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Abstract

The dynamical behavior of a perturbed Human Immunodeficiency Virus (HIV)
model is investigated in this paper. We first determine a positively invariant set in
which the perturbed system admits a unique, positive, global solution. Following
that, we discuss the stability of infection-free equilibrium of the deterministic model.
We also obtain the conditions required for the pth-moment exponential stability, for
the perturbed system. Later we show that if R0 > 1, for smaller intensity of noise,
the solution of stochastic system oscillates around E∗. Our results demonstrate that
a large value of noise suppresses the disease from persistence exponentially. We also
derive the condition for the persistence of the disease. Finally, comparison of our
analytical results with simulations is to be done.

Keywords: Stochastic perturbation, Endemic equilibrium, Exponentially stable in
mean square, Extinction, Persistence.

1 Introduction

Epidemiology is a branch of medical science that studies infectious diseases in popu-
lations and is concerned with all aspects of an epidemic, such as its transmission, control,
vaccination strategy. Many models addressing the transmission of infectious diseases are
based on the famous SIR model of Kermack and Mckendrick[6].
AIDS, which is caused by the HIV virus, is one of the life threatening disease. However,

there is a global commitment to reducing new HIV infections and providing treatment to
all HIV-positive persons.
Mathematical modelling is a common technique for understanding and researching

infectious disease dynamics, as well as suggesting disease outbreak mitigation strategies.
In 2013, Swarnali Sharma and G.P. Samanta[13] developed a five compartmental HIV

model: 




dS
dt
= Λ− (β1Ia + β2Is)S − μS

dIa
dt
= (β1Ia + β2Is)S + η(Ia + Is)− (δ + μ)Ia

dIs
dt
= δIa − (σ + κ+ μ)Is

dT
dt
= κIs − (γ + μ)T

dA
dt
= γT + σIs − (d+ μ)A

(1.1)

∗Corresponding author.
Email address: senthilkumaran maths@tcarts.in

1



Here, the entire population is split up into five groups: Susceptible population S(t),
infective population without symptoms Ia(t), infective population with symptoms Is(t),
infected population under treatment T (t) and full-blown AIDS group A(t); the key param-
eters are: Λ, the recruitment rate of S; β1, horizontal transmission rate ofIa; β2, horizontal
transmission rate of Is; η, recruitment rate of new borne infected children into Ia; δ, pro-
gression rate from Ia to Is; κ, the proportion of Is who enter into T ; σ, progression rate
to A from Is; γ, transfer rate from T to A; d, death rate of A due to the disease; μ, the
natural death rate.
In [13], the authors introduced a single discrete time delay on the sub model:






dS
dt
= Λ− (β1Ia + β2Is)S − μS

dIa
dt
= (β1Ia + β2Is)S + η(Ia + Is)− (δ + μ)Ia

dIs
dt
= δIa − (σ + κ+ μ)Is

(1.2)

with initial conditions:
S(0) > 0, Ia(0) > 0, Is(0) ≥ 0.

In deterministic system (1.2), the threshold parameter is R0 =
Λ
μ

β1(κ+σ+μ)+δβ2
(δ+μ−η)(κ+σ+μ)−δη .

They[13] showed that if R0 < 1, the disease-free equilibrium of the system is asymptot-
ically stable, and the disease disappears in the population and if R0 > 1, the infection
persists because the system (1.2) possess a unique endemic equilibrium E∗ = (S∗, I∗a , I

∗
s )

that is asymptotically stable.
Environmental noise should be incorporated in every dynamic population model since

all biological populations display some sort of stochastic behaviour. A brownian motion
process is commonly used to introduce such noise. Deterministic elements serve to make
the model of the response variable predictable from the initial conditions, whereas stochas-
tic elements can be attributed to a variety of sources, including demographic stochasticity,
environmental stochasticity, mensuration stochasticity, and informational stochasticity[9].
In reality environmental stochasticity[9] refers to the impact on local and global popula-
tions of factors such as weather, major accidents, epidemics,natural disasters, agriculture
failures and international dislocations. These factors are expected to work independently
in the long run. Random variations in the environment influence the whole population
in the case of environmental stochasticity. With this motivation, we have study the long
term behavior of deterministic model (1.2) with environmental stochasticity.
Stochasticity may be included into an epidemic model in a variety of ways. Many

authors included environmental stochasticity into model parameters and developed nu-
merous characteristics on the behaviour of perturbed models[2, 5, 10, 11, 15, 16]. Another
way to introduce stochasticity into deterministic models is telegraph noise where the pa-
rameter switch from one set to another according to a Markov switching process[14].
Greenhalgh et.al.[3] studied SIS epidemic model with demographic stochasticity. How-
ever in this paper we include environmental stochasticity into the horizontal transmission
coefficient parameter β1.
We can improve the accuracy of our estimations or predictions of epidemic diseases by

including random phenomena in our model. This need for greater accuracy has prompted
the use of stochastic process models, and these types of models can be solved via stochastic
differential equations, that is the sample path of the process can be described by SDE.
In epidemic models, the disease transmission rate is the key parameter for disease

transmission. In this article, we include environmental variations in the transmission co-
efficient rate, making it more biologically plausible for the HIV dynamics transmission in a
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homogeneously mixed population of varied sizes. To account for the impact of a randomly
changing environment in system (1.2), white noise is introduced in the parameter β1,

β1 → β1 + λḂ(t),

where B(t) denotes one dimensional standard Brownian motion with the property B(0) =
0, λ represents the noise intensity.
We then get the following stochastic epidemic HIV model of (1.2) to be studied in this

paper: 




dS = [Λ− (β1Ia + β2Is)S − μS] dt− λIaSdB(t)

dIa = [(β1Ia + β2Is)S + η(Ia + Is)− (δ + μ)Ia] dt+ λIaSdB(t)

dIs = [δIa − (σ + κ+ μ)Is] dt

(1.3)

