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Abstract. In this paper, we make an effort to establish Lieb’s and Lions’ type
theorems on Heisenberg Group, and then apply them to study the existence of
solution for variational problem on Heisenberg group.

1. Introduction

Let ξ := (x, y, t) ∈ RN × RN × R with N > 1. The Heisenberg group denoted by
H = RN × RN × R equipped with the following group operation:

ξ ◦ ξ′ = (x, y, t) ◦ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2(x′ · y − x · y′)),

where · denotes the usual inner product in RN , (0, 0, 0) is the identity element, and
(−x,−y,−t) is the inverse element of (x, y, t).

The distance between ξ and η on H defined by

d(ξ, η) := d(η−1 ◦ ξ, 0).

The Heisenberg ball of center η and radius r is defined by BH(η, r) := {ξ ∈
H|d(ξ, η) < r}, and it satisfies

|BH(η, r)| := |BH(0, r)| = rQ|BH(0, 1)|, (1.1)

where | · | is the (2N + 1) dimensional Lebesgue measure on H, and Q = 2N + 2 is
the homogeneous dimension of the group.

The Lie algebra of H is generated by the left invariant vector fields

T =
∂

∂t
, Xj =

∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
,

the commutation relations

[Xi, Yj ] = −4δijT, [Xi, Xj ] = [Yi, Yj ] = [Xi, T ] = [Yj , T ] = 0.

The Heisenberg Laplacian is

∆H :=
N∑
i=1

(
X2
i + Y 2

i

)
,

and we use the notation

∇Hu := (X1u, . . . ,XNu, Y1u, . . . , YNu) .
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The D1,2(H) is defined as the completion of C∞0 (H) with the semi-norm

‖u‖D1,2(H) :=

(∫
H
|∇Hu|2dξ

) 1
2

.

The norm of Lp(H) (p > 1) is given by

‖u‖Lp(H) :=

(∫
H
|u|pdξ

) 1
p

.

The Folland-Stein Sobolev type space S1,2(H) [9] is given by

S1,2(H) :=

{
u ∈ D1,2(H)

∣∣∣∣∫
H
|u|2dξ <∞

}
with the norm

‖u‖S1,2(H) :=

(∫
H
|∇Hu|2 + |u|2dξ

) 1
2

.

Proposition 1.1. [9] Let H be a Heisenberg group with Q > 4. Then the embedding

S1,2(H) ↪→ Lr(H) is continuous, where r ∈ [2, 2∗] and 2∗ = 2Q
Q−2 .

From Proposition 1.1, we know that the following embeddings are not
compactness

S1,2(H) ↪→ Lr(H), r ∈ [2, 2∗].

Hence, it is difficult to show that a bounded sequence has a convergence
subsequence when we seek the weak solution of mathematical physics equation.
Lieb [12] established the famous Lieb’s translation theorem to overcome the lack of
compactness on RN . Lions [13,14] investigated the famous Lions’ vanishing theorem
to overcome the lack of compactness on RN . Their results is not avilable to our
problem on Heisenberg group. To overcome it, we study two different methods.

First, we establish a Lieb’s translation theorem on Heisenberg group as follows.

Theorem 1.1. Let H be a Heisenberg group with Q > 4, and {un} be a bounded
sequence in S1,2(H) satisfing Condition A: lim

n→∞

∫
H |un|

qdξ > 0, where q ∈ (2, 2∗).

Then there exists {zn} ⊂ H such that {ūn := un(ξ + zn)} convergence strongly and
a.e. to ū 6≡ 0 in Lqloc(H).

Second, we investigate the Lions’ vanishing theorem on Heisenberg group as
follows.

Theorem 1.2. Let H be a Heisenberg group with Q > 4, and {un} be a bounded
sequence in S1,2(H) satisfing Condition B: sup

z∈H

∫
BH(z,1) |un|

qdξ → 0, where q ∈

[2, 2∗). Then un → 0 in Lt(H) for t ∈ (2, 2∗).

Pucci-Temperini [18] define the fractional Sobolev space Ss,p(H) as the completion
of C∞0 (H) with respect to the norm, for s ∈ (0, 1), p ∈ (1,∞) and sp < Q,

‖u‖Ss,p(H) := ‖u‖Ds,p(H) + ‖u‖Lp(H),
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where

‖u‖Ds,p(H) :=

(∫
H

∫
H

|u(ξ)− u(η)|p

dQ+sp(η−1 ◦ ξ)
dξdξ

) 1
p

.

