mentioned at the beginning of the introduction, different types
of dampings were added to the Timoshenko system for the purpose of its

Key words and phrases. Fractional Timoshenko system; memory term damping; frictional
damping; non local constraint; a priori estimate; Well posedness.
2010 Mathematics Subject Classification: 35B45, 35R11, 35L55.

1



2 SAID MESLOUB, EMAN ALHAZZANI, GADAIN HASSAN ELTAYEB

stabilization. For example, in [4], researchers investigated the exponential
stability for a Timoshenko system having two weak dampings ρ1θtt = κ(θx − φ)x − θt, in (0, L)× (0,∞),

ρ2φtt = κ∗φxx − κ(θx − φ)x − φt, in (0, L)× (0,∞),
θ(0, t) = θ(L, t) = φ(0, t) = φ(L, t) = 0, t > 0.

(1.2)

In [2], authors proved some exponential decay results for a Timoshenko
system with a memory damping term

ρ1θtt − κ1(θx + φ)x = 0, in (0, L)× (0,∞)
ρ2φtt − κ2φxx + κ1(θx + φ) + h ∗ φxx(x, t) = 0, in (0, L)× (0,∞)

θ(0, t) = θ(L, t) = φ(0, t) = φ(L, t) = 0,
θ(x, 0) = θ0, θt(x, 0) = θ1, φ(x, 0) = φ0, φt(x, 0) = φ1.

(1.3)

Authors considered and studied in [5] the effect of frictional and viscoelastic
dampings, and proved some exponential and polynomial decay results for the
system

θtt − (θx + φ)x = 0,

φtt − φxx + θx + φ+
t∫
0

g(t− s)(a(x)φx(x, s))xds+ b(x)h(φt) = 0,

θ(0, t) = θ(1, t) = φ(0, t) = φ(1, t) = 0, t > 0.

(1.4)

We also mention that in [43], the authors investigated the exponential stabi-
lization of a Timoshenko system by a thermal effect damping.

ρ1θtt − κ1(θx + φ)x = 0, in (0, L)× (0,∞)
ρ2φtt − κ2φxx + κ1(θx + φ) + γωx, in (0, L)× (0,∞)

ρ2ωtt − κ3ωxx + β
t∫
0

g(t− s)ωxx(x, s)ds+ γφttx, in (0, L)× (0,∞).

(1.5)
In [3], the author considered a Timoshenko linear thermoelastic system with
linear frictional damping and a distributed delay. He proved the well-posedness,
and proved that the system is exponentially stable regardless of the speeds of
wave propagation. There are many other papers in the literature dealing with
the stabilization of different version of Timoshenko systems. For more results
concerning the stabilization and controllability of Timoshenko systems, we
refer the reader to [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31].
Recently, a generalization of the Timoshenko system (1.1) into fractional

setting is studied in [44] by using a fractional version of resolvents. The au-
thor established the well posedness of a fractional Timoshenko system, and
proved that lower order fractional terms can stabilize the system in a Mittag-
Leffl er fashion. More precisely, the author considered the initial boundary
value problem

ρ1∂
α
t (∂αt θ)− κ1(θx + φ)x = 0, in (0, 1)× (0,∞)

ρ2∂
α
t (∂αt φ+aφ)− κ2φxx + κ1(θx + φ), in (0, 1)× (0,∞)
θ(0, t) = θ(1, t) = 0, φ(0, t) = φ(1, t) = 0, t > 0

θ(x, 0) = θ0(x) , φ(x, 0) = ψ(x).
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For some other fractional and integer order Timoshenko systems, the reader
can refer to [63, 64, 65, 66, 67, 68]. Motivated by the above results on Tim-
oshenko systems, we consider a non local initial boundary value problem for
a non-homogeneous fractional Timoshenko system with a frictional damping
in the first equation and a viscoelastic memory damping term in the second
equation. The system is complemented with initial conditions and non lo-
cal purely boundary integral conditions. At the beginning of the year 1963,
Cannon [20] was the first researcher to investigate a non local problem with a

non local constraint (energy specification) of the form
l∫
0

χ(x)U(x, t)dt = τ(t),

where χ(x), and τ(t) are given functions. More precisely, he used the potential
method to investigate the well posedness of the heat equation subject to the
specification of energy. This type of conditions arise mainly when the data can-
not be measured directly on the boundary, but only their averages (weighted
averages) are known. Due to their importance, physical significance (mean,
total flux, total energy,..) and numerous applications in different fields of sci-
ence and engineering, such as underground water flow, vibration problems,
heat conduction, medical science, nuclear reactor dynamics, thermoelasticity,
and plasma physics and control theory, several authors extensively studied
this type of problems. We can cite for example [16, 21, 22, 23, 24, 25, 26,
28, 29, 30, 31]. Note that theoretical study of non local problems is connected
with great diffi culties, since the presence of integral terms in the boundary
conditions can greatly complicate the application of classical methods of func-
tional analysis method, especially when it comes to the fractional case . A
functional analysis method based on some a priori bounds and on the density
of the range of the unbounded operator corresponding to the abstract formu-
lation of the given problem is used to prove the well posedness of the posed
problem. This is shown through the introduction of some multiplier opera-
tors, some classical and fractional inequalities, and the establishment of some
properties, involving fractional derivatives.
To the best of our knowledge, the treated fractional system problem (2.1)-

(2.4) has never been studied and explored in the literature. This work can be
considered as a contribution in the development of the traditional functional
analysis method, the so called energy inequality method used to prove the well
posedness of mixed problems with integral boundary conditions. For some clas-
sical cases, the reader can refer for example to example [16, 17, 18, 19, 27], and
for some fractional cases, the reader should refer to [32, 33, 34, 36, 37, 38, 39, 40].
We should also mention here that there are some important papers dealing with
numerical aspects for Timoshenko systems, and having many applications, for
which the reader can refer to [46 47, 48, 49]. There are some papers dealing
with Timoshenko system with fractional operator in the memory [41, 42].
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2. Formulation of the problem and function spaces

Given the interval I = (0, L), we consider the non-homogeneous fractional
viscoelastic beam model with frictional damping of Timoshenko type

L1(θ, φ) = ρ1∂
α+1
t θ − κ1(θx + φ)x + θt = F (x, t)