The main purpose of our work is to analyze the stochastic version of deterministic
model (1.2) and examine the long term behavior of the system (1.3).
The paper is structured as follows. We will establish the existence of a unique positive

solution in the next Section. The asymptotic behavior of the solution to the stochastic
model around the disease-free equilibrium of the underlying model is to study in Section
3. We examine the stability of the stochastic model near the endemic equilibrium point
of the deterministic model in Section 4. Further more we examine the pth moment ex-
ponential stability of E0. We will investigate two of the most prominent components of
every biological system, namely, the conditions necessary for extinction and persistence
in Sections 6 and 7. Finally, to validate the analytical conclusions, we will do numerical
simulations with realistic parameter values.
Throughout the article, let (Ω,F , {Ft}t≥0, P ) be a complete probability space with

a filteration {Ft}t≥0 that meets the standard criteria (i.e., it is right continuous and F0
includes all P -null sets)[7].
Denote Rn+ = {x ∈ R

n : xi > 0, for all 1 ≤ i ≤ n}, Rn+ = {x ∈ R
n : xi ≥ 0, for all 1 ≤

i ≤ n}.
A general d-dimensional stochastic differential equation takes the form[7]

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) on t ≥ t0 (1.4)

with initial value x(t0) = x0 ∈ Rd, where B(t) denotes d-dimensional standard Brownian
motion defined on the above probability space.

2 Existence and Uniqueness of Global Positive Solu-

tion

In this section, we show that the system (1.3) has a unique, positive and global solution
using Lyapunov analysis method[2].

Theorem 2.1. For any initial value (S(0), I1(0), I2(0)) ∈ R3+, the system (1.3) admits
a unique solution (S(t), Ia(t), Is(t)) on t ≥ 0, and the solution will remain in R3+ with
probability 1, (i.e.), (S(t), Ia(t), Is(t)) ∈ R3+ for all t ≥ 0 almost surely.

Proof: Note that the coefficient of the equations in system (1.3) are locally Lipschitz
continuous for any given initial value (S(0), I1(0), I2(0)) ∈ R3+. Therefore, the system
possesses a unique local solution (S(t), Ia(t), Is(t)) on t ∈ [0, τe), where τe is the explosion
time[1]. To demonstrate that this solution is global, just we want to show that τe = ∞
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a.s. Allow k
′
≥ 1 to be sufficiently large enough that all (S(0), I1(0), I2(0)) lie inside the

interval [1/k
′
, k
′
]. For each integer n ≥ k

′
, let us define the stopping time as

τn = inf

{

t ∈ [0, τe) : min{S(t), Ia(t), Is(t)} ≤
1

n
or max{S(t), Ia(t), Is(t)} ≥ n

}

,

where, throughout the paper, we assume inf � =∞ (as usual � denotes the empty set).
Clearly, τn is increasing when n→∞. Denote τ∞ = lim

n→∞
τn, when τ∞ ≤ τe a.s. If τ∞ =∞

a.s., consequently τe =∞ and (S(t), Ia(t), Is(t)) ∈ R3+ a.s. for all t ≥ 0. To put it in other
words, we just need to claim that τ∞ =∞ a.s.
If it is not, we can find some T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Thus there is an integer k1 ≥ k
′
such that

P{τn ≤ T} ≥ ε for alln ≥ k1. (2.1)

Meanwhile, for t ≤ τn,

d(S + Ia + Is) = [Λ− μS + η(Ia + Is)− μIa − σIs − κIs − μIs]dt

≤ [Λ− (μ− η)(S + Ia + Is)]dt

and

S(t) + Ia(t) + Is(t) ≤

{
Λ
μ−η , when S(0) + I1(0) + I2(0) ≤ Λ

μ−η

S(0) + I1(0) + I2(0), when S(0) + I1(0) + I2(0) >
Λ
μ−η

: K

Now a C2 function V1 : R
3
+ → R+ is defined by

V1(S, Ia, Is) = (S − 1− log S) + (Ia − 1− log Ia) + (Is − 1− log Is),

which is non-negative, since v − 1− log v ≥ 0, ∀ v ≥ 0.
Itô’s formula yields,

dV1 =

(

1−
1

S

)

[(Λ− β1IaS − β2IsS − μS)] dt

+

(

1−
1

Ia

)

[(β1IaS + β2IsS + η(Ia + Is)− (δ + μ)Ia)] dt

+

(

1−
1

Is

)

[δIa − (σ + κ+ μ)Is] dt+

[
1

2
λ2I2a +

1

2
λ2S2

]

dt+ λ(Ia − S) dB(t)

≤ [Λ + 3μ+ δ + σ + κ+ (η + β1 + β2)K +
1

2
λ2K2] dt+ λ(Ia − S) dB(t)

= K̃dt+ λ(Ia − S) dB(t).

The remainder of the proof follows that in [8] and hence is omitted here.

Theorem 2.2. For any initial value (S(0), I1(0), I2(0)) ∈ R
3

+, the solution of system (1.3)

will remain in R
3

+ with probability 1.
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Proof: Clearly, First equation of (1.3) gives

S(t) = e
−μt−

t∫

0

[β1Ia(u)+β2Is(u)+
λ2

2
I2a(u)]du−λ

t∫

0

Ia(u)dB(u)

[

S(0) + Λ

t∫

0

e
μu+

t∫

0

[β1Ia(u)+β2Is(u)+
λ2

2
I2a(u)]du+λ

t∫

0

Ia(u)dB(u)
du

]

Then S(t) > 0 if S(0) > 0 or S(0) = 0.
Next, we consider the infective population without symptoms Ia(t).

Ia(t) = e
−(δ+μ−η)t+

t∫

0

[β1S(u)−λ
2

2
S2(u)]du+λ

t∫

0

S(u)dB(u)

[

Ia(0) +

t∫

0

(β2Is(u)S(u) + ηIs(u))e
(δ+μ−η)u−

t∫

0

[β1S(u)−λ
2

2
S2(u)]du−λ

t∫

0

S(u)dB(u)
du

]

Obviously, Ia(t) > 0 no matter Ia(0) > 0 or Ia(0) = 0.
Third equation of (1.3) yields,

dIs

dt
≥ −(κ+ σ + μ)Is

=⇒ Is(t) ≥ Is(0)e
−(κ+σ+μ)t ≥ 0.

(i.e.) We can conclude that the variables S(t) > 0, Ia(t) > 0 and Is(t) ≥ 0.