Adimurthi-Mallick [1] established the fractional Sobolev inequality,

Sp∗s‖u‖
p

Lp∗s (H)
6 ‖u‖pDs,p(H), for u ∈ C∞0 (H), p∗s =

Np

N − sp
. (1.2)

For more results about inequalities on Heisenberg group, we refer to Ruzhansky-
Suragan [21, 22] and Roncal-Thangavelu [20]. It is easy to get the following
embedding result by (1.2) and Hölder’s inequality.

Proposition 1.2. Let H be a Heisenberg group with Q > 4, s ∈ (0, 1), p ∈ (1,∞)
and sp < Q. Then the embedding Ss,p(H) ↪→ Lr(H) is continuous, where r ∈ [p, p∗s].

From Proposition 1.2, we know that the following embeddings are not
compactness

Ss,p(H) ↪→ Lr(H), r ∈ [p, p∗].

By the principle of symmetric criticality, Balogh-Kristaly [2] and Bisci-Repovs [4]
studied the uncompactness problem for r ∈ (p, p∗). Pucci-Temperini [18] proved the
concentration-compactness principle, which is a useful tool to above problem. In
the following, we also extended the Lieb’s translation theorem and Lions’ vanishing
theorem to the fractional version without proof.

Theorem 1.3. Let H be a Heisenberg group with Q > 4, s ∈ (0, 1), p ∈ (1,∞),
sp < Q and {un} be a bounded sequence in Ss,p(H) satisfing Condition A:
lim
n→∞

∫
H |un|

qdξ > 0, where q ∈ (p, p∗s). Then there exists {zn} ⊂ H such that

{ūn := un(ξ + zn)} convergence strongly and a.e. to ū 6≡ 0 in Lqloc(H).

Theorem 1.4. Let H be a Heisenberg group with Q > 4, s ∈ (0, 1), p ∈ (1,∞),
sp < Q and {un} be a bounded sequence in Ss,p(H) satisfing Condition B:
sup
z∈H

∫
BH(z,1) |un|

qdξ → 0, where q ∈ [p, p∗s). Then un → 0 in Lt(H) for t ∈ (p, p∗s).

As applications of Theorems 1.1-1.4, we consider the following minimizing
problem

St = inf
u∈Ss,p(H)\{0}

‖u‖pSs,p(H)(∫
H |u|tdξ

) p
t

. (St)

We have

Theorem 1.5. Let H be a Heisenberg group with Q > 4, s ∈ (0, 1), p ∈ (1,∞),
sp < Q and t ∈ (p, p∗s). Then problem (St) has a minimizer.

Furthermore, we study the following equation

(−∆)sHu+ u = γ|u|r−2u+ |u|2∗s−2u, ξ ∈ H. (S∗)

The integral representation for the fractional operator (−∆)sH is defined by, u ∈
C∞0 (H),

(−∆)sHu(ξ) = cQ,s

∫
H

u(ξ)− u(η)

dQ+2s(η−1 ◦ ξ)
dη
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where cQ,s is a positive constant, see [20, Proposition 4.1]. We have

Theorem 1.6. Let H be a Heisenberg group with Q > 4, s ∈ (0, 1), 2s < Q and
r ∈ (2, 2∗s). Then there exists γ0 > 0 such that for every γ ∈ (γ0,∞) equation (S∗)
has a non-trivial solution.

Remark 1.1. The critical Schrödinger equation on Heisenberg group have been
extensively investigated. Kristaly [11] studied the existence of nodal solutions for
the fractional Yamabe problem. For more results, we refer to [3, 5, 7, 15–17, 19] and
the references therein.

2. Lieb’s Translation Theorem on Heisenberg group

In this section, we present Lieb’s translation theorem on Heisenberg group.

Lemma 2.1. Let Q > 4 and q ∈ (2, 2∗). Then the following inequality holds∫
H
|u|qdξ 6 2C(N + 1)2

(
sup
z∈H

∫
BH(z,1)

|u|qdξ

) q−2
q

‖u‖2S1,2(H),

for all u ∈ S1,2(H).