L2(θ, φ) = ρ2∂
α+1
t φ− κ2φxx + κ1(θx + φ) +

t∫
0

m(t− s)φxx(x, s)ds = G(x, t),

(2.1)
in the unknowns (θ, φ) : (x, t) ∈ I × [0, T ]→ R, the strictly positive constants
ρ1, ρ2, κ1 and κ2 satisfy the relation

ρ1
κ1

=
ρ2
κ2
,

and f , g , ϕ , ψ, F, and G are given functions, and m : R+ → R+ is a twice
differentiable function such that

κ2 −
T∫
0

m(t)dt = l > 0, m′(t) < 0, ∀t ≥ 0. (2.2)

The system (2.1) is complemented with the initial conditions{
Γ1θ = θ(x, 0) = ϕ(x) , Γ2θ = θt(x, 0) = ψ(x) ,
Γ1φ = φ(x, 0) = f(x) , Γ2φ = φt(x, 0) = g(x),

(2.3)

and the non local boundary integral conditions

L∫
0

θdx = 0 ,

L∫
0

xθdx = 0,

L∫
0

φdx = 0 ,

L∫
0

xφdx = 0. (2.4)

This system of coupled hyperbolic equations represents a Timoshenko model
for a thick beam of length L,where θ is the transverse displacement of the
beam and φ is the rotation angle of the filament of the beam. The coeffi cients
ρ1, ρ2, κ1 and κ2 are respectively the density, the polar moment of inertia of
a cross section, the shear modulus and the Young’s modulus of elasticity.
The integral conditions represent the averages (weighted averages) of the total
transverse displacement of the beam and the rotation angle of the filament of
the beam.
Our aim is to study the well posedness of the solution of problem (2.1),

(2.4). That is on the basis of some a priori bounds and on the density of the
range of the operator generated by the problem under consideration, we prove
the existence, uniqueness and continuous dependence of the solution on the
given data of problem (2.1), (2.4). We now introduce some function spaces
needed throughout the sequel. Let L2(QT ) be the Hilbert space of square
integrable functions on QT = (0, 1)× (0, T ), T <∞, with scalar product and
norm respectively

(Z, S)L2(QT ) =

∫
QT
ZSdxdt, ‖Z‖2L2(QT ) =

∫
QT
Z2dxdt. (2.5)
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We also use the space L2((0, 1)) on the interval (0, 1), whose definition is
analogous to the space on Q. Let B1

2(0, L) be the space obtained by completion
of the space C0(0, L) of real continuous functions with compact support in the
interval (0, L) with respect to the inner product

(γ, γ∗)B12(0,L) =

L∫
0

Ixγ.=xγ∗dx,

where Ixγ =
x∫
0

γ(ζ)dζ for every fixed x ∈ (0, L). The associated norm is

‖γ‖2B12(0,L) =
√

(γ, γ)B12(0,L) =
L∫
0

(Ixγ)2 dx. We denote by C(J ;L2(0, L)) with

J = (0, T ) the set of all continuous functions γ(., t) : J → L2(0, L) with norm

‖γ‖2C(J ;L2(0,L)) = sup
0≤t≤T

‖γ(., t)‖2L2(0,L) <∞, (2.6)

and C(J ;B1
2(0, L)) the set of functions γ(., t) : J → B1

2(0, L) with norm

‖γ‖2C(J ;B12(0,L)) = sup
0≤t≤T

‖Ixγ(., t)‖2L2(0,L) = sup
0≤t≤T

‖γ(., t)‖2B12(0,L) <∞. (2.7)

To obtain a priori estimate for the solution, we write down our problem (2.1),
(2.4) in its operator form: GZ = H with Z = (θ, φ), GZ = (S1(θ, φ),S2(θ, φ))
and H = (H1, H2) where S1(θ, φ) = {L1(θ, φ),Γ1θ,Γ2θ}

S2(θ, φ) = {L2(θ, φ),Γ1φ,Γ2φ}
H1 = {F, ϕ, ψ}, H2 = {G, f, g}.

, (2.8)

The operator G is an unbounded operator of domain of definitionD(G) consist-
ing of elements (θ, φ) ∈

(
L2(J ;L2(0, L))

)2
such that θx, φx, θt, φt, θtt, φtt, θxx, φxx

belonging to L2(J ;L2(0, L)) verifying initial and boundary conditions (2.3) and
(2.4). The operator G is acting from the Banach space B into the Hilbert space
E , where B is the Banach space obtained by completing D(G) with respect to
the norm

‖Z‖2B = ‖θ(., t)‖2
C(J ;L2(0,L))

+ ‖φ(., t)‖2
C(J ;L2(0,L))

. (2.9)

And E =
[
L2(QT )× (L2(0, L))2

]
×
[
L2(QT )× (L2(0, L))2

]
is the Hilbert space

consisting of vector-valued functions H = ({F, ϕ, ψ}, {G, f, g}) for which the
norm

‖H‖2E = ‖F‖2L2(QT ) + ‖ϕ‖2L2(0,L) + ‖ψ‖2L2(0,L) + ‖G‖2L2(QT )
+‖f‖2L2(0,L) + ‖g‖2L2(0,L). (2.10)

is finite.
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3. Preliminaries (Definitions and lemmas)

In this section, we provide some definitions and lemmas needed for estab-
lishing different proves in the sequel.
Definition 1. [50] The time fractional derivative of order β, with β ∈ (1, 2)

for a function V is defined by

C∂βt V (x, t) =
1

Γ(2− β)

t∫
0

Vττ (x, τ)

(t− τ)β−1
dτ , (3.1)

and for β ∈ (0, 1) it is defined by

C∂βt V (x, t) =
1

Γ(1− β)

t∫
0

Vτ (x, τ)

(t− τ)β
dτ

where Γ(1− β) is the Gamma function.
Definition 2. [50]. The fractional Riemann-Liouville integral of order

0 < β < 1 [52] which is given by

D−βt υ(x, t) =
1

Γ(β)

t∫
0

υ(x, τ)

(t− τ)1−β
dτ . (2.6)