Remark 2.3. From Theorem 2.1 and 2.2, we see that that for any initial value

(S(0), I1(0), I2(0)) ∈ R
3

+, the system(1.3) admits a unique, global solution

(S(t), Ia(t), Is(t)) ∈ R
3

+ almost surely. Therefore,

d(S + Ia + Is) ≤

[

Λ− (μ− η)(S + Ia + Is)

]

dt

and

S(t) + Ia(t) + Is(t) ≤
Λ

μ− η
+ e−(μ−η)t

[

S(0) + I1(0) + I2(0)−
Λ

μ− η

]

Obviously, S(t) + Ia(t) + Is(t) ≤ Λ
μ−η , when S(0) + I1(0) + I2(0) ≤

Λ
μ−η .

∴ The region defined by

Ω∗ =

{

(S, Ia, Is) : S > 0, Ia > 0, Is ≥ 0, S + Ia + Is ≤
Λ

μ− η

}

is a positively invariant set of the stochastic system (1.3).
Hereafter, we assume that any initial solution (S(0), I1(0), I2(0)) ∈ Ω∗.

3 Asymptotic Behavior around Disease-Free Equilib-

rium

Theorem 2.1 shows that the perturbed system (1.3) will remain to have a global
positive solution in R̄3+. In the sequel we therefore only need to consider how the solution
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behaves in R̄3+. Because there is no explicit solution to the model (1.3), asymptotic
behavior must be studied.
In this section, we primarily use the stochastic Lyapunov function[7] to determine the

stability of the disease free equilibrium E0 = (
Λ
μ
, 0, 0) of the deterministic model.

Lemma 3.1. [7] If there exists a positive-definite decrescent radially unbounded function
V (x, t) ∈ C2,1(Rd × [t0,∞);R+) such that LV (x, t) is negative-definite, then the trivial
solution of Equation (1.4) is stochastically asymptotically stable in the large.

In this section, we present the main theorem based on the aforementioned lemma.
Define

R1 =

Λ
μ
[β1(κ+ σ + μ) + β2(δ + η)] +

λ2

2
(Λ
μ
)2(σ + κ+ μ) + η2

(δ + μ− η)(σ + κ+ μ)− δη

Theorem 3.2. If R1 < 1, (δ + μ − η)2 < 1 and
μ(δ+η)(η+β2

Λ
μ
)(κ+σ+μ)

(δ+μ−η)(κ+σ+μ)−δη ≤ 1 − R1, then the

disease-free equilibrium (Λ
μ
, 0, 0) of the system (1.3) is stochastically asymptotically stable

in the large.

Proof. Let u = S − Λ
μ
, v = Ia, w = Is.

Then u ≤ 0, v > 0, w ≥ 0 and system (1.3) takes the form

du(t) =

[

Λ− β1v(u+
Λ

μ
)− β2w(u+

Λ

μ
)− μ(u+

Λ

μ
)

]

dt− λv

(

u+
Λ

μ

)

dB(t)

dv(t) =

[

β1v(u+
Λ

μ
) + β2w(u+

Λ

μ
) + η(v + w)− (δ + μ)v

]

dt+ λv

(

u+
Λ

μ

)

dB(t)(3.1)

dw(t) =

[

δv − (κ+ σ + μ)w

]

dt

Define the stochastic Lyapunov function R3 → R̄+:

V2(u, v, w) = (u+ v)
2 + cv2 + w2,

where c > 0, to be found later.

It is easily check that c
2+cu

2 + c2v
2 + w2 ≤ V2(u, v, w) ≤ 2u2 + (2 + c)v2 + w2.

Thus V2(u, v, w) is positive-definite, decrescent and radially unbounded.
Let L be the generating operator of system (1.3). Then

LV2 = 2(u+ v)[−μu− (δ + μ− η)v + ηw] + 2cv

[

β1uv + β2uw +

(

β1
Λ

μ
+ η − δ − μ

)

v

+

(

β2
Λ

μ
+ η

)

w

]

+ cλ2
(

u+
Λ

μ

)2
v2 + 2w[δv − (σ + κ+ μ)w]

= −2μu2 − 2uv(δ + 2μ− η)− 2(1 + c)(δ + μ− η)v2 + 2cvβ1uv
2 + 2c

Λ

μ
β1v

2

+cλ2
(

u+
Λ

μ

)2
v2 + 2ηvw(1 + c) + 2ηuw + 2cβ2vw + 2cvwβ2

Λ

μ

+2δvw − 2(σ + κ+ μ)w2 (3.2)

6



Note that u ≤ 0 and cλ2v2
(
u+ Λμ

)2
≤ cλ2v2(Λμ )

2. Then

LV2 ≤ −2μu2 − 2(δ + μ− η + μ)uv + [2cβ1
Λ

μ
+ cλ2(

Λ

μ
)2 − 2(1 + c)(δ + μ− η)]v2

+2

[

(δ + η) + c(η + β2
Λ

μ
)

]

vw − 2(κ+ σ + μ)w2

With the identity a+ b ≤ 2ab, we get

LV ≤ −2μu2 + 2(2(δ + μ− η)μ)uv + 2(2(δ + η)(η + β2
Λ

μ
)c)vw

+[2cβ1
Λ

μ
+ cλ2(

Λ

μ
)2 − 2(1 + c)(δ + μ− η)]v2 − 2(κ+ σ + μ)w2

Again applying the identity 2ab ≤ a2 + b2,

LV ≤ −2μu2 + 2(δ + μ− η)2μu2 + 2μv2 + 2
(δ + η)(η + β2

Λ
μ )c

κ+ σ + μ
v2

+2(δ + η)(η + β2
Λ

μ
)(κ+ σ + μ)cw2

+[2cβ1
Λ

μ
+ cλ2(

Λ

μ
)2 − 2(1 + c)(δ + μ− η)]v2 − 2(κ+ σ + μ)w2

LV ≤ −2μ(1− (δ + μ− η)2)u2

+2

[

μ+ c

{
(δ + η)(η + β2

Λ
μ )

κ+ σ + μ
+ β1

Λ

μ
+ λ2(

Λ

μ
)2 − (δ + μ− η)

}

− (δ + μ− η)

