References
  1. Scadding G, Hellings P, Alobid I, et al. Diagnostic tools in Rhinology EAACI position paper. Clin Transl Allergy. 2011 Jun 10;1(1):2.
  2. Hasegawa M, Kern EB. Variations in nasal resistance in man: a rhinomanometric study of the nasal cycle in 50 human subjects. Rhinology. 1978 Mar 1;16(1):19–29.
  3. Eccles R. Nasal airflow in health and disease. Acta Oto-Laryngol. 2000 Jan 1;120(5):580–95.
  4. Lang C, Grutzenmacher S, Mlynski B, et al. Investigating the nasal cycle using endoscopy, rhinoresistometry, and acoustic rhinometry. Laryngoscope. 2003 Feb;113(2):284–9.
  5. Gogniashvili G, Sh J, Khujadze M. Investigation of the nasal cycle function through endoscopy, rhinoresistometry, and acoustic rhinometry. Georgian News. 2009 Sep 1;174:22–25.
  6. Shohara K, Goto T, Kuwahara G, et al. Validity of rhinometry in measuring nasal patency for nasotracheal intubtion. J Anesth. 2016 Oct 13;31(1):1–4.
  7. Wong E, Inthavong K, Singh N. Comment on the European position paper on diagnostic tools in rhinology â\euro” computational fluid dynamics. Rhinology. 2019 Dec 1;57(6):477–8.
  8. Quadrio M, Pipolo C, Corti S, et al. Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur Arch Otorhinolaryngol. 2014 Sep;271(9):2349–54.
  9. Kim SK, Na Y, Kim JI, Chung SK. Patient specific CFD models of nasal airflow: overview of methods and challenges. J Biomech. 2013 Jan 18;46(2):299–306.
  10. Wang K, Denney TS, Morrison EE, Vodyanov VJ. Numerical simulation of air flow in the human nasal cavity. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. 2006 Jan 17:5607–10.
  11. Xiong G, Zhan J, Zuo K. et al. Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity. Med Biol Eng Comput. 2008 Aug 26;46(11):1161–7.
  12. Zhao K, Jiang J. What is normal nasal airflow? A computational study of 22 healthy adults. Int Forum Allergy Rhinol 2014 Mar 24;4(6):435–46.
  13. Radulesco T, Meister L, Bouchet G, et al. Functional relevance of computational fluid dynamics in the field of nasal obstruction: a literature review. Clin Otolaryngol. 2019 Jun 24;44(5):801–9.
  14. Berger M, Giotakis AI, Pillei M, et al. Agreement between rhinomanometry and computed tomography‑based computational fluid dynamics. Int J Comput Assist Radiol Surg. 2021 Mar 7;16(4):629–38.
  15. Kaneda S, Iida M, Yamamoto H, et al. Evaluation of nasal airflow and resistance: computational modeling for experimental measurements. Tokai J Exp Clin Med. 2019 Sep 20;44(3):59–67.
  16. Kumar H, Jain R, Douglas RG, Tawhai MH. Airflow in the human nasal passage and sinuses of chronic rhinosinusitis subjects. PLOS ONE. 2016 Jun 1;11(6):e0156379.
  17. Radulesco T, Meister L. Bouchet G, et al. Correlations between computational fluid dynamics and clinical evaluation of nasal airway obstruction due to septal deviation: an observational study. Clin Otolaryngol. 2019 Apr 20;44(4):603–11.
  18. Tretialow D, Tesch K. Three‑dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method. Eur Arch Oto-Rhino-L. 2020 Oct 17;278(5):1443–53.
  19. Hariri BM, Rhee JS, Garcia GJ. Identifying patients who may benefit from inferior turbinate reduction using computer simulations. Laryngoscope. 2015 May 11;125(12):2635-41.