Lemma 2.1 [35]. Let E(s) be nonnegative and absolutely continuous on
[0, T ], and suppose that for almost all s ∈ [0, T ], R satisfies the inequality

dE

ds
≤ A(s)E(s) +B(s), (3.2)

where the functions A(s) and B(s) are summable and nonnegative on [0, T ].
Then

E(s) ≤ exp


s∫
0

A(t)dt


E(0) +

s∫
0

B(t)dt

 . (3.3)

Lemma 2.3. [34] Let a nonnegative absolutely continuous function Q(t)
satisfy the inequality

C∂βt Q(t) ≤ b1Q(t) + b2(t), 0 < β < 1, (3.4)

for almost all t ∈ [0, T ], where b1 is a positive constant and b2(t) is an integrable
nonnegative function on [0, T ]. Then

Q(t) ≤ Q(0)Eβ(b1t
β) + Γ(β)Eβ,β(b1t

β)D−βt b2(t), (3.5)

where

Eβ(x) =
∞∑
n=0

xn

Γ(βn+ 1)
and Eβ,µ(x) =

∞∑
n=0

xn

Γ(βn+ µ)
,

are the MIttag-Leffl er functions
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4. A priori estimate and its Consequences

In this section, we establish an energy inequality from which we deduce the
uniqueness and continuous dependence of solution of problem (2.1)-(2.4) on
the given data.
Theorem 3.1. For any function Z = (θ, φ) ∈ D(G) the following a priori

estimates holds

‖θ(., t)‖2
C(J ;L2(0,L))

+ ‖φ(., t)‖2
C(J ;L2(0,L))

≤ F∗
(
‖ϕ‖2L2(0,L) + ‖ψ‖2L2(0,L) + ‖g‖2L2(0,L) + ‖f‖2L2(0,L)

+‖F‖2L2(0,t;L2(0,L)) + ‖G‖2L2(0,t;L2(0,L))
)
, (4.1)

and

Dα−1
(
‖θt‖B12(0,L) + ‖φt‖B12(0,L)

)
≤ F∗

(
‖ϕ‖2L2(0,L) + ‖ψ‖2L2(0,L) + ‖g‖2L2(0,L) + ‖f‖2L2(0,L)

+‖F‖2L2(0,t;L2(0,L)) + ‖G‖2L2(0,t;L2(0,L))
)
. (4.2)

where F∗ is a positive constant independent of Z =(θ, φ) given by

F∗ =Mωmax

{
1,

Tα

αΓ(α)

}
,

with

M = Γ(α)Eα,α(ωtα)

(
max

{
1,

Tα

αΓ(α)

})
ω = W∗(W∗eW∗T + 1),

and W∗ is given by (4.24).
Proof. Define the integro-differential operatorsM1θ = −I2xθt andM2φ =
−I2xφt, where

I2xθ(x, t) =

x∫
0

ξ∫
0

θ(η, t)dηdξ, I2xφ(x, t) =

x∫
0

ξ∫
0

φ(η, t)dηdξ,

and consider the identity(
ρ1∂

α+1
t θ,M1θ

)
L2(0,L)

− κ1((θx + φ)x,M1θ)L2(0,L) + (θt,M1θ)L2(0,L)

+(ρ2∂
α+1
t φ,M2φ)L2(0,L) − κ2((φxx,M2φ)L2(0,L) + κ1((θx + φ),M2φ)L2(0,L)

+

 t∫
0

m(t− s)φxx(x, s)ds,M2φ


L2(0,L)

= (F (x, t),M1θ)L2(0,L) + (G(x, t),M2φ)L2(0,L). (4.3)



8 SAID MESLOUB, EMAN ALHAZZANI, GADAIN HASSAN ELTAYEB

The standard integration by parts of each term in (4.3) and conditions (2.3),
(2.4) give (

ρ1∂
α+1
t θ,M1θ

)
L2(0,L)

=
ρ1
2

(∂αt (Ixθt), Ixθt)L2(0,L)

≥ ρ1
2
∂αt ‖Ixθt‖L2(0,L) , (4.4)

(
ρ2∂

α+1
t φ,M2φ

)
L2(0,L)

=
ρ2
2

(∂αt (Ixφt), Ixφt)L2(0,L)

≥ ρ2
2
∂αt ‖Ixφt‖L2(0,L) , (4.5)

− (θt,M1θ)L2(0,L) = ‖Ixθt‖2L2(0,L), (4.6)

κ1(θxx, I2xθt)L2(0,L) = κ1I2xθt.θx]L0 − κ1
L∫
0

Ixθt.θxdx = κ1

L∫
0

θtθdx

=
κ1
2

∂

∂t
‖θ‖2L2(0,L), (4.7)

and in the same manner, we have

κ2(φxx, I2xφt)L2(0,L) =
κ2
2

∂

∂t
‖φ‖2L2(0,L), (4.8)

κ1(φx, I2xθt)L2((0,L)) = κ1I2xθt.φ]L0 dt− κ1
L∫
0

Ixθt.φdx

= −κ1
L∫
0

Ixθt.φdx, (4.9)

−κ1(θx, I2xφt)L2(Qτ ) = κ1

L∫
0

Ixφt.θdx, (4.10)

−κ1(φ, I2xφt)L2(0,L)

= −κ1I2xφt.=xφ]L0 + κ1

τ∫
0

L∫
0

Ixφt.Ixφdxdt

=
1

2

∂

∂t
‖Ixφ‖2L2(0,L), (4.11)
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−

 t∫
0

m(t− s).φxx(x, s)ds, I2xφt


L2(0,L)

= −
L∫
0

 t∫
0

m(t− s).φxx(x, s)ds

 I2xφtdx
= −

t∫
0

m(t− s).φx(x, s)ds).I2xφt]L0 dx+

L∫
0

 t∫
0

m(t− s).φx(x, s)ds

 Ixφtdx
=

 t∫
0

m(t− s).φ(x, s)ds)

 Ixφt]L0 dx− L∫
0

 t∫
0

m(t− s).φ(x, s)ds

φtdx

= −
L∫
0

 t∫
0

m(t− s).φ(x, s)ds

φtdx. (4.12)

Substituting equalities (4.4)-(4.12) into ((4.3)),we obtain

ρ1
2
∂αt ‖Ixθt‖L2(0,L) +

ρ2
2
∂αt ‖Ixφt‖L2(0,L) +

κ1
2

∂

∂t
‖θ‖2L2(0,L)