]

v2

−2

[

(κ+ σ + μ)− (δ + η)(η + β2
Λ

μ
)(κ+ σ + μ)c

]

w2

≤ −2μ(1− (δ + μ− η)2)u2 − 2(δ + μ− η)v2

+
2

κ+ σ + μ

[

μ(κ+ σ + μ) + c{β1
Λ

μ
(κ+ σ + μ) + (δ + μ)β2

Λ

μ
+ η2 + λ2(

Λ

μ
)2(κ+ σ + μ)

−[(δ + μ− η)(κ+ σ + μ)− δη]}] v2 − 2

[

(κ+ σ + μ)− (δ + η)(η + β2
Λ

μ
)(κ+ σ + μ)c

]

w2

≤ −2μ(1− (δ + μ− η)2)u2 − 2(δ + μ− η)v2

+
2

κ+ σ + μ
{μ(κ+ σ + μ) + c(R1 − 1)[(δ + μ− η)(κ+ σ + μ)− δη]}v

2

−2

[

(κ+ σ + μ)− (δ + η)(η + β2
Λ

μ
)(κ+ σ + μ)c

]

w2

Choose c = μ(κ+σ+μ)
(1−R1)[(δ+μ−η)(κ+σ+μ)−δη]

so that

μ(κ+ σ + μ) + c(R1 − 1)[(δ + μ− η)(κ+ σ + μ)− δη] = 0

Then

LV2 ≤ −2μ(1−(δ+μ−η)
2)u2−2(δ+μ−η)v2−2

[

(κ+ σ + μ)− (δ + η)(η + β2
Λ

μ
)(κ+ σ + μ)c

]

w2

(3.3)
which is negative-definite.
(i.e.) V2 satisfies the conditions in Lemma 3.1. Thus we conclude that when R1 < 1with

additional conditions, the disease-free equilibrium (Λμ , 0, 0) of the system (1.3) is stochastically
asymptotically stable in the large.
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4 Moment Exponential Stability

In this section, we investigate the pth-moment exponential stability, for the stochastic system
and we shall assume p > 0.

Theorem 4.1. [12] Let p, d1, d2, d3 > 0. If there exists a function W (t, y) ∈ C2,1(R+×Rd, R+),
satisfying the property

d1 | y |
p≤W (t, y) ≤ d2 | y |

p and W (t, y) ≤ −d3 | y |
p, t ≥ 0, (4.1)

then the equilibrium of stochastic system (1.3) is pth-moment exponentially stable. Furthermore
When p = 2, it is said to be exponentially stable in mean square and the equilibrium point y = 0
is globally asymptotically stable.

As a result of Young’s inequality, (i.e.), mn ≤ mp

p +
np

p for m,n > 0 and
1
p +

1
q = 1, we obtain

the following.

Lemma 4.2. [12] Set p ≥ 2 and ε, m, n > 0. Then

mp−1n ≤
(p− 1)ε
p

mp +
1

pεp−1
np

and mp−2n2 ≤
(p− 2)ε
p

mp +
2

pε( p−22 )
np

The following theorem is proved using the aforementioned lemma.

Theorem 4.3. Assume p ≥ 2. If the conditions Λ = μ and β1 Λμ−η +
p−1
2 (

Λ
μ−η )

2λ2 < (δ +

μ − η) hold, then the solution E0 of the stochastically perturbed system (1.3) is pth -moment
exponentially stable in Ω∗.

Proof:
Define V3 = a1(1− S)p + a2 1pI

p
1 + a3

1
pI
p
2 , where a1, a2, a3 are real positive constants.

By Itô’s formula,
LV3 = −a1p(1− S)

p−1[Λ− (β1I1 + β2Is)S − μS] +
a1

2
p(p− 1)(1− S)p−2λ2I2aS

2

+a2I
p−1
a [(β1Ia + β2Is)S + η(Ia + Is)− (δ + μ)Ia] +

a2

2
(p− 1)Ip−2a λ2I2aS

2

+a3I
p−1
s [δIa − (κ+ σ + μ)Is]

In Ω∗, we have max{S, Ia, Is} ≤ Λ
μ−η and hence

LV3 ≤ −a1pμ(1− S)
p + a2

[

β1
Λ

μ− η
− (δ + μ− η) +

λ2

2
(
Λ

μ− η
)2(p− 1)

]

Ipa − a3(κ+ σ + μ)I
p
s

+a1pβ1
Λ

μ− η
(1− S)p−1Ia + a1pβ2

Λ

μ− η
(1− S)p−1Is + a2(η + β2

Λ

μ− η
)Ip−1a Is

+a3δI
p−1
s Ia + a1

λ2

2
p(p− 1)(

Λ

μ− η
)2(1− S)p−2I2a (4.2)

Applying Lemma (4.2) for any ε > 0, we get

(1− S)p−1Ia ≤
(p− 1)ε
p

(1− S)p +
1

pεp−1
Ipa

(1− S)p−1Is ≤
(p− 1)ε
p

(1− S)p +
1

pεp−1
Ips

(1− S)p−2I21 ≤
(p− 2)ε
p

(1− S)p +
2

pε(
p−2
2
)
Ipa

Ip−1a Is ≤
(p− 1)ε
p

Ipa +
1

pεp−1
Ips

IaI
p−1
s ≤

(p− 1)ε
p

Ips +
1

pεp−1
Ipa
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Substituting the above inequalities into (4.2), we have

LV3 ≤ −a1pμ(1− S)
p + a2

[

β1
Λ

μ− η
− (δ + μ− η) +

λ2

2
(
Λ

μ− η
)2(p− 1)

]

Ipa

−a3(κ+ σ + μ)I
p
s + a1pβ1

Λ

μ− η

(
(p− 1)ε
p

(1− S)p +
1

pεp−1
Ipa

)

+a1pβ2
Λ

μ− η

(
(p− 1)ε
p

(1− S)p +
1

pεp−1
Ips

)

+a2(η + β2
Λ

μ− η
)

(
(p− 1)ε
p

Ipa +
1

pεp−1
Ips

)

+ a3δ

(
(p− 1)ε
p

Ips +
1

pεp−1
Ipa

)

+a1
λ2

2
p(p− 1)(

Λ

μ− η
)2

[
(p− 2)ε
p

(1− S)p +
2

pε
p−2
2

Ipa

]

(i.e.) LV3 ≤ a1

[

−pμ+ β1
Λ

μ− η
(p− 1)ε+ β2

Λ

μ− η
(p− 1)ε

+
λ2

2
(p− 1)(p− 2)

(
Λ

μ− η

)2
ε

]

(1− S)p

+

[

a2

{

β1
Λ

μ− η
− (δ + μ− η) +

p− 1
2

(
Λ

μ− η

)2
λ2 + (η + β2

Λ

μ− η
)
p− 1
p
ε

}

+a1

{

β1
Λ

μ− η
1

εp−1
+ λ2(p− 1)

(
Λ

μ− η

)2 1

ε
p−2
2

}

+ a3
δ

pεp−1

]

Ipa

+

[

−a3(κ+ σ + μ) + a1

(

β2
Λ

μ− η
1

εp−1
+ (η + β2

Λ

μ− η
)
1

pεp−1

)

+ a3
δ(p− 1)
p

ε

]

Ips .