Proof. Let u ∈ S1,2(H) and q ∈ (2, 2∗). From Hölder’s inequality and Proposition
1.1, we have∫

BH(z,1)
|u|qdξ

6

(∫
BH(z,1)

|u|2dξ

) 2∗−q
2∗−2

(∫
BH(z,1)

|u|2∗dξ

) q−2
2∗−2

6C

(∫
BH(z,1)

|∇u|2dξ +

∫
BH(z,1)

|u|2dξ

) 2∗−q
2∗−2

(∫
BH(z,1)

|∇u|2dξ

) 2∗
2
· q−2
2∗−2

=C

(∫
BH(z,1)

|∇u|2dξ +

∫
BH(z,1)

|u|2dξ

) q
2

.

(2.1)

Applying (2.1), we know∫
BH(z,1)

|u|qdξ

=

(∫
BH(z,1)

|u|qdξ

) 2
q
(∫

BH(z,1)
|u|qdξ

) q−2
q

6C

(∫
BH(z,1)

|∇u|2dξ +

∫
BH(z,1)

|u|2dξ

)(∫
BH(z,1)

|u|qdξ

) q−2
q

.

Covering RN by balls of radius 1, in such a way that each point of RN is contained
in at most N + 1 balls. Note that ξ = (x, y, t) ∈ RN × RN × R. Covering H
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by balls of radius 1, in such a way that each point of H is contained in at most
(N + 1)× (N + 1)× 2 balls, we find

∫
H
|u|qdξ 6 2C(N + 1)2

(
sup
z∈H

∫
BH(z,1)

|u|qdξ

) q−2
q

‖u‖2S1,2(H).

�

As the application of Lemma 2.1, we present the Lieb’s translation theorem on
Heisenberg group.

Proof of Theorem 1.1. Note that {un} is a bounded sequence in S1,2(H). Up to a
subsequence, we assume

un ⇀ u in S1,2(H), un → u a.e. in H, un → u in Lqloc(H).

Applying Lemma 2.1 and Condition A, there exists C > 0 such that

sup
z∈H

∫
BH(z,1)

|un|qdξ > C > 0.

Note that {un} is bounded in S1,2(H) and S1,2(H) ↪→ Lq(H), we have

sup
z∈H

∫
BH(z,1)

|un|qdξ 6
∫
H
|un|qdξ 6 C.

Hence, there exists C0 such that

C0 6 sup
z∈H

∫
BH(z,1)

|un|qdξ 6 C−1
0 .

From above inequality, there exists zn ∈ H such that∫
BH(zn,1)

|un|qdξ > sup
z∈H

∫
BH(z,1)

|un|qdξ −
C

2n
> C1 > 0.

Set ūn := un(x+ zn). Then ‖ūn‖S1,2(H) = ‖un‖S1,2(H) and∫
BH(0,1)

|ūn|qdξ > C1 > 0.

Up to a subsequence, there exists ū such that

ūn ⇀ ū in S1,2(H), ūn → ū a.e. in H.

Applying the embedding S1,2(H) ↪→ Lqloc(H) is compact, we deduce that ū 6≡ 0. �

The proof of Theorem 1.3 is similar to Theorem 1.1. So we omit it.
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3. Lions’ Vanishing Theorem on Heisenberg group

We establish the following refined Sobolev inequality.

Lemma 3.1. Let Q > 4, q ∈ [2, 2∗) and r = 2(2∗−q)+2∗q
2∗ . Then the following

inequality holds∫
H
|u|rdξ 6C

(
sup
z∈H

∫
BH(z,1)

|u|qdξ

) 2∗−r
2∗−q

‖u‖2S1,2(H),

for all u ∈ S1,2(H).

Proof. Let u ∈ S1,2(H) and r ∈ (q, 2∗). From Hölder’s and Sobolev’s inequalities,
we have∫

BH(z,1)
|u|rdξ 6

(∫
BH(z,1)

|u|qdξ

) 2∗−r
2∗−q

(∫
BH(z,1)

|u|2∗dξ

) r−q
2∗−q

6C

(∫
BH(z,1)

|u|qdξ

) 2∗−r
2∗−q

(∫
BH(z,1)

|∇u|2dξ

) 2∗
2
· r−q
2∗−q

.

Choosing r = 2(2∗−q)+2∗q
2∗ . Then 2∗

2 ·
r−q
2∗−q = 1 and

∫
BH(z,1)

|u|rdξ 6C

(∫
BH(z,1)

|u|qdξ

) 2∗−r
2∗−q ∫

BH(z,1)
|∇u|2dξ.

