References
[1] Song Z, Hu Y, Liu S, et al. Medication Therapy of High-Dose Methotrexate: An Evidence-Based Practice Guideline of the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. Br J Clin Pharmacol. 2021: Nov 02. DOI: 10.1111 / bcp.15134. Online ahead of print.
[2] Lopez-Lopez E, Autry RJ, Smith C, et al. Pharmacogenomics of intracellular methotrexate polyglutamates in patients’ leukemia cells in vivo. J Clin Invest. 2020. 130(12): 6600-6615.
[3] French D, Yang W, Cheng C, et al. Acquired variation outweighs inherited variation in whole genome analysis of methotrexate polyglutamate accumulation in leukemia. Blood. 2009. 113(19): 4512-4520.
[4] Cheng Q, Yang W, Raimondi SC, Pui CH, Relling MV, Evans WE. Karyotypic abnormalities create discordance of germline genotype and cancer cell phenotypes. Nat Genet. 2005. 37(8): 878-882.
[5] Suthandiram S, Gan GG, Zain SM, et al. Effect of polymorphisms within methotrexate pathway genes on methotrexate toxicity and plasma levels in adults with hematological malignancies. Pharmacogenomics. 2014. 15(11): 1479-1494.
[6] Kager L, Cheok M, Yang W, et al. Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. J Clin Invest. 2005. 115(1): 110-117.
[7] Seidemann K, Book M, Zimmermann M, et al. MTHFR 677 (C–>T) polymorphism is not relevant for prognosis or therapy-associated toxicity in pediatric NHL: results from 484 patients of multicenter trial NHL-BFM 95. Ann Hematol. 2006. 85(5): 291-300.
[8] Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolžan V, Jazbec J. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol. 2011. 67(10): 993-1006.
[9] Radtke S, Zolk O, Renner B, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013. 121(26): 5145-5153.
[10] Kotur N, Lazic J, Ristivojevic B, et al. Pharmacogenomic Markers of Methotrexate Response in the Consolidation Phase of Pediatric Acute Lymphoblastic Leukemia Treatment. Genes (Basel). 2020. 11(4): 468.
[11] Taylor ZL, Vang J, Lopez-Lopez E, Oosterom N, Mikkelsen T, Ramsey LB. Systematic Review of Pharmacogenetic Factors That Influence High-Dose Methotrexate Pharmacokinetics in Pediatric Malignancies. Cancers (Basel). 2021. 13(11): 2387.
[12] Elens I, Deprez S, Billiet T, et al. Methylene tetrahydrofolate reductase A1298C polymorphisms influence the adult sequelae of chemotherapy in childhood-leukemia survivors. PLoS One. 2021. 16(4): e0250228.
[13] Zhu X, Li W, Zhu J, et al. Influence of MTHFR C677T and A1298C polymorphisms on the survival of pediatric patients with non-Hodgkin lymphoma. Leuk Lymphoma. 2021. 62(10): 2374-2382.
[14] Treviño LR, Shimasaki N, Yang W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009. 27(35): 5972-5978.
[15] Liao C, Xu X, Shen D, et al. Minimal Residual Disease-guided Risk Restratification and Therapy Improves the Survival of Childhood Acute Lymphoblastic Leukemia: Experience From a Tertiary Children’s Hospital in China. J Pediatr Hematol Oncol. 2019. 41(6): e346-e354.
[16] Pieters R, Schrappe M, De Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007. 370(9583): 240-250.
[17] Yang SL, Zhao FY, Song H, Shen DY, Xu XJ. Methotrexate Associated Renal Impairment Is Related to Delayed Elimination of High-Dose Methotrexate. ScientificWorldJournal. 2015. 2015: 751703.
[18] Sorich MJ, Pottier N, Pei D, et al. In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and has a distinct gene expression profile. PLoS Med. 2008. 5(4): e83.
[19] de Jonge R, Hooijberg JH, van Zelst BD, et al. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood. 2005. 106(2): 717-720.
[20] Panetta JC, Sparreboom A, Pui CH, Relling MV, Evans WE. Modeling mechanisms of in vivo variability in methotrexate accumulation and folate pathway inhibition in acute lymphoblastic leukemia cells. PLoS Comput Biol. 2010. 6(12): e1001019.
[21] Barredo JC, Synold TW, Laver J, et al. Differences in constitutive and post-methotrexate folylpolyglutamate synthetase activity in B-lineage and T-lineage leukemia. Blood. 1994. 84(2): 564-569.
[22] Mikkelsen TS, Sparreboom A, Cheng C, et al. Shortening infusion time for high-dose methotrexate alters antileukemic effects: a randomized prospective clinical trial. J Clin Oncol. 2011. 29(13): 1771-1778.
[23] Jaramillo AC, Cloos J, Lemos C, et al. Ex vivo resistance in childhood acute lymphoblastic leukemia: Correlations between BCRP, MRP1, MRP4 and MRP5 ABC transporter expression and intracellular methotrexate polyglutamate accumulation. Leuk Res. 2019. 79: 45-51.
[24] Ouyang Z, Huang J, Ren Y, et al. Studies on the intracellular accumulation process of methotrexate and its correlation with the key protein using an LC-MS/MS method: a novel way to realize prospective individualized medication. Anal Bioanal Chem. 2021. 413(7): 1799-1807.
[25] Lu S, Zhu X, Li W, et al. Influence of Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphism on High-Dose Methotrexate-Related Toxicities in Pediatric Non-Hodgkin Lymphoma Patients. Front Oncol. 2021. 11: 598226.