As β1
Λ
μ−η +

p−1
2 (

Λ
μ−η )

2λ2 < (δ+μ−η), we choose ε sufficiently small as well as the constants
ai, (i = 1, 2, 3) such that the coefficients of (1− S)p, I

p
a and I

p
s are negative.

Thus the pth moment of E0 approaches to 0 exponentially fast.

Remark 4.4. From Lemma 4.2, Theorem 4.3 and for p = 2, E0 is exponentially stable in mean
square when Λ = μ and β1

Λ
μ−η +

1
2(

Λ
μ−η )

2λ2 < (δ + μ− η).

5 Asymptotic Behavior Near the Endemic Equilib-

rium of the Deterministic System

In this section, we look at how the solution of the stochastic system (1.3) behaves towards the
endemic equilibrium of the deterministic system E∗, to see whether the disease will prevail.

Theorem 5.1. Let (S(t), Ia(t), Is(t)) be the solution of system (1.3) with any initial value

(S(0), I1(0), I2(0)) ∈ R3+. If R0 > 1, then we have

lim sup
t→∞

1

t

t∫

0

[(S(s)− S∗)2 + (Ia(s)− I
∗
a)
2 + (Is(s)− I

∗
s )
2]ds ≤ K1λ

2 a.s.,

where (S∗, I∗a , I
∗
s ) is the endemic equilibrium of system (1.2),

K1 =
(2 + c1)

(
Λ
μ−η

)4

min{2(μ− η), (δ + μ), 2c2(κ+ σ + μ)− (η(1 + c1) + δc2)− 2η}

9



where c1 =
(δ + 2μ− η)(μ− η)
Λ(β1 + β2)

and c2 =

(1 + 2c1)(δ + μ− η)− ηc1 + 2c1S∗(β1 + β2)
Λ

μ− η
δ

Proof: Define

V4 = (S − S
∗ + Ia − I

∗
a)
2 + c1(Ia − I

∗
a)
2 + c2(Is − I

∗
s )
2

where c1, c2 are positive constants to be found later.
By Itô′s formula,
dV4 = LV4dt+ 2λc1SIa(Ia − I∗a)dB(t),
where

LV4 ≤ 2(S − S ∗+Ia − I
∗
a) [(δ + μ)I

∗
a − η(I

∗
a + I

∗
s ) + μS

∗ − μS + η(Ia + Is)− (δ + μ)Ia]

+2c1(Ia − I
∗
a){(β1 + β2)

Λ

μ− η
(S − S∗) + (β1 + β2)

Λ

μ− η
S∗ + η(Ia + Is)

−(δ + μ)(Ia − I
∗
a)− η(I

∗
a + I

∗
s )− (β1I

∗
a + β2I

∗
s )S

∗}

+2c2(Is − I
∗
s ) [δ(Ia − I

∗
a)− (κ+ σ + μ)(Is − I

∗
s )] + (2 + c1)λ

2I2aS
2

∴ LV4 ≤ −2μ(S − S∗)2 − 2(1 + c1)(δ + μ− η) (Ia − I
∗
a)
2 − 2c2(κ+ σ + μ) (Is − I

∗
s )
2

+ (S − S∗) (Ia − I
∗
a)

{

−2(δ + 2μ− η) + 2c1(β1 + β2)
Λ

μ− η

}

+ (Ia − I
∗
a) (Is − I

∗
s ){2(1 + c1)η + 2c2δ}+ 2η (Is − I

∗
s ) (S − S

∗)

+2c1S
∗
{

(β1 + β2)
Λ

μ− η
− (β1I

∗
a + β2I

∗
s )

}

(Ia − I
∗
a)
2 + (2 + c1)λ

2I2aS
2

Choose c1 =
(δ+μ−η)(μ−η)
Λ(β1+β2)

so that 2c1Λ(β1+β2)μ−η − 2(δ + μ− η) = 0.

∴ LV4 ≤ −2μ (S − S∗)2

−

{

2(1 + c1)(δ + μ− η)− (η(1 + c1) + δc2) + 2c1S
∗(β1 + β2)

Λ

μ− η

}

(Ia − I
∗
a)
2

−{2c2(κ+ σ + μ)− (η(1 + c1) + δc2)− 2η} (Is − I
∗
s )
2 + (2 + c1)λ

2I2aS
2

Choose c2 =
(1+2c1)(δ+μ−η)−ηc1++2c1S∗(β1+β2) Λμ−η

δ such that

2(1 + c1)(δ + μ− η)− (ηc1 + δc2) + 2c1S∗(β1 + β2)
Λ

μ− η
− (δ + μ− η) = 0.