Covering RN by balls of radius 1, in such a way that each point of RN is contained
in at most N + 1 balls. Note that ξ = (x, y, t) ∈ RN × RN × R. Covering H
by balls of radius 1, in such a way that each point of H is contained in at most
(N + 1)× (N + 1)× 2 balls, we find∫

H
|u|rdx 62C(N + 1)2

(
sup
z∈H

∫
BH(z,1)

|u|qdx

) 2∗−r
2∗−q ∫

H
|∇u|2dξ.

�

Proof of Theorem 1.2. For q ∈ [2, 2∗), if sup
z∈RN

∫
BH(z,1) |un|

qdx → 0, then by Lemma

3.1, we have
∫
H |un|

rdx→ 0, where r = 2(2∗−q)+2∗q
2∗ .

For any r1 ∈ (r, 2∗), it follows from Hölder’s and Sobolev’s inequalities that∫
H
|un|r1dx 6

(∫
H
|un|rdx

) 2∗−r1
2∗−r

(∫
H
|un|2

∗
dx

) r1−r
2∗−r

→ 0.

For any r2 ∈ (2, r), it follows from Hölder’s and Sobolev’s inequalities that∫
H
|un|r2dx 6

(∫
H
|un|2dx

) r−r2
r−2

(∫
H
|un|rdx

) r2−2
r−2

→ 0.

�
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Remark 3.1. The proof of Theorem 1.4 is similar to Theorem 1.2. So we omit it.

4. Proof of Theorem 1.5

First, we give the proof of Theorem 1.5 via Lieb’s translation theorem.

Proof of Theorem 1.5 (Method 1). Let {un} be a minimizing sequence of (St). That
is

‖un‖Ss,p(H) → St and

∫
H
|un|tdξ = 1 as n→∞.

It is easy to get the following results:
(1) {un} is bounded in Ss,p(H);
(2)

∫
H |un|

tdξ = 1 > 0.
From Theorem 1.3, we know that there exists {zn} ⊂ H such that {ūn :=

un(ξ + zn)} strongly and a.e. to ū 6≡ 0 in Ltloc(H) for all t ∈ (p, p∗s). Moreover,
{ūn} is also a bounded minimizing sequence of (St).

Using the Brézis-Lieb lemma [6], one can deduce

1 = lim
n→∞

∫
H
|ūn|tdξ

= lim
n→∞

∫
H
|ūn − ū|tdξ +

∫
H
|ū|tdξ

6S−tt lim
n→∞

‖ūn − ū‖tSs,p(H) + S−tt ‖ū‖tSs,p(H)

6S−tt
(

lim
n→∞

‖ūn − ū‖Ss,p(H) + ‖ū‖Ss,p(H)

)t
=S−tt lim

n→∞
‖ūn‖tSs,p(H)

=1,

(4.1)

which implies ‖ū‖Ss,p(H) = St and
∫
H |ū|

tdξ = 1. The proof is completed. �

We give another proof of Theorem 1.5 via Lions’ vanishing theorem.

Proof of Theorem 1.5 (Method 2). We show lim
n→∞

sup
z∈H

∫
BH(z,1) |un|

qdξ > 0, for all

q ∈ [p, p∗s). Suppose on the contrary that there exists q ∈ [p, p∗s) such that

lim
n→∞

sup
z∈H

∫
BH(z,1)

|un|qdξ = 0.

From Theorem 1.4, we know un → 0 in Lr(H) for r ∈ (p, p∗s). This is a contradiction
with

∫
H |un|

tdξ = 1. Then similar to the above proof, we know that there exists
{zn} ⊂ H such that {ūn := un(ξ + zn)} is also a bounded minimizing sequence
of (St). Moreover, {ūn} converges strongly and a.e. to ū 6≡ 0 in Lqloc(H) for all
q ∈ (p, p∗s). Then similar to (4.1), one has ‖ū‖Ss,p(H) = St and

∫
H |ū|

tdξ = 1. �
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5. Proof of Theorem 1.6

Equation (S∗) is variational and its solutions are the critical points of the
functional defined in Ss,2(H) by

I(u) =
1

2
‖u‖2Ss,2(H) −

γ

r

∫
H
|u|rdξ − 1

2∗s

∫
H
|u|2∗sdξ,

From Proposition 1.2, we know I ∈ C1(Ss,2(H),R). It is easy to see that if
u ∈ Ss,2(H) is a critical point of I, i.e.

