REFERENCES
Abe, H., Semba, H., and Takeda, N. (2017). The Roles of Hypoxia Signaling in the Pathogenesis of Cardiovascular Diseases. J. Atheroscler. Thromb. 24 : 884–894.
Akhmedov, A., Sawamura, T., Chen, C.-H., Kraler, S., Vdovenko, D., and Lüscher, T.F. (2021). Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): a crucial driver of atherosclerotic cardiovascular disease. Eur. Heart J. 42 : 1797–1807.
Aliotta, J.M., Pereira, M., Wen, S., Dooner, M.S., Del Tatto, M., Papa, E., et al. (2016). Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc. Res. 110 : 319–330.
Bister, N., Pistono, C., Huremagic, B., Jolkkonen, J., Giugno, R., and Malm, T. (2020). Hypoxia and extracellular vesicles: A review on methods, vesicular cargo and functions. J. Extracell. Vesicles10 : e12002.
Cushing, L., Costinean, S., Xu, W., Jiang, Z., Madden, L., Kuang, P., et al. (2015). Disruption of miR-29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature. PLoS Genet. 11 : e1005238.
Deng, L., Blanco, F.J., Stevens, H., Lu, R., Caudrillier, A., McBride, M., et al. (2015). MicroRNA-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension. Circ. Res. 117 : 870–883.
Dou, X., Ma, Y., Qin, Y., Dong, Q., Zhang, S., Tian, R., et al. (2021). NEAT1 silencing alleviates pulmonary arterial smooth muscle cell migration and proliferation under hypoxia through regulation of miR‑34a‑5p/KLF4 in vitro. Mol. Med. Rep. 24 : 749.
Ferrer, E., Dunmore, B.J., Hassan, D., Ormiston, M.L., Moore, S., Deighton, J., et al. (2018). A Potential Role for Exosomal Translationally Controlled Tumor Protein Export in Vascular Remodeling in Pulmonary Arterial Hypertension. Am. J. Respir. Cell Mol. Biol.59 : 467–478.
Ge, X., Zhang, W., Zhu, T., Huang, N., Yao, M., Liu, H., et al. (2021). Hypoxia-activated platelets stimulate proliferation and migration of pulmonary arterial smooth muscle cells by phosphatidylserine/LOX-1 signaling-impelled intercellular communication. Cell. Signal. 87 : 110149.
Gioia, M., Vindigni, G., Testa, B., Raniolo, S., Fasciglione, G.F., Coletta, M., et al. (2015). Membrane Cholesterol Modulates LOX-1 Shedding in Endothelial Cells. PloS One 10 : e0141270.
Hergenreider, E., Heydt, S., Tréguer, K., Boettger, T., Horrevoets, A.J.G., Zeiher, A.M., et al. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14 : 249–256.
Hoeper, M.M., Humbert, M., Souza, R., Idrees, M., Kawut, S.M., Sliwa-Hahnle, K., et al. (2016). A global view of pulmonary hypertension. Lancet Respir. Med. 4 : 306–322.
Kalluri, R., and LeBleu, V.S. (2020). The biology, function, and biomedical applications of exosomes. Science 367 : eaau6977.
Kwapiszewska, G., Markart, P., Dahal, B.K., Kojonazarov, B., Marsh, L.M., Schermuly, R.T., et al. (2012). PAR-2 inhibition reverses experimental pulmonary hypertension. Circ. Res. 110 : 1179–1191.
Lee, C., Mitsialis, S.A., Aslam, M., Vitali, S.H., Vergadi, E., Konstantinou, G., et al. (2012). Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126 : 2601–2611.
Li, Y., Wang, Y., Xue, F., Feng, X., Ba, Z., Chen, J., et al. (2022). Programmable dual responsive system reconstructing nerve interaction with small-diameter tissue-engineered vascular grafts and inhibiting intimal hyperplasia in diabetes. Bioact. Mater. 7 : 466–477.