+
κ2
2

∂

∂t
‖φ‖2L2(0,L) + ‖Ixθt‖2L2(0,L) +

1

2

∂

∂t
‖Ixφ‖2L2(0,L)

= κ1

L∫
0

φIxθtdx− κ1
L∫
0

θIxφtdx−
L∫
0

 t∫
0

m(t− s).φ(x, s)ds

φtdx

−
L∫
0

FI2xθtdx−
L∫
0

GI2xφtdx. (4.13)
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Replacing t by τ , integrating with respect to τ from zero to t and using the
given conditions, we obtain

ρ1
2
Dα−1 ‖Ixθt‖L2(0,L) +

ρ2
2
Dα−1 ‖Ixφt‖L2(0,L) +

κ1
2
‖θ(., t)‖2L2(0,L)

+
κ2
2
‖φ(., t)‖2L2(0,L) + ‖Ixθτ‖2L2(0,t;L2(0,L)) +

1

2
‖Ixφ(., t)‖2L2(0,L)

= κ1 (φ, Ixθτ )L2(0,t;L2(0,L)) − κ1 (θ, Ixφτ )L2(0,t;L2(0,L))
−
(
F, I2xθτ

)
L2(0,t;L2(0,L))

−
(
G, I2xφτ

)
L2(0,t;L2(0,L))

+
ρ1t

1−α

2(Γ(1− α)(1− α))
‖Ixψ‖2L2(0,L) +

κ1
2
‖ϕ‖2L2(0,L)

+
ρ2t

1−α

2(Γ(1− α)(1− α))
‖Ixg‖2L2(0,L) +

κ2
2
‖f‖2L2(0,L)

+
1

2
‖Ixf‖2L2(0,L) −

t∫
0

L∫
0

 τ∫
0

m(τ − s).φ(x, s)ds

φτdxdτ . (4.14)

The last term on the right-hand side needs to be evaluated as follows

−
t∫
0

L∫
0

 τ∫
0

m(τ − s).φ(x, s)ds

φτdxdτ

= −
L∫
0

 τ∫
0

m(τ − s).φ(x, s)ds

φdx]t0 +

τ∫
0

L∫
0

m(0)φ2dxdτ

+

t∫
0

L∫
0

 τ∫
0

m′(τ − s).φ(x, s)ds

φ(x, τ)dxdτ

= −
L∫
0

 t∫
0

m(t− s).φ(x, s)ds

φ(x, t)dx+m(0)‖φ‖2L2(0,t;L2(0,L))

+

t∫
0

L∫
0

 τ∫
0

m′(τ − s).φ(x, s)ds

φdxdτ. (4.15)

By replacing (4.15) into (4.14), and estimating different terms on the right-
hand side of (by using Cauchy ε inequality, a Poincare type inequality) (4.14)
as follows

κ1 (φ, Ixθt)L2(0,t;L2(0,L))
≤ κ1ε1

2
‖φ‖2L2(0,t;L2(0,L)) +

κ1
2ε1
‖Ixθτ‖2L2(0,t;L2(0,L)), (4.16)

−κ1 (θ, Ixφτ )L2(0,t;L2(0,L))
≤ κ1ε2

2
‖θ‖2L2(0,t;L2(0,L)) +

κ1
2ε2
‖Ixφτ‖2L2(0,t;L2(0,L)), (4.17)
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−
L∫
0

 t∫
0

m(t− s).φ(x, s)ds

φ(x, t)dx

≤ ε3
2

L∫
0

φ2(x, t)dx+
1

2ε3

L∫
0

 t∫
0

m(t− s)φ(x, s)ds

2

dx

≤ ε3
2

L∫
0

φ2(x, t)dx+
1

2ε3

L∫
0

 t∫
0

m2(t− s)ds

 t∫
0

φ2(x, s)ds

 dx

≤ ε3
2

L∫
0

φ2(x, t)dx+
T

2ε3
sup
0≤t≤T

m2(t)

L∫
0

t∫
0

φ2dxdτ , (4.18)

t∫
0

L∫
0

 τ∫
0

m′(τ − s).φ(x, s)ds

φdxdτ

≤ ε4
2

t∫
0

L∫
0

φ2dxdτ +
1

2ε4

t∫
0

L∫
0

 τ∫
0

m′2(τ − s)ds

 τ∫
0

φ2(x, s)ds

 dxdτ

≤ ε4
2

t∫
0

L∫
0

φ2dxdτ +
T

2ε4
sup
0≤t≤T

m′2(t)

t∫
0

L∫
0

 τ∫
0

φ2(x, s)ds

 dxdτ

=
ε4
2

t∫
0

L∫
0

φ2dxdτ +
T

2ε4
sup
0≤t≤T

m′2(t)

L∫
0

τ τ∫
0

φ2(x, s)ds

t

0

−
t∫
0

τφ2dτ

 dx
=

ε4
2

t∫
0

L∫
0

φ2dxdτ +
T

2ε4
sup
0≤t≤T

m′2(t)

L∫
0

 t∫
0

(t− τ)φ2(x, τ)dτ

 dx
≤ ε4

2

t∫
0

L∫
0

φ2dxdτ +
T 2

2ε4
sup
0≤t≤T

m′2(t)

L∫
0

t∫
0

φ2dτdx

=

(
ε4
2

+
T 2

2ε4
sup
0≤t≤T

m′2(t)

) t∫
0

L∫
0

φ2dxdτ , (4.19)

−
(
F, I2xθτ

)
L2(0,t;L2(0,L))

≤ ε5
2
‖F‖2L2(0,t;L2(0,L)) +

L2

2ε5
‖Ixθτ‖2L2(0,t;L2(0,L)), (4.20)

−
(
G, I2xφτ

)
L2(0,t;L2(0,L))

≤ ε6
2
‖G‖2L2(0,t;L2(0,L)) +

L2

4ε6
‖Ixφτ‖2L2(0,t;L2(0,L)), (4.21)
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Combination of (4.16)-(4.21) and (4.14), leads to
ρ1
2
Dα−1 ‖Ixθt‖L2(0,L) +

ρ2
2
Dα−1 ‖Ixφt‖L2(0,L) +

κ1
2
‖θ(., t)‖2L2(0,L)