0 = 〈I ′(u), v〉 =

∫
H

∫
H

[u(ξ)− u(η)][v(ξ)− v(η)]

dQ+2s(η−1 ◦ ξ)
dηdξ

− γ
∫
H
|u|r−2uvdξ −

∫
H
|u|2∗s−2uvdξ,

for ϕ ∈ Ss,2(H), then u is a weak solution of equation (S∗). We denote the Nehari
manifold as follows:

N :=
{
u ∈ Ss,2(H)\{0}

∣∣∣〈I ′(u), u〉 = 0
}
.

It is easy to see the following lemma.

Lemma 5.1. Assume that all conditions described in Theorem 1.6 are satisfied.
Then the following statements hold true:

(1) I has mountain pass geometry structure. There exists a bounded Palais-Smale
sequence {un} ⊂ Ss,2(H) such that

I(un)→ c and ‖I ′(un)‖S−s,2(H) → 0, as n→∞,
where

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)) > 0

and

Γ =
{
γ ∈ C

(
[0, 1], Ss,2(H)

) ∣∣∣γ(0) = 0, I(γ(1)) < 0
}
.

(2) For each u ∈ Ss,2(H)\{0}, there exists a unique tu > 0 such that tuu ∈ N
and I(tuu) = max

t>0
I(tu).

(3) c = c̄ = ¯̄c > 0, where

c̄ := inf
u∈N

I(u) and ¯̄c := inf
u∈Ss,2(H)\{0}

sup
t>0

I(tu)

(4) For u ∈ N , we have Ψ′(u) 6= 0, where

Ψ(u) =〈I ′(u), u〉

=

∫
H

(∇Hu∇Hv + uv)dξ − γ
∫
H
|u|r−2uvdξ −

∫
H
|u|2∗s−2uvdξ.

(5.1)

Then we have

〈Ψ′(u), u〉 =2‖u‖2Ss,2(H) − rγ
∫
H
|u|rdξ − 2∗s

∫
H
|u|2∗sdξ. (5.2)

Moreover, if u ∈ N and J(u) = c̄, then u is a ground state solution of equation
(S∗).
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Proof. (1). In terms of Proposition 1.2, we get

I(u) >
1

2
‖u‖2Ss,2(H) − C‖u‖

r
Ss,2(H) − C‖u‖

2∗s
Ss,2(H)

.

By 2∗s > r > 2, for ρ > 0 small enough, there has

ς := inf
‖u‖Ss,2(H)=ρ

I(u) > 0 = I(0).

For u ∈ Ss,2(H)\{0}, one has

I(tu) =
t2

2
‖u‖2Ss,2(H) − γ

tr

r

∫
H
|u|rdξ − t2

∗
s

2∗s

∫
H
|u|2∗sdξ.

From the above expression, we can deduce that J(tu) < 0 for some t > 0 large
enough. By the mountain pass theorem, there exists a (PS) sequence {un} ⊂
Ss,2(H) such that

I(un)→ c and ‖I ′(un)‖S−1,2(H) → 0, as n→∞.

Moreover, we have

c+ on(1) = I(un)− 1

r
〈I ′(un), un〉 >

(
1

2
− 1

r

)
‖un‖2Ss,2(H),

which implies {un} is bounded in Ss,2(H).
(3). For each u ∈ Ss,2(H)\{0} and t > 0, set f(t) := I(tu). Then

f ′(t) =t‖u‖2Ss,2(H) − γt
r−1

∫
H
|u|rdξ − t2∗s−1

∫
H
|u|2∗sdξ.

By 2∗s > r > 2, it is standard to check there exists a unique tu ∈ (0,∞) such that
f ′(tu) = 0 holds. This implies tuu ∈ N . Moreover, we know that the unique critical
point tu on (0,∞) is a maximum point of I(tu).

(4). Let u ∈ N . By 〈I ′(u), u〉 = 0 and Proposition 1.1, we have

0 = 〈J ′(u), u〉 >‖u‖2Ss,2(H) − C‖u‖
r
Ss,2(H) − C‖u‖

2∗

Ss,2(H),

which implies ‖u‖Ss,2(H) > C. Hence I is bounded from below on N and c̄ > 0.
From the above arguments, it is easy to see that c̄ = ¯̄c. Notice that for any

u ∈ Ss,2(H)\{0}, there exists a large t̄ > 0 such that I(t̄u) < 0. Define a path
γ̄ : [0, 1]→ Ss,2(H) by γ̄(t) = tt̄u. Clearly, γ̄ ∈ Γ and c 6 ¯̄c.