∴ LV4 ≤ −2(μ− η) (S − S∗)2 − (δ + μ) (Ia − I
∗
a)
2

−{2c2(κ+ σ + μ)− (η(1 + c1) + δc2)− 2η} (Is − I
∗
s )
2 + (2 + c1)λ

2I2aS
2

≤ −
{
m1 (S − S

∗)2 +m2 (Ia − I
∗
a)
2 +m3 (Is − I

∗
s )
2
}
+ (2 + c1)λ

2I2aS
2

∴ dV4 ≤
{
−min{m1,m2,m3}

[
(S − S∗)2 + (Ia − I

∗
a)
2 + (Is − I

∗
s )
2
]

+(2 + c1)λ
2

(
Λ

μ− η

)4
t

}

dt+ 2λc1SIa (Ia − I
∗
a)dB(t)

Integrating it from 0 to t gives,

V4(t)− V4(0) ≤ −min{m1,m2,m3}

t∫

0

[
(S − S∗)2 + (Ia − I

∗
a)
2 + (Is − I

∗
s )
2
]
ds

+(2 + c1)λ
2

(
Λ

μ− η

)4
t+ 2λc1

t∫

0

S(s)Ia(s)(Ia(s)− I
∗
a)dB(s)
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From this,

t∫

0

[

(S(s)− S∗)2 + (Ia(s)− I
∗
a)
2 + (Is(s)− I

∗
s )
2

]

ds

≤
V4(0)− V4(t)
min{m1,m2,m3}

+
(2 + c1)λ

2
(
Λ
μ−η

)4

min{m1,m2,m3}
t

+
2c1λ

min{m1,m2,m3}

t∫

0

S(s)Ia(s)(Ia(s)− I
∗
a)dB(s) (5.1)

Let M(t) =
t∫

0

S(s)Ia(s)(Ia(s)− I∗a)dB(s).

Clearly M(t) is continuous, local martingale and also M(0) = 0.
By the strong law of large numbers[7], we can easily prove that

lim
t→∞

M(t)

t
=

t∫

0

S(u)Ia(u)(Ia(u)− I∗a)dB(u)

t
= 0 a.s. (5.2)

It therefore follows from (5.1) that

lim sup
t→∞

1

t

t∫

0

[(S(s)− S∗)2 + (Ia(s)− I
∗
a)
2 + (Is(s)− I

∗
s )
2 ds ≤

(2 + c1)λ
2

(
Λ

μ− η

)4

min{m1,m2,m3}

≤ K1λ
2 a.s.

This completes the proof of Theorem 5.1.

Remark 5.2. Theorem 5.1 shows that, if R0 > 1, the solution of the system (1.3) oscillates
around the endemic equilibrium E∗, for a long time while the intensity of the white noise is
small.

6 Extinction

In this section, we develop a criteria for the case that the infected populations eventually die
out.
For this, let us define

〈y(t)〉 =
1

t

t∫

0

y(u) du and as in the proof in [15], we can conclude the following lemma.

Lemma 6.1. Let (S(t), Ia(t), Is(t)) be the solution of the system (1.3) with any given initial

value (S(0), Ia(0), Is(0)) ∈ R3+. Then lim
t→∞

S(t) + Ia(t) + Is(t)

t
= 0 a.s.

Furthermore

lim
t→∞

S(t)

t
= 0, lim

t→∞

Ia(t)

t
= 0, lim

t→∞

Is(t)

t
= 0 a.s.

Define R̃1 =
Λ

μ

β1(κ+ σ + μ) + δβ2
μ− η

.
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Theorem 6.2. Let (S(t), Ia(t), Is(t)) be the solution of the system (1.3) with any given initial
value (S(0), Ia(0), Is(0)) ∈ R3+. If R̃1 < 1, the model (1.3) has the following property,

lim
t→∞
〈S(t)〉 =

Λ

μ
, lim
t→∞
〈Ia(t)〉 = 0, lim

t→∞
〈Is(t)〉 = 0 a.s.

In other words, Ia(t) and Is(t) will go to zero exponentially with probability one.

Proof: we compute that

d(S + Ia) = (Λ− μS − (δ + μ− η)Ia + ηIs) dt

Integrating from 0 to t and dividing t on both sides, we get

S(t) + Ia(t)

t
−
S(0) + Ia(0)

t
= Λ− μ〈S(t)〉 − (δ + μ− η)〈Ia(t)〉+ η〈Is(t)〉

From this,

〈S(t)〉 =
Λ

μ
−
(δ + μ− η)

μ
〈Ia(t)〉+

η

μ
〈Is(t)〉+

1

μ
φ(t) (6.1)

where φ(t) = S(0)+Ia(0)
t − S(t)+Ia(t)t .

From Lemma 6.1, we can obtain that lim
t→∞

φ(t) = 0. a.s.

If we consider the equation dIs = δIa− (κ+σ+μ), and integrating from 0 to t and dividing
t on both sides, we get

〈Is(t)〉 =
δ

κ+ σ + μ
〈Ia(t)〉 −

1

κ+ σ + μ
φ1(t) (6.2)

where φ1(t) =
Is(t)−Is(0)

t .
Again from Lemma 6.1, lim

t→∞
φ1(t) = 0 a.s.

Now Choose V5 = ln(Ia(t) + Is(t)).
By Itô′s formula,

dV5 =
1

Ia + Is
{(β1Ia + β2Is)S + η(Ia + Is)− (δ + μ)Ia + δIa − (κ+ σ + μ)Is} dt

−
1

(Ia + Is)2
λ2I2aS

2 dt

≤
1

Ia + Is
{(β1Ia + β2Is)S + η(Ia + Is)− μ(Ia + Is)− (κ+ σ)(Ia + Is) + (κ+ σ)Ia} dt

≤ [(β1 + β2)S − (μ− η)]dt

Integrating on both sides from 0 to t yields,

ln(Ia(t) + Is(t)) ≤ ln(Ia(0) + Is(0)) + (β1 + β2)

t∫

0

S(u)du− (μ− η)t

(i.e.)
ln(Ia(t) + Is(t))

t
≤
β1 + β2
t
〈S(t)〉 − (μ− η) +

ln(Ia(0) + Is(0))

t

12



Using (6.1), we have

ln(Ia(t) + Is(t))

t
≤

[

(β1(κ+ σ + μ) + δβ2)
Λ

μ
− (μ− η)

]

−(β1 + β2)

[
δ + μ− η
μ

−
δη

μ(κ+ σ + μ)

]

〈Ia(t)〉

−
η

μ(κ+ σ + μ)

Is(t)− Is(0)
t

+
β1 + β2
μ

φ(t)

≤ −(μ− η)[1− R̃1]−
η

μ(κ+ σ + μ)

Is(t)− Is(0)
t

+
β1 + β2
μ

φ(t)

∴ lim sup
t→∞

ln(Ia(t)+Is(t))
t ≤ 0 a.s.

That is lim
t→∞
(Ia(t) + Is(t)) = 0 a.s.