Mack, C.P. (2011). Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler. Thromb. Vasc. Biol. 31 : 1495–1505.
Mesarwi, O.A., Loomba, R., and Malhotra, A. (2019). Obstructive Sleep Apnea, Hypoxia, and Nonalcoholic Fatty Liver Disease. Am. J. Respir. Crit. Care Med. 199 : 830–841.
Morris, E.J., Jha, S., Restaino, C.R., Dayananth, P., Zhu, H., Cooper, A., et al. (2013). Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov.3 : 742–750.
Pidkovka, N.A., Cherepanova, O.A., Yoshida, T., Alexander, M.R., Deaton, R.A., Thomas, J.A., et al. (2007). Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ. Res. 101 : 792–801.
Roskoski, R. (2012). ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66 : 105–143.
Salmon, M., Gomez, D., Greene, E., Shankman, L., and Owens, G.K. (2012). Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22α promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ. Res. 111 : 685–696.
Shan, F., Huang, Z., Xiong, R., Huang, Q.-Y., and Li, J. (2020). HIF1α-induced upregulation of KLF4 promotes migration of human vascular smooth muscle cells under hypoxia. J. Cell. Physiol. 235 : 141–150.
Shatat, M.A., Tian, H., Zhang, R., Tandon, G., Hale, A., Fritz, J.S., et al. (2014). Endothelial Krüppel-like factor 4 modulates pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 50 : 647–653.
Sheikh, A.Q., Misra, A., Rosas, I.O., Adams, R.H., and Greif, D.M. (2015). Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Sci. Transl. Med. 7 : 308ra159.
Sindi, H.A., Russomanno, G., Satta, S., Abdul-Salam, V.B., Jo, K.B., Qazi-Chaudhry, B., et al. (2020). Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat. Commun. 11 : 1185.
Spaans, F., Quon, A., Kirschenman, R., Morton, J.S., Sawamura, T., Tannetta, D.S., et al. (2020). Role of Lectin-like Oxidized LDL Receptor-1 and Syncytiotrophoblast Extracellular Vesicles in the Vascular Reactivity of Mouse Uterine Arteries During Pregnancy. Sci. Rep. 10 : 6046.
Spaans, F., Quon, A., Rowe, S.R., Morton, J.S., Kirschenman, R., Sawamura, T., et al. (2018). Alterations in vascular function by syncytiotrophoblast extracellular vesicles via lectin-like oxidized low-density lipoprotein receptor-1 in mouse uterine arteries. Clin. Sci. Lond. Engl. 1979 132 : 2369–2381.
Sun, D., Ding, D., Li, Q., Xie, M., Xu, Y., and Liu, X. (2021). The preventive and therapeutic effects of AAV1-KLF4-shRNA in cigarette smoke-induced pulmonary hypertension. J. Cell. Mol. Med. 25 : 1238–1251.
Sun, D., Li, Q., Ding, D., Li, X., Xie, M., Xu, Y., et al. (2018). Role of Krüppel-like factor 4 in cigarette smoke-induced pulmonary vascular remodeling. Am. J. Transl. Res. 10 : 581–591.
Tanigawa, H., Miura, S.-I., Matsuo, Y., Fujino, M., Sawamura, T., and Saku, K. (2006a). Dominant-negative lox-1 blocks homodimerization of wild-type lox-1-induced cell proliferation through extracellular signal regulated kinase 1/2 activation. Hypertens. Dallas Tex 1979 48 : 294–300.
Tanigawa, H., Miura, S.-I., Zhang, B., Uehara, Y., Matsuo, Y., Fujino, M., et al. (2006b). Low-density lipoprotein oxidized to various degrees activates ERK1/2 through Lox-1. Atherosclerosis 188 : 245–250.
Thenappan, T., Ormiston, M.L., Ryan, J.J., and Archer, S.L. (2018). Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ 360 : j5492.