For all path γ ∈ Γ, set h(t) := 〈I ′(γ(t)), γ(t)〉. Then h(0) = 0 and h(t) > 0 for
t > 0 small enough. One has

I(γ(1))− 1

r
〈I ′(γ(1)), γ(1)〉 >

(
1

2
− 1

r

)
‖γ(1)‖2Ss,2(H) > 0.

which implies

〈I ′(γ(1)), γ(1)〉 6 r · I(γ(1)) < 0.

Thus, there exists ¯̄t ∈ (0, 1) such that h(¯̄t) = 0, i.e. γ(¯̄t) ∈ N . So, we get c > c̄.
(5). For u ∈ N , it follows from (5.1) and (5.2) that

〈Ψ′(u), u〉 = 〈Ψ′(u), u〉 − 2Ψ(u) < 0,
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which indicates Ψ′(u) 6= 0 for u ∈ N . If u ∈ N and I(u) = c̄, then there exists
λ ∈ R such that I ′(u) = λΨ′(u). One has

〈λΨ′(u), u〉 = 〈I ′(u), u〉 = Ψ(u) = 0.

This showes λ = 0 and I ′(u) = 0. �

Lemma 5.2. Assume that all conditions described in Theorem 1.6 are satisfied.
Then we have

0 < c < c∗ :=

(
1

2
− 1

2∗s

)
S
− 2∗s

2∗s−2

2∗s
.

Proof. We choose v ∈ Ss,2(H) such that

‖v‖2Ss,2(H) = 1,

∫
H
|v|qdξ > 0 and lim

t→∞
I(tv) = −∞.

There exists tv,γ > 0 such that

sup
t>0

I(tv) = I(tv,γv).

Hence, tv,γ > 0 satisfies

tv,γ‖v‖2Ss,2(H) = γtr−1
v,γ

∫
H
|v|rdξ + t2

∗
s−1
v,γ

∫
H
|v|2∗sdξ,

which gives

tv,γ‖v‖2Ss,2(H) > t
2∗s−1
v,γ

∫
H
|v|2∗sdξ.

This shows that {tv,γ}γ is bounded.
We next prove tv,γ → 0 as γ → ∞. Suppose on the contrary that tv,γ 6→ 0 as

γn →∞. Then there exist t̂ > 0 and a sequence {γn} with γn →∞ as n→∞, such
that tv,γn → t̂ as n→∞. Passing the limit as n→∞, we can deduce

γnt
r−1
v,γn

∫
H
|v|rdξ →∞,

which gives

∞ = lim
n→∞

γnt
r−1
v,γn

∫
H
|v|rdξ

6 lim
n→∞

[
γnt

r−1
v,γn

∫
H
|v|rdξ + t2

∗
s−1
v,γn

∫
H
|v|2∗sdξ

]
= lim
n→∞

tv,γn‖v‖2Ss,2(H)

=t̂‖v‖2Ss,2(H).

This shows ‖v‖2Ss,2(H) = ∞, which is a contradiction with ‖v‖2Ss,2(H) = 1. Thus, we

have tv,λ → 0 as λ→∞. Then, we arrive at

lim
γ→∞

sup
t>0

I(tv) = lim
γ→∞

I(tv,γv) = 0.

Hence, there exists 0 < γ0 <∞, such that for any γ > γ0, one has

sup
t>0

I(tv) < c∗.
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The proof is completed. �

Lemma 5.3. Assume that all conditions described in Theorem 1.4 hold. Let {un} be
a bounded (PS)c sequence of with c ∈ (0, c∗). Then there exists {zn} ⊂ H such that
{ūn := un(ξ + zn)} is also a bounded (PS)c sequence of with c ∈ (0, c∗). Moreover,
{ūn} converges strongly and a.e. to ū 6≡ 0 in Lqloc(H) for all q ∈ (2, 2∗s).

Proof. We show lim
n→∞

∫
H |un|

qdξ > 0 for all q ∈ (2, 2∗s). Otherwise, we suppose that

there exists q ∈ (2, 2∗s) such that

lim
n→∞

∫
H
|un|qdξ = 0.