[26] Li X, Sui Z, Jing F, et al. Identifying risk factors for high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia. Cancer Manag Res. 2019. 11: 6265-6274.
[27] Brugières L, Le Deley MC, Rosolen A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009. 27(6): 897-903.
[28] Yazıcıoğlu B, Kaya Z, Güntekin Ergun S, et al. Influence of Folate-Related Gene Polymorphisms on High-Dose Methotrexate-Related Toxicity and Prognosis in Turkish Children with Acute Lymphoblastic Leukemia. Turk J Haematol. 2017. 34(2): 143-150.
[29] Kroll M, Kaupat-Bleckmann K, Mörickel A, et al. Methotrexate-associated toxicity in children with Down syndrome and acute lymphoblastic leukemia during consolidation therapy with high dose methotrexate according to ALL-BFM treatment regimen. Haematologica. 2020. 105(4): 1013-1020.
[30] Cwiklinska M, Czogala M, Kwiecinska K, et al. Polymorphisms of SLC19A1 80 G>A, MTHFR 677 C>T, and Tandem TS Repeats Influence Pharmacokinetics, Acute Liver Toxicity, and Vomiting in Children With Acute Lymphoblastic Leukemia Treated With High Doses of Methotrexate. Front Pediatr. 2020. 8: 307.
[31] Esmaili MA, Kazemi A, Faranoush M, et al. Polymorphisms within methotrexate pathway genes: Relationship between plasma methotrexate levels, toxicity experienced and outcome in pediatric acute lymphoblastic leukemia. Iran J Basic Med Sci. 2020. 23(6): 800-809.
[32] Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD. Preventing and Managing Toxicities of High-Dose Methotrexate. Oncologist. 2016. 21(12): 1471-1482.
[33] Nakano T, Kobayashi R, Matsushima S, et al. Risk factors for delayed elimination of high-dose methotrexate in childhood acute lymphoblastic leukemia and lymphoma. Int J Hematol. 2021. 113(5): 744-750.
[34] Chen AR, Wang YM, Lin M, Kuo DJ. High-Dose Methotrexate in Pediatric Acute Lymphoblastic Leukemia: Predictors of Delayed Clearance and the Effect of Increased Hydration Rate on Methotrexate Clearance. Cureus. 2020. 12(6): e8674.
[35] Sterba J, Valík D, Bajciová V, Kadlecová V, Gregorová V, Mendelová D. High-dose methotrexate and/or leucovorin rescue for the treatment of children with lymphoblastic malignancies: do we really know why, when and how. Neoplasma. 2005. 52(6): 456-463.
[36] Camitta B, Mahoney D, Leventhal B, et al. Intensive intravenous methotrexate and mercaptopurine treatment of higher-risk non-T, non-B acute lymphocytic leukemia: A Pediatric Oncology Group study. J Clin Oncol. 1994. 12(7): 1383-1389.
[37] Li J, Wang XR, Zhai XW, et al. Association of SLCO1B1 gene polymorphisms with toxicity response of high dose methotrexate chemotherapy in childhood acute lymphoblastic leukemia. Int J Clin Exp Med. 2015. 8(4): 6109-6113.
[38] Liu SG, Gao C, Zhang RD, et al. Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget. 2017. 8(23): 37761-37772.
[39] Skärby TV, Anderson H, Heldrup J, et al. High leucovorin doses during high-dose methotrexate treatment may reduce the cure rate in childhood acute lymphoblastic leukemia. Leukemia. 2006. 20(11): 1955-1962.
[40] Niinimäki R, Aarnivala H, Banerjee J, Pokka T, Vepsäläinen K, Harila-Saari A. Reduced dose folinic acid rescue after rapid high-dose methotrexate clearance is not associated with increased toxicity in a pediatric cohort. Support Care Cancer. 2022. 30(1): 127-133.
[41] Hayashi RJ, Winter SS, Dunsmore KP, et al. Successful Outcomes of Newly Diagnosed T Lymphoblastic Lymphoma: Results From Children’s Oncology Group AALL0434. J Clin Oncol. 2020. 38(26): 3062-3070.
[42] Schmidt D, Kristensen K, Schroeder H, et al. Plasma creatinine as predictor of delayed elimination of high-dose methotrexate in childhood acute lymphoblastic leukemia: A Danish population-based study. Pediatr Blood Cancer. 2019. 66(6): e27637.
[43] Wu C, Li W. Genomics and pharmacogenomics of pediatric acute lymphoblastic leukemia. Crit Rev Oncol Hematol. 2018. 126: 100-111.
[44] Ebid A, Hossam A, El Gammal MM, Soror S, Mangoud N, Mahmoud MA. High dose methotrexate in adult Egyptian patients with hematological malignancies: impact of ABCB1 3435C > T rs1045642 and MTHFR 677C > T rs1801133 polymorphisms on toxicities and delayed elimination. J Chemother. 2021: 1-10.
[45] Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011. 57(4): 612-619.
[46] Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Garcia-Orad A. A systematic review and meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. Pharmacogenomics J. 2013. 13(6): 498-506.
[47] Frikha R, Jemaa MB, Frikha F, et al. Involvement of C677T MTHFR variant but not A1298C in methotrexate-induced toxicity in acute lymphoblastic leukemia. J Oncol Pharm Pract. 2021. 27(6): 1382-1387.