Vicencio, J.M., Yellon, D.M., Sivaraman, V., Das, D., Boi-Doku, C., Arjun, S., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J. Am. Coll. Cardiol. 65 : 1525–1536.
Wamhoff, B.R., Hoofnagle, M.H., Burns, A., Sinha, S., McDonald, O.G., and Owens, G.K. (2004). A G/C element mediates repression of the SM22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ. Res. 95 : 981–988.
Wang, T.-M., Chen, K.-C., Hsu, P.-Y., Lin, H.-F., Wang, Y.-S., Chen, C.-Y., et al. (2017). microRNA let-7g suppresses PDGF-induced conversion of vascular smooth muscle cell into the synthetic phenotype. J. Cell. Mol. Med. 21 : 3592–3601.
Wynants, M., Quarck, R., Ronisz, A., Alfaro-Moreno, E., Van Raemdonck, D., Meyns, B., et al. (2012). Effects of C-reactive protein on human pulmonary vascular cells in chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 40 : 886–894.
Xie, C., Ritchie, R.P., Huang, H., Zhang, J., and Chen, Y.E. (2011). Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler. Thromb. Vasc. Biol. 31 : 1485–1494.
Yan, G., Sun, R., Chen, Z., Pan, X., Sheng, Z., and Tang, C. (2021). PTBP1 Targets ILK to Regulate the Hypoxia-Induced Phenotypic Transformation of Pulmonary Artery Smooth Muscle Cells. Drug Des. Devel. Ther. 15 : 2025–2033.
Yan, W., Li, T., Yin, T., Hou, Z., Qu, K., Wang, N., et al. (2020). M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics 10 : 10712–10728.
Yoshida, T., Kaestner, K.H., and Owens, G.K. (2008). Conditional deletion of Krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ. Res. 102 : 1548–1557.
Yu, K., Zheng, B., Han, M., and Wen, J. (2011). ATRA activates and PDGF-BB represses the SM22α promoter through KLF4 binding to, or dissociating from, its cis-DNA elements. Cardiovasc. Res. 90 : 464–474.
Yuan, K., Shamskhou, E.A., Orcholski, M.E., Nathan, A., Reddy, S., Honda, H., et al. (2019). Loss of Endothelium-Derived Wnt5a Is Associated With Reduced Pericyte Recruitment and Small Vessel Loss in Pulmonary Arterial Hypertension. Circulation 139 : 1710–1724.
Zhang, M., Xin, W., Ma, C., Zhang, H., Mao, M., Liu, Y., et al. (2018a). Exosomal 15-LO2 mediates hypoxia-induced pulmonary artery hypertension in vivo and in vitro. Cell Death Dis. 9 : 1022.
Zhang, S., Liu, J., Zheng, K., Chen, L., Sun, Y., Yao, Z., et al. (2021a). Exosomal miR-211 contributes to pulmonary hypertension via attenuating CaMK1/PPAR-γaxis. Vascul. Pharmacol. 136 : 106820.
Zhang, S., Liu, X., Ge, L.L., Li, K., Sun, Y., Wang, F., et al. (2020). Mesenchymal stromal cell-derived exosomes improve pulmonary hypertension through inhibition of pulmonary vascular remodeling. Respir. Res.21 : 71.
Zhang, W., Zhu, T., Wu, W., Ge, X., Xiong, X., Zhang, Z., et al. (2018b). LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension. Eur. J. Pharmacol. 818 : 84–95.
Zhang, Z., Chen, H., Liu, L., Zhao, G., He, J., Liu, H., et al. (2021b). ETAR silencing ameliorated neurovascular injury after SAH in rats through ERK/KLF4-mediated phenotypic transformation of smooth muscle cells. Exp. Neurol. 337 : 113596.
Zhu, T.-T., Zhang, W.-F., Luo, P., He, F., Ge, X.-Y., Zhang, Z., et al. (2017). Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion. Eur. J. Pharmacol. 809 : 42–51.