+
κ2
2
‖φ(., t)‖2L2(0,L) + ‖Ixθτ‖2L2(0,t;L2(0,L)) +

1

2
‖Ixφ(., t)‖2L2(0,L)

≤ ρ1T
1−αL2

4(Γ(1− α)(1− α))
‖ψ‖2L2(0,L) +

κ1
2
‖ϕ‖2L2(0,L)

+
ρ2T

1−αL2

4(Γ(1− α)(1− α))
‖g‖2L2(0,L) +

(
κ2
2

+
L2

4

)
‖f‖2L2(0,L)

+

(
κ1ε1

2
+

T

2ε3
sup
0≤t≤T

m2(t) +
ε4
2

+
T 2

2ε4
sup
0≤t≤T

m′2(t) +m(0)

)
‖φ‖2L2(0,t;L2(0,L))

+

(
κ1
2ε1

+
L2

2ε5

)
‖Ixθτ‖2L2(0,t;L2(0,L)) +

(
κ1
2ε2

+
L2

4ε6

)
‖Ixφτ‖2L2(0,t;L2(0,L))

+
κ1ε2

2
‖θ‖2L2(0,t;L2(0,L)) +

ε3
2
‖φ(., t)‖2L2(0,L) +

ε5
2
‖F‖2L2(0,t;L2(0,L))

+
ε6
2
‖G‖2L2(0,t;L2(0,L)). (4.22)

The choice ε1 = κ1, ε5 = L2/2, ε3 = κ2/2, ε2 = ε4 = ε6 = 1, and cancellation of
the last term on the left-hand side of (4.22) reduce it to the following estimate

Dα−1 ‖Ixθt‖L2(0,L) +Dα−1 ‖Ixφt‖L2(0,L) + ‖θ(., t)‖2L2(0,L) + ‖φ(., t)‖2L2(0,L)
≤ W∗

(
‖Ixθτ‖2L2(0,t;L2(0,L)) + ‖Ixφτ‖2L2(0,t;L2(0,L)) + ‖θ‖2L2(0,t;L2(0,L)) + ‖φ‖2L2(0,t;L2(0,L))

+‖ϕ‖2L2(0,L) + ‖ψ‖L2(0,L) + ‖f‖2L2(0,L) + ‖g‖2L2(0,L) + ‖F‖2L2(0,t;L2(0,L)) (4.23)

+‖G‖2L2(0,t;L2(0,L))
)
,

where

W∗ = max

(
κ21
2

+
T

κ2
sup
0≤t≤T

m2(t) +
1

2
+
T 2

2
sup
0≤t≤T

m′2(t) +m(0),
3

2
,
κ1
2

+
L2

4
,
κ2
4
,

ρ1T
1−αL2

4(Γ(1− α)(1− α))
,

ρ2T
1−αL2

4(Γ(1− α)(1− α))

)
/min

(
ρ1
2
,
ρ2
2
,
κ1
2
,
κ2
2
,
1

2

)
. (4.24)

By omitting the first and second term on the left-hand side of (4.23), and
applying the Gronwall-Bellman lemma ( [45]), where

E(t) = ‖θ‖2L2(0,t;L2(0,L)) + ‖φ‖2L2(0,t;L2(0,L))
dE
dt

= ‖θ(., t)‖2L2(0,L) + ‖φ(., t)‖2L2(0,L),
Q(0) = 0.

(4.25)

we obtain

y(t) ≤ W∗eW∗t
(
‖Ixθτ‖2L2(0,t;L2(0,L)) + ‖Ixφτ‖2L2(0,t;L2(0,L))

+‖ϕ‖2L2(0,L) + ‖ψ‖L2(0,L) + ‖f‖2L2(0,L) + ‖g‖2L2(0,L) (4.26)

+ ‖F‖2L2(0,t;L2(0,L)) + ‖G‖2L2(0,t;L2(0,L))
)
.
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Then by omitting the last two terms on the left-hand side of (4.23), and using
(4.26), we have

Dα−1
(
‖Ixθt‖L2(0,L) + ‖Ixφt‖L2(0,L)

)
≤ W∗(W∗eW∗T + 1)

(
‖Ixθτ‖2L2(0,t;L2(0,L)) + ‖Ixφτ‖2L2(0,t;L2(0,L))

+‖ϕ‖2L2(0,L) + ‖ψ‖L2(0,L) + ‖f‖2L2(0,L) + ‖g‖2L2(0,L) (4.27)

+ ‖F‖2L2(0,t;L2(0,L)) + ‖G‖2L2(0,t;L2(0,L))
)
.

Now, Lemma 3.2, can be applied to remove the first two terms on the right-
hand side of (4.27), by taking

Q(t) = ‖Ixθτ‖2L2(0,t;L2(0,L)) + ‖Ixφτ‖2L2(0,t;L2(0,L))
C∂βt Q(t) = Dα−1

(
‖Ixθt‖L2(0,L) + ‖Ixφt‖L2(0,L)

)
Q(0) = 0.

(4.28)

From (4.27), it follows that

Q(t) ≤ M
{
D−1−α

(
‖F‖2L2(0,L) + ‖G‖2L2(0,L)

)
+ ‖ϕ‖2L2(0,L) + ‖ψ‖L2(0,L) + ‖f‖2L2(0,L) + ‖g‖2L2(0,L)

}
, (4.29)

where

M = Γ(α)Eα,α(ωtα)

(
max

{
1,

Tα

αΓ(α)

})
,

with
ω =W∗(W∗eW∗T + 1).