By Hölder’s inequality, one has

lim
n→∞

∫
H
|un|rdξ = 0.

Then

c+ on(1) =
1

2
‖un‖2Ss,2(H) −

1

2∗s

∫
H
|un|2

∗
sdξ

and

on(1) =‖un‖2Ss,2(H) −
∫
H
|un|2

∗
sdξ, (5.3)

which gives

c+ on(1) >

(
1

2
− 1

2∗s

)
‖un‖2Ss,2(H). (5.4)

It follows from (5.3) and Sobolev’s inequality that

‖un‖2Ss,2(H) =

∫
H
|un|2

∗
sdξ

6S
2∗s
2

2∗s
‖un‖2

∗
s

Ss,2(H)
,

which showes

S
− 2∗s

2∗s−2

2∗s
6 ‖un‖2Ss,2(H).

(5.5)

In view of (5.4) and (5.5), we have

c+ on(1) >

(
1

2
− 1

2∗s

)
‖un‖2Ss,2(H)

>

(
1

2
− 1

2∗s

)
S
− 2∗s

2∗s−2

2∗s
.

This is a contradiction with Lemma 5.2.
Applying Theorem 1.3, there exists {zn} ⊂ H such that {ūn := un(ξ + zn)}

convergence strongly and a.e. to ū 6≡ 0 in Lqloc(H).
We now show {ūn := un(ξ + zn)} is also a bounded (PS)c sequence of with

c ∈ (0, c∗). Clearly,
c = I(un) = I(ūn).
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For all ϕ ∈ Ss,2(H), we obtain

|〈I ′(ūn), ϕ〉| = |〈I ′(un), ϕ̄n〉|
6 ‖I ′(un)‖S−s,2(H)‖ϕ̄n‖Ss,2(H)

= o(1)‖ϕ̄n‖Ss,2(H),

where ϕ̄n = ϕ(ξ − zn). Since ‖ϕ̄n‖Ss,2(H) = ‖ϕ‖Ss,2(H), we get

I ′(ūn)→ 0 as n→∞.

�

Now we are in a position to give the proof of Theorem 1.6 via Lieb’s translation
theorem.

Proof of Theorem 1.6. From Lemma 5.3, we know that there exists {zn} ⊂ H such
that {ūn := un(ξ + zn)} is also a bounded (PS)c sequence of with c ∈ (0, c∗).
Moreover, {ūn} converges strongly and a.e. to ū 6≡ 0 in Lqloc(H) for all q ∈ (2, 2∗s).
Using the Brézis-Lieb lemma [6], one can deduce

c̄ 6I(ū)

=I(ū)− 1

r
〈I ′(ū), ū〉

=

(
1

2
− 1

q

)
‖ū‖2Ss,2(H) +

(
1

r
− 1

2∗s

)∫
H
|ū|2∗sdξ

6 lim
n→∞

[(
1

2
− 1

r

)
‖ūn‖2Ss,2(H) +

(
1

r
− 1

2∗s

)∫
H
|ūn|2

∗
sdξ

]
= lim
n→∞

[
I(ūn)− 1

r
〈I ′(ūn), ūn〉

]
= lim
n→∞

I(ūn) = c̄,

(5.6)

which implies I(ū) = c̄. The proof is completed. �

We give another proof of Theorem 1.6 via Lions’ vanishing theorem.

Proof of Theorem 1.6. We show lim
n→∞

sup
z∈H

∫
BH(z,1) |un|

qdξ > 0, for all q ∈ [2, 2∗s).

Suppose on the contrary that there exists q ∈ [2, 2∗s) such that

lim
n→∞

sup
z∈H

∫
BH(z,1)

|un|qdξ = 0.

From Theorem 1.4, we know un → 0 in Lt(H) for t ∈ (2, 2∗s). Repeatting the proof
of Lemma 5.3, we know that there exists {zn} ⊂ H such that {ūn := un(ξ + zn)}
is also a bounded (PS)c sequence of with c ∈ (0, c∗). Moreover, {ūn} converges
strongly and a.e. to ū 6≡ 0 in Lqloc(H) for all q ∈ (2, 2∗s). Then similar to (5.6), one
has I(ū) = c̄. �
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[14] P. Lions, The concentration-compactness principle in the calculus of variations. The locally
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