Hence lim
t→∞

Ia(t) = 0 a.s. and lim
t→∞

Is(t) = 0 a.s.

(i.e.) The disease will extinct with probability one.
Note that, from (6.1), lim

t→∞
〈S(t)〉 = Λ

μ a.s.

As a result, the infective populations extinct over time but, the susceptible population sta-
bilizes at Λμ .

7 Persistence in Mean

This section establishes a criterion for persistence in the mean of the disease.
We begin by recalling the notion of persistence in mean.

Definition 7.1. The stochastic system (1.3) is said to be persistence in mean, if

lim inf
t→∞

1

t

t∫

0

Ia(u)du > 0, lim inf
t→∞

1

t

t∫

0

Is(u)du > 0 a.s.

Let λ̄ = 1
2λ
2
(
Λ
μ−η

)2
.

Define R̃2 =
Λδβ2

(δ + μ+ λ̄)(κ+ σ + μ)(μ+ λ̄)
and k1 = (μ+ λ̄)(R̃2 − 1).

Theorem 7.2. Let (S(t), Ia(t), Is(t)) be the solution of the system (1.3) with any given initial
solution (S(0), Ia(0), Is(0)) ∈ R3+. If R̃2 > 1 holds, then Ia(t) and Is(t) persistence in mean.
Also

lim inf
t→∞

〈Is(t)〉 ≥
k1δ

β1(κ+ σ + μ) + δβ2
, lim inf

t→∞
〈Ia(t)〉 ≥

k1(κ+ σ + μ)

β1(κ+ σ + μ) + δβ2
a.s.

Proof:
Consider the function V6(S, Ia, Is) = − lnS − b1 ln Ia − b2 ln Is, where b1 and b2 are positive
constants to be found later.
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By Ito’s formula,

dV6 ≤

[

−
Λ

S
+ (β1Ia + β2Is) + μ−

b1βIsS

Ia
− ηb1

Is
Ia
− δb2

Is
Ia
+
1

2
λ2I2a + b1(δ + μ+

1

2
λ2S2)

+b2(κ+ σ + μ)] dt+ λ(Ia − b1S)dB(t)

≤

[

−
Λ

S
+ (β1Ia + β2Is) + μ−

b1βIsS

Ia
− ηb1

Is
Ia
+
1

2
λ2
(
Λ

μ− η

)2

+b1

(

δ + μ+
1

2
λ2
(
Λ

μ− η

)2)

+ b2(κ+ σ + μ)

]

dt+ λ(Ia − b1S)dB(t)

Thus we have

dV6 ≤ [−3
3
√
Λδβ2b1b2+μ+(β1Ia+β2Is)+ λ̄+ b1[δ+μ+ λ̄]+ b2(κ+σ+μ)]dt+λ(Ia− b1S)dB(t)

Choose b1[δ + μ+ λ̄] =
Λδβ2

(δ+μ+λ̄)(κ+σ+μ)
= b2(κ+ σ + μ).

∴ b1 =
Λδβ2

(δ + μ+ λ̄)2(κ+ σ + μ)
and b2 =

Λδβ2
(δ + μ+ λ̄)(κ+ σ + μ)2

So,

dV6 ≤

[

−
Λδβ2

(δ + μ+ λ̄)(κ+ σ + μ)
+ μ+ λ̄+ β1Ia + β2Is +

1

2
λ2
(
Λ

μ− η

)2]

dt+ λ(Ia − b1S)dB(t)

=

[

−(μ+ λ̄)

[
Λδβ2

(δ + μ+ λ̄)(κ+ σ + μ)(μ+ λ̄)
− 1

]

+ β1Ia + β2Is

]

dt+ λ(Ia − b1S)dB(t)

≤ [−k1 + β1Ia + β2Is]dt+ λ(Ia − b1S)dB(t)

Integrating from 0 to t gives,

V (S(t), Ia(t), Is(t))− V (S(0), Ia(0), Is(0)) ≤ −k1t+ β1

t∫

0

Ia(u)du+ β2

t∫

0

Is(u)du

+λ

t∫

0

(Ia(u)− b1S(u))dB(u)

Dividing t on both sides, we get

ln(S(0)− lnS(t))
t

+ b1
ln(Ia(0)− ln Ia(t))

t
+ b2
ln(Is(0)− ln Is(t))

t
≤ −k1 + β1〈Ia(t)〉+ β2〈Is(t)〉

+
λ

t

t∫

0

(Ia(u)− b1S(u))dB(u)

From (6.2), We have

ln(S(0)−lnS(t))
t + b1

(ln Ia(0)−ln Ia(t))
t + b2

ln(Is(0)−ln Is(t))
t

≤ −k1 + β1

[
κ+ σ + μ

δ
〈Is(t)〉+

1

δ
φ1(t)

]

+ β2〈Is(t)〉+
λ

t

t∫

0

(Ia(u)− b1S(u))dB(u)

= −k1 +

[
β1(κ+ σ + μ)

δ
+ β2

]

〈Is(t)〉+
β1

δ
φ1(t) +

λ

t
M1(t), (7.1)
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where M1(t) = λ
t∫

0

(Ia(u) − b1S(u))dB(u) which is continuous local martingale and M(0) = 0,

and its quadratic variation

〈M1,M1〉t =

t∫

0

(Ia(u)− b1S(u))
2du ≤ (1 + b21)

(
Λ

μ− η

)2
t

Thus lim sup
t→∞

〈M1,M1〉t
t

≤ (1 + b21)

(
Λ

μ− η

)2
<∞ a.s.

Again by the strong law of large numbers given in [7],

lim
t→∞

M1(t)

t
=
1

t

t∫

0

(Ia(u)− b1S(u))dB(u) = 0 a.s.

Letting t→∞ in (7.1), we have

0 ≤ −k1 +

[
β1(κ+ σ + μ) + δβ2

δ

]

lim
t→∞
〈Is(t)〉.

Hence

lim
t→∞
〈Is(t)〉 ≥

k1δ

β1(κ+ σ + μ) + δβ2
, so lim inf

t→∞
〈Is(t)〉 ≥

k1δ

β1(κ+ σ + μ) + δβ2
.