Now since

D−1−α
(
‖F‖2L2(0,L) + ‖G‖2L2(0,L)

)
≤ Tα

Γ(α + 1)

t∫
0

(
‖F‖2L2(0,L) + ‖G‖2L2(0,L)

)
dτ ,

(4.30)
then, we infer from (4.29), (4.30), and (4.23) the following inequality

Dα−1 ‖Ixθt‖L2(0,L) +Dα−1 ‖Ixφt‖L2(0,L) + ‖θ(., t)‖2L2(0,L) + ‖φ(., t)‖2L2(0,L)
≤ F∗

(
‖ψ‖2L2(0,L) + ‖ϕ‖2L2(0,L) + ‖f‖2L2(0,L) + ‖g‖2L2(0,L)

+‖F‖2L2(0,T ;L2(0,L)) + ‖G‖2L2(0,T ;L2(0,L))
)
. (4.31)

The first estimate (4.1) follows, if we disregard the first and second term on
the left-hand side of (4.31), and pass to the supremum with respect to t over
(0, T ). The second estimate (4.2) follows from (4.31) if we drop the last two
terms on the left-hand side of the inequality (4.31).
Since the range of the operator G is subset of E , that is R (G) ⊂ E , so we

extend G so that inequality (4.31) holds for the extension, and R
(
G
)

= E . We
can easily show that the following
Proposition 3.2. The unbounded operator G : B → E admits a closure G

with domain of definition D(G ).
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Definition 3.3. The solution of the equation G Z =H = ({F, ϕ, ψ}, {G, f, g})
is called a strong solution of problem (2.1), (2.3), (2.4).
The a priori estimate (4.1), can be extended to

‖Z‖2B ≤ F∗‖G Z‖2E , ∀Z ∈D(G ). (4.32)

The estimate (4.32) shows that the operator G is one to one and that G −1 is
continuous from R(G ) onto B. Consequently if a strong solution of problem
(2.1), (2.3), (2.4) exists, it is unique and depends continuously on the input
data ϕ, ψ, f, g and the external forces F and G. Also as a consequence of
(4.32), the set R(G ) ⊂ E is closed and R(G ) = R(G).

5. Existence of solution

Theorem 4.1. Problem (2.1), (2.3), (2.4) admits a unique strong solu-
tion Z =

(
G
)−1

({F, ϕ, ψ}, {G, f, g}) = G−1({F, ϕ, ψ}, {G, f, g}),which de-
pend continuously on the given data, for all F,G ∈ L2(0, T ;L2(0, L)),and
ϕ, ψ, f, g ∈ L2(0, L).
Proof. It follows from above that in order to prove the existence of the

strongly generalized solution of problem (2.1), (2.3), (2.4), it suffi ces to prove
that R(G) = E . To this end, we first prove the density in the following special
case.
Theorem 4.2. If for some functionW (x, t) = (Λ1(x, t),Λ2(x, t)) ∈ (L2(0, T ;L2(0, L)))2

and for elements Z ∈ D0(G) = {Z : Z ∈ D(G) and Γiθ = Γiφ = 0 , i = 1, 2 }
we have

(S1(θ, φ),Λ1)L2(0,T ;L2(0,L)) + (S2(θ, φ),Λ2)L2(0,T ;L2(0,L)) = 0, (5.1)

then W (x, t) = (Λ1(x, t),Λ2(x, t)) = (0, 0) a.e in QT .
Proof. The identity (5.1) is equivalent to

T∫
0

(ρ1∂
α+1
t θ,Λ1)L2(0,L)dt− κ1

T∫
0

(θxx,Λ1)L2(0,L)dt− κ1
T∫
0

(φx,Λ1)L2(0,L)dt+

T∫
0

(θt,Λ1)L2(0,L)dt

+

T∫
0

(ρ2∂
α+1
t φ,Λ2)L2(0,L)dt− κ2

T∫
0

(φxx,Λ2)L2(0,L)dt+ κ1

T∫
0

((θx,Λ2)L2(0,L)dt

+κ1

T∫
0

(φ,Λ2)L2(0,L)dt+

T∫
0

(

t∫
0

m(t− s)φxx(x, s)ds,Λ2)L2(0,L)dsdt (5.2)

= 0.

Assume that the functions ξ(x, t), η(x, t)and satisfy the boundary and the
initial conditions (2.3), and (2.4) and such that ξ, η, ξx, ηx, Itξ, Itη, ItI2xξ,
ItI2xη, I2t ξ, I2t η and ∂

β+1
t ξ, ∂β+1t η ∈ L2(0, T ;L2(0, L)), we then set

θ(x, t) = I2t ξ =

t∫
0

s∫
0

ξ(x, z)dzds, φ(x, t) = I2t η =

t∫
0

s∫
0

η(x, z)dzds, (5.3)



ON A NON LOCAL NON-HOMOGENEOUS FRACTIONAL TIMOSHENKO SYSTEM 15

and introduce the functions

Λ1(x, t) = Itξ + I2xItξ, Λ2(x, t) = Itη + I2xItη. (5.4)

Equation (5.2) then reduces to

T∫
0

(ρ1∂
α+1
t I2t ξ, Itξ + I2xItξ)L2(0,L)dt− κ1

T∫
0

(I2t ξxx, Itξ + I2xItξ)L2(0,L)dt

−κ1
T∫
0

(I2t ηx, Itξ + I2xItξ)L2(0,L)dt+

T∫
0

(Itξ, Itξ + I2xItξ)L2(0,L)dt

+

T∫
0

(ρ2∂
α+1
t I2t η, Itη + I2xItη)L2(0,L)dt− κ2

T∫
0

(I2t ηxx, Itη + I2xItη)L2(0,L)dt

+κ1

T∫
0

((I2t ξx, Itη + I2xItη)L2(0,L)dt+ κ1

T∫
0

(I2t η, Itη + I2xItη)L2(0,L)dt

+

T∫
0

(

t∫
0

m(t− s)I2sηxx(x, s)ds, Itη + I2xItη)L2(0,L)dt

= 0. (5.5)

Invoking boundary integral conditions and carrying out appropriate integra-
tions by parts of each inner product term, we have

(ρ1∂
α+1
t I2t ξ, Itξ + I2xItξ)L2(0,L)

= (ρ1∂
α
t Itξ, Itξ) + (ρ1∂

α
t IxItξ, IxItξ)L2(0,L), (5.6)

−κ1(I2t ξxx, Itξ + I2xItξ)L2(0,L)

=
κ1∂

2∂t
‖I2t ξx‖2L2(0,L) +

κ1∂

2∂t
‖I2t ξ‖2L2(0,L), (5.7)

−κ1(I2t ηx, Itξ + I2xItξ)L2(0,L)
= −κ1(I2t ηx, Itξ)L2(0,L) + κ1(I2t η, IxItξ)L2(0,L), (5.8)

(Itξ, Itξ + I2xItξ)L2(0,L)
= ‖=tξ‖2L2(0,L) − ‖Ix=tξ‖2L2(0,L), (5.9)

(ρ2∂
α+1
t I2t η, Itη + I2xItη)L2(0,L)

= (ρ2∂
α
t Itη, Itη) + (ρ2∂

α
t IxItη, IxItη)L2(0,L), (5.10)

−κ2(I2t ηxx, Itη + I2xItη)L2(0,L)

=
κ2∂

2∂t
‖I2t ηx‖2L2(0,L) +

κ2∂

2∂t
‖I2t η‖2L2(0,L) (5.11)
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κ1(I2t ξx, Itη + I2xItη)L2(0,L)

= κ1(I2t ξx, Itη)L2(0,L) − κ1(I2t ξ, IxItη)L2(0,L), (5.12)

(

t∫
0

m(t− s)I2sηxx(x, s)ds, Itη + I2xItη)L2(0,L)

= −(

t∫
0

m(t− s)I2sηx(x, s)ds, Itηx)L2(0,L) + (

t∫
0

m(t− s)I2sη(x, s)ds, Itη)L2(0,L)

= − d

dt

L∫
0

I2t ηx

 t∫
0

m (t− s) (I2sηx)(x, s)ds

 dx

+

L∫
0

I2t ηx

 t∫
0

m′ (t− s) (I2sηx)(x, s)ds

 dx+

L∫
0

m (0)
(
I2t ηx

)2
dx

+(

t∫
0

m(t− s)I2sη(x, s)ds, Itη)L2(0,L). (5.13)

Insertion of equations (5.6)-(5.13) into (5.5), and using Lemma 2.2, yields

ρ1
2

C

∂αt ‖Itξ)‖
2
L2(0,L) +

ρ1
2

C

∂αt ‖IxItξ)‖
2
L2(0,L) +

κ1∂

2∂t
‖I2t ξx‖2L2(0,L)

+
κ1∂

2∂t
‖I2t ξ‖2L2(0,L) + ‖Itξ‖2L2(0,L) +

ρ2
2

C

∂αt ‖Itη)‖2L2(0,L)

+
ρ2
2

C

∂αt ‖IxItη)‖2L2(0,L) +
κ2∂

2∂t
‖I2t ηx‖2L2(0,L) +

κ2∂

2∂t
‖I2t η‖2L2(0,L)

+

L∫
0

h (0)
(
I2t ηx

)2
dx

≤ κ1(I2t ηx, Itξ)L2(0,L) − κ1(I2t η, IxItξ)L2(0,L) + ‖IxItξ‖2L2(0,L)
−κ1(I2t ξx, Itη)L2(0,L) + κ1(I2t ξ, IxItη)L2(0,L)

+
d

dt

L∫
0

I2t ηx

 t∫
0

m (t− s) (I2sηx)(x, s)ds

 dx

−
L∫
0

I2t ηx

 t∫
0

m′ (t− s) (I2sηx)(x, s)ds

 dx

−(

t∫
0

m(t− s)I2sη(x, s)ds, Itη)L2(0,L). (5.14)

By using Cauchy ε -inequality, we estimate each term of the right-hand side
of previous relations to get
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κ1(I2t ηx, Itξ)L2(0,L) ≤
κ1
2
‖I2t ηx‖2L2(0,L) +

κ1
2
‖Itξ‖2L2(0,L), (5.15)

−κ1(I2t η, IxItξ)L2(0,L) ≤
κ1
2
‖I2t η‖2L2(0,L) +

κ1
2
‖IxItξ‖2L2(0,L), (5.16)

−κ1(I2t ξx, Itη)L2(0,L) ≤
κ1
2
‖I2t ξx‖2L2(0,L) +

κ1
2
‖Itη‖2L2(0,L), (5.17)

κ1(I2t ξ, IxItη)L2(0,L) ≤
κ1
2
‖I2t ξ‖2L2(0,L) +

κ1
2
‖IxItη‖2L2(0,L), (5.18)

−
L∫
0

I2t ηx

 t∫
0

m′ (t− s) (I2sηx)(x, s)ds

 dx

≤ 1

2
sup
0≤t≤T

|m′|
(

1 +
T 2

2

)
‖I2t ηx‖2L2(0,L), (5.19)

−(

t∫
0

m(t− s)I2sη(x, s)ds, Itη)L2(0,L)

1

2
sup
0≤t≤T

|m| ‖Itη‖2L2(0,L) +
T 2

2
sup
0≤t≤T

|m| ‖I2t η‖2L2(0,L). (5.20)

By combining equality (5.14) and inequalities (5.15)-(5.20), we obtain

C∂αt ‖Itξ)‖
2
L2(0,L) +C ∂αt ‖Itη)‖2L2(0,L) +C ∂αt ‖IxItξ)‖

2
L2(0,L)

+C∂αt ‖IxItη)‖2L2(0,L) +
∂

∂t
‖I2t ξx‖2L2(0,L) +

∂

∂t
‖I2t ηx‖2L2(0,L)

+
∂

∂t
‖I2t ξ‖2L2(0,L) +

∂

∂t
‖I2t η‖2L2(0,L) +

L∫
0

(
I2t ηx

)2
dx+ ‖Itξ‖2L2(0,L)

≤ W
(
‖Itξ‖2L2(0,L) + ‖Itη‖2L2(0,L) + ‖IxItξ‖2L2(0,L) + ‖IxItη‖2L2(0,L)

+‖I2t ξx‖2L2(0,L) + ‖I2t ηx‖2L2(0,L) + ‖I2t ξ‖2L2(0,L) + ‖I2t η‖2L2(0,L)
)
,(5.21)

where

W =
max

{
κ1
2

+ (1 + T 2

2
)1
2

sup |m′| , κ1
2

+ T 2

2
1
2

sup |m|
}

min
{

1, ρ1
2
, ρ2
2
, κ1
2
, κ2
2
, h(0)

} . (5.22)

By discarding the last two terms from the left hand side of (5.21), replacing t
by τ in (5.22) and then integrating with respect to τ over the interval (0, t),
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we obtain

Dα−1
t ‖Itξ)‖2L2(0,L) +Dα−1

t ‖Itη)‖2L2(0,L) +Dα−1
t ‖IxItξ)‖2L2(0,L)