Also from (6.2), we can see that

lim inf
t→∞

〈Ia(t)〉 ≥
k1(κ+ σ + μ)

β1(κ+ σ + μ) + δβ2

This show that the disease persists in mean.

8 Numerical Simulation

This section deals with the numerical simulations to support our analytical results, using Eu-
ler’s Higher Order method[4] with initial value (x1, x2, x3) = (1, 1, 0.5) and time step

√
Δt=0.004.

The discretization equations are:

x1
(j+1) = x1

(j)+(Λ−β1x2(j)x1(j)−β2x1(j)x2(j)−μx1(j))Δt−(λx1(j)x2(j))
√
Δt;

x2
(j+1) = x2

(j)+(β1x2(j)x1(j)+β2x1(j)x2(j)+η(x2(j)+x3(j))−(δ+μ)x2(j))Δt+(λx1(j)x2(j))
√
Δt;

x3
(j+1) = x3

(j)+(δx2(j)−(μ+σ+κ)x3(j))Δt;

Swarnali et.al.[13] shown that the disease free equilibrium E0 of the deterministic system
(1.2) is globally stable when R0 < 1. We are now performing numerical simulations on the
perturbed system (1.3).
Case(i): In Figure 1, the parameters are: Λ = 1; μ = 0.7; η = 0.05; δ = 0.2; σ = 0.7; β1 =

0.3; β2 = 0.4; κ = 0.9; λ = 0.5 resulting R1 = 0.8832 < 1 and R0 = 0.5656 < 1. Therefore the
condition of Theorem 3.3 is met. The disease-free equilibrium E0 = (

Λ
μ , 0, 0) of the stochastic

system (1.3) is globally asymptotically stable in Ω∗, as shown in Theorem 3.3. This was verified
by Figure 1.
The deterministic and the stochastic systems have comparable characteristics. Both solutions

of the system tend to the disease-free equilibrium E0 = (
Λ
μ , 0, 0) = (1.4246, 0, 0).
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Figure 1: The trajectories of the stochastic model (1.3) and the deterministic model (1.2) for parameter values Λ = 1; μ = 0.7; η =
0.05; δ = 0.2; σ = 0.7; β1 = 0.3; β2 = 0.4; κ = 0.9; λ = 0.5 such that R1 = 0.8832 < 1 and R0 = 0.5656 < 1.

Figure 2: The trajectories of system (1.3) for parameter values Λ = 1; μ = 0.5; η = 0.05; δ = 0.2; σ = 0.7; β1 = 0.3; β2 = 0.4; κ = 0.9;
with different noise intensities λ = 0, 0.1, 0.05, 0.01.

Figure 3: The trajectories of system (1.3) for parameter values Λ = 1; μ = 0.5; η = 0.05; δ = 0.2; σ = 0.7; β1 = 0.3; β2 = 0.4; κ = 0.9;
with different noise intensities λ = 0, 0.1, 0.05, 0.01.

Figure 4: The trajectories of system (1.3) and system (1.2) for parameter values Λ = 1; μ = 1; η = 0.05; δ = 0.2; σ = 0.7; β1 =
0.3; β2 = 0.4; κ = 0.9; for noise level λ = 0.8 and λ = 2.
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Figure 5: The trajectories of system (1.3) and system (1.2) for parameter values Λ = 1; μ = 0.1; η = 0.05; δ = 0.2; σ = 0.7; β1 =
0.3; β2 = 0.4; κ = 0.9; for noise level λ = 0.01 and λ = 0.005.

Case(iv): The parameters can be fixed as in Figure 4: Λ = 1; μ = 1; η = 0.05; δ =
0.2; σ = 0.7; β1 = 0.3; β2 = 0.4; κ = 0.9, with intensity of large white noise λ=0.8 and λ = 2.

With these parameter values R̃1 =
Λ

μ

β1(κ+ σ + μ) + δβ2
μ− η

< 1. Theorem 6.2 shows that a large

noise disturbance causes the disease to go extinct.
Case(v): According to Theorem 7.2, as the intensity of white noise decreases, the dis-

ease might become persistent. The parameters in Figure 5 are taken as follows: Λ = 1; μ =
0.1; η = 0.05; δ = 0.2; σ = 0.7; β1 = 0.3; β2 = 0.4; κ = 0.9; λ = 0.01. For these values,
R̃2 =

Λδβ2
(δ+μ+λ̄)(κ+σ+μ)(μ+λ̄)

= 1.2255 > 1 and k1 = 0.0271. Moreover if we choose λ = 0.005,

the small intensity of the white noise yields R̃2 = 1.4694 and k1 = 0.0493. Thus infectious disease
is persistent supporting the conclusion in Theorem 7.2.

9 Conclusion

We proposed a stochastic HIV epidemic model involving the transmission of HIV disease be-
tween susceptible, infected without symptoms, infected with symptoms. We first demonstrated
that positivity of the solution of the stochastic model (1.3) using Lyapunov analysis method.
We investigated the stability properties of the equilibrium points in order to understand the
behavior of the system (1.3) as well as we derived the conditions under which the disease might
be eliminated or be endemic. Furthermore, we demonstrated that if R1 < 1, then the disease free
equilibrium (Λμ , 0, 0) of the system (1.3) is stochastically asymptotically stable in the large and if
R1 > 1 the solution of stochastic system (1.3) is fluctuates around the solution of deterministic
system (1.2) for a long time, and the fluctuation becomes smaller as the value of λ decreases. We
also proved that the disease free equilibrium E0 of the stochastic system (1.3) is exponentially
stable in mean square when β1

Λ
μ−η +

1
2λ
2( Λμ−η )

2 < δ+μ− η. Figure 2 shows that how Ia(t) and
Is(t) approach to zero exponentially very fast.
In Section 6, we showed that if the threshold parameter R̃1 < 1, the disease dies out. We

determined that the persistence of the infective populations depend on the stochastic fluctuation
intensity of the noise from the expression of R̃2. We inferred from Theorem 7.2 that the disease
will exist when the perturbations are weak. Finally, Our numerical simulations showed that
both deterministic and stochastic systems have comparable characteristics and they are consis-
tent. Hence our study on parameter perturbation is reliable. In order to control the disease,
future research will focus on incorporating environmental stochasticity into the parameter η, the
vertical transmission rate.
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