+Dα−1
t ‖IxItη)‖2L2(0,L) + ‖I2t ξx‖2L2(0,L) + ‖I2t ηx‖2L2(0,L)

+‖I2t ξ‖2L2(0,L) + ‖I2t η‖2L2(0,L)
≤ W

(
‖Itξ‖2L2(0,t;L2(0,L)) + ‖Itη‖2L2(0,t;L2(0,L)) + ‖IxItξ‖2L2(0,t;L2(0,L)) + ‖IxItη‖2L2(0,t;L2(0,L))

+‖I2t ξx‖2L2(0,t;L2(0,L)) + ‖I2t ηx‖2L2(0,t;L2(0,L)) + ‖I2t ξ‖2L2(0,t;L2(0,L)) + ‖I2t η‖2L2(0,t;L2(0,L))
)
.(5.23)

If we omit the first four terms on the left hand side of (5.23), and use Gronwall-
Bellman lemma, by taking

R(t) = ‖I2t ξx‖2L2(0,t;L2(0,L)) + ‖I2t ηx‖2L2(0,t;L2(0,L))
+‖I2t ξ‖2L2(0,t;L2(0,L)) + ‖I2t η‖2L2(0,t;L2(0,L)),
∂R(t)
∂t

= ‖I2t ξx‖2L2(0,L) + ‖I2t ηx‖2L2(0,L)
+‖I2t ξ‖2L2(0,L) + ‖I2t η‖2L2(0,L),

R(t) = 0,

(5.24)

we obtain

R(t) ≤ TeTW
(
‖Itξ‖2L2(0,t;L2(0,L)) + ‖Itη‖2L2(0,t;L2(0,L)) + ‖IxItξ‖2L2(0,t;L2(0,L))

+‖IxItη‖2L2(0,t;L2(0,L))
)
. (5.25)

Next, if we disregard the last four terms on the left-hand side and take into
account the inequality (5.25), we end with

Dα−1
t ‖Itξ)‖2L2(0,L) +Dα−1

t ‖Itη)‖2L2(0,L) +Dα−1
t ‖IxItξ)‖2L2(0,L)

+Dα−1
t ‖IxItη)‖2L2(0,L)

≤ W
(
TeTW + 1

) (
‖Itξ‖2L2(0,t;L2(0,L)) + ‖Itη‖2L2(0,t;L2(0,L))

+ ‖I2t ξ‖2L2(0,t;L2(0,L)) + ‖I2t η‖2L2(0,t;L2(0,L))
)
. (5.26)

Now, we are able to apply lemma 2.2, by letting

Q(t) = ‖Itξ‖2L2(0,t;L2(0,L)) + ‖Itη‖2L2(0,t;L2(0,L))
‖I2t ξ‖2L2(0,t;L2(0,L)) + ‖I2t η‖2L2(0,t;L2(0,L)),

C∂αt Q(t) = Dα−1
t ‖Itξ)‖2L2(0,L) +Dα−1

t ‖Itη)‖2L2(0,L)
+Dα−1

t ‖IxItξ)‖2L2(0,L) +Dα−1
t ‖IxItη)‖2L2(0,L) ,

Q(0) = 0,

(5.27)

we infer from (5.26) that

Q(t) ≤ Γ(α)Eα,α(W
(
TeTW + 1

)
tα)D−αt (0) = 0. (5.28)

We conclude from (5.28), and (5.27) that ξ = 0, η = 0. Consequently,W (x, t) =
(Λ1(x, t),Λ2(x, t)) = (0, 0) a.e in QT .
We now consider the general case for density
Since E is a Hilbert space, then R(G) = E ⇔ R(G)⊥ = {0} ⇔ (GZ,K)E = 0,

for all Z ∈ B , and K ∈ E ,then K = (K1,K2) = {(J1, J3, J4), (J2, J5, J6)} =
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(0, 0), that is J1 = J2 = J3 = J4 = J5 = J6 = 0. So suppose that for some
element K = (K1,K2) = {(J1, J3, J4), (J2, J5, J6)} ∈ R(G)⊥

(GZ,K)E

= ({S1(θ, φ),S2(θ, φ}, {K1,K2})E
= ({S1(θ, φ),Γ1θ,Γ2θ}, {S2(θ, φ),Γ1φ,Γ2φ}}, {{J1, J2, J3}, {J4, J5, J6}})E
= (S1(θ, φ), J1)L2(QT ) + (Γ1θ, J2)L2(0,L) + (Γ2θ, J3)L2(0,L)

+(S2(θ, φ), J4)L2(QT ) + (Γ1φ, J5)L2(0,L) + (Γ2φ, J6)L2(0,L)

= 0, (5.29)

where Z runs over the space B, we have to prove that K = 0.
Let Z ∈ D0(G), then equation (5.29) becomes

(S1(θ, φ), J1)L2(QT ) + (S2(θ, φ), J4)L2(QT ) = 0. (5.30)

Hence, by virtue of Theorem 4.2, it follows from (5.30) that J1 = J4 = 0.
Consequently, equation (5.29) takes the form

(Γ1θ, J2)L2(0,L)+(Γ2θ, J3)L2(0,L)+(Γ1φ, J5)L2(0,L)+(Γ2φ, J6)L2(0,L) = 0. (5.31)

Since the four terms in (5.31) vanish independently and since the ranges
R(Γ1), R(Γ2) of the trace operators Γ1,Γ2 are everywhere dense in the space
L2(0, L), then it follows from (5.31) that J2 = J3 = J5 = J6 = 0. Consequently
K = 0, that is R(G)⊥ = {0}. Thus R(G) = E .

Conclusion: In this paper, we investigated a non-local non-homogeneous
fractional Timoshenko system with frictional and viscoelastic damping terms.
This fractional order system is supplemented with some initial conditions and
classical and non local boundary conditions of integral type. The well posed-
ness of the given non local initial boundary value problem is established. The
used approach relies on some functional analysis tools, operator theory, a prori
estimates and density arguments. To the best of our knowledge, the treated
fractional Timoshenko system problem has never been studied and explored
in the literature. This work can be considered as a contribution in the de-
velopment of the traditional functional analysis method, the so called a priori
estimate method or the energy inequalities method used to prove the exis-
tence, uniqueness and stability of initial boundary value problems with non
local boundary conditions such as integral conditions.
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