References
[1] Song Z, Hu Y, Liu S, et al. Medication Therapy of High-Dose
Methotrexate: An Evidence-Based Practice Guideline of the Division of
Therapeutic Drug Monitoring, Chinese Pharmacological Society. Br J Clin
Pharmacol. 2021: Nov 02. DOI: 10.1111 / bcp.15134. Online ahead of
print.
[2] Lopez-Lopez E, Autry RJ, Smith C, et al. Pharmacogenomics of
intracellular methotrexate polyglutamates in patients’ leukemia cells in
vivo. J Clin Invest. 2020. 130(12): 6600-6615.
[3] French D, Yang W, Cheng C, et al. Acquired variation outweighs
inherited variation in whole genome analysis of methotrexate
polyglutamate accumulation in leukemia. Blood. 2009. 113(19): 4512-4520.
[4] Cheng Q, Yang W, Raimondi SC, Pui CH, Relling MV, Evans WE.
Karyotypic abnormalities create discordance of germline genotype and
cancer cell phenotypes. Nat Genet. 2005. 37(8): 878-882.
[5] Suthandiram S, Gan GG, Zain SM, et al. Effect of polymorphisms
within methotrexate pathway genes on methotrexate toxicity and plasma
levels in adults with hematological malignancies. Pharmacogenomics.
2014. 15(11): 1479-1494.
[6] Kager L, Cheok M, Yang W, et al. Folate pathway gene expression
differs in subtypes of acute lymphoblastic leukemia and influences
methotrexate pharmacodynamics. J Clin Invest. 2005. 115(1): 110-117.
[7] Seidemann K, Book M, Zimmermann M, et al. MTHFR 677
(C–>T) polymorphism is not relevant for prognosis or
therapy-associated toxicity in pediatric NHL: results from 484 patients
of multicenter trial NHL-BFM 95. Ann Hematol. 2006. 85(5): 291-300.
[8] Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolžan V, Jazbec
J. Association of genetic polymorphism in the folate metabolic pathway
with methotrexate pharmacokinetics and toxicity in childhood acute
lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol.
2011. 67(10): 993-1006.
[9] Radtke S, Zolk O, Renner B, et al. Germline genetic variations
in methotrexate candidate genes are associated with pharmacokinetics,
toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood.
2013. 121(26): 5145-5153.
[10] Kotur N, Lazic J, Ristivojevic B, et al. Pharmacogenomic
Markers of Methotrexate Response in the Consolidation Phase of Pediatric
Acute Lymphoblastic Leukemia Treatment. Genes (Basel). 2020. 11(4): 468.
[11] Taylor ZL, Vang J, Lopez-Lopez E, Oosterom N, Mikkelsen T,
Ramsey LB. Systematic Review of Pharmacogenetic Factors That Influence
High-Dose Methotrexate Pharmacokinetics in Pediatric Malignancies.
Cancers (Basel). 2021. 13(11): 2387.
[12] Elens I, Deprez S, Billiet T, et al. Methylene tetrahydrofolate
reductase A1298C polymorphisms influence the adult sequelae of
chemotherapy in childhood-leukemia survivors. PLoS One. 2021. 16(4):
e0250228.
[13] Zhu X, Li W, Zhu J, et al. Influence of MTHFR C677T and A1298C
polymorphisms on the survival of pediatric patients with non-Hodgkin
lymphoma. Leuk Lymphoma. 2021. 62(10): 2374-2382.
[14] Treviño LR, Shimasaki N, Yang W, et al. Germline genetic
variation in an organic anion transporter polypeptide associated with
methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009.
27(35): 5972-5978.
[15] Liao C, Xu X, Shen D, et al. Minimal Residual Disease-guided
Risk Restratification and Therapy Improves the Survival of Childhood
Acute Lymphoblastic Leukemia: Experience From a Tertiary Children’s
Hospital in China. J Pediatr Hematol Oncol. 2019. 41(6): e346-e354.
[16] Pieters R, Schrappe M, De Lorenzo P, et al. A treatment
protocol for infants younger than 1 year with acute lymphoblastic
leukaemia (Interfant-99): an observational study and a multicentre
randomised trial. Lancet. 2007. 370(9583): 240-250.
[17] Yang SL, Zhao FY, Song H, Shen DY, Xu XJ. Methotrexate
Associated Renal Impairment Is Related to Delayed Elimination of
High-Dose Methotrexate. ScientificWorldJournal. 2015. 2015: 751703.
[18] Sorich MJ, Pottier N, Pei D, et al. In vivo response to
methotrexate forecasts outcome of acute lymphoblastic leukemia and has a
distinct gene expression profile. PLoS Med. 2008. 5(4): e83.
[19] de Jonge R, Hooijberg JH, van Zelst BD, et al. Effect of
polymorphisms in folate-related genes on in vitro methotrexate
sensitivity in pediatric acute lymphoblastic leukemia. Blood. 2005.
106(2): 717-720.
[20] Panetta JC, Sparreboom A, Pui CH, Relling MV, Evans WE.
Modeling mechanisms of in vivo variability in methotrexate accumulation
and folate pathway inhibition in acute lymphoblastic leukemia cells.
PLoS Comput Biol. 2010. 6(12): e1001019.
[21] Barredo JC, Synold TW, Laver J, et al. Differences in
constitutive and post-methotrexate folylpolyglutamate synthetase
activity in B-lineage and T-lineage leukemia. Blood. 1994. 84(2):
564-569.
[22] Mikkelsen TS, Sparreboom A, Cheng C, et al. Shortening infusion
time for high-dose methotrexate alters antileukemic effects: a
randomized prospective clinical trial. J Clin Oncol. 2011. 29(13):
1771-1778.
[23] Jaramillo AC, Cloos J, Lemos C, et al. Ex vivo resistance in
childhood acute lymphoblastic leukemia: Correlations between BCRP, MRP1,
MRP4 and MRP5 ABC transporter expression and intracellular methotrexate
polyglutamate accumulation. Leuk Res. 2019. 79: 45-51.
[24] Ouyang Z, Huang J, Ren Y, et al. Studies on the intracellular
accumulation process of methotrexate and its correlation with the key
protein using an LC-MS/MS method: a novel way to realize prospective
individualized medication. Anal Bioanal Chem. 2021. 413(7): 1799-1807.
[25] Lu S, Zhu X, Li W, et al. Influence of
Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphism on
High-Dose Methotrexate-Related Toxicities in Pediatric Non-Hodgkin
Lymphoma Patients. Front Oncol. 2021. 11: 598226.
[26] Li X, Sui Z, Jing F, et al. Identifying risk factors for
high-dose methotrexate-induced toxicities in children with acute
lymphoblastic leukemia. Cancer Manag Res. 2019. 11: 6265-6274.
[27] Brugières L, Le Deley MC, Rosolen A, et al. Impact of the
methotrexate administration dose on the need for intrathecal treatment
in children and adolescents with anaplastic large-cell lymphoma: results
of a randomized trial of the EICNHL Group. J Clin Oncol. 2009. 27(6):
897-903.
[28] Yazıcıoğlu B, Kaya Z, Güntekin Ergun S, et al. Influence of
Folate-Related Gene Polymorphisms on High-Dose Methotrexate-Related
Toxicity and Prognosis in Turkish Children with Acute Lymphoblastic
Leukemia. Turk J Haematol. 2017. 34(2): 143-150.
[29] Kroll M, Kaupat-Bleckmann K, Mörickel A, et al.
Methotrexate-associated toxicity in children with Down syndrome and
acute lymphoblastic leukemia during consolidation therapy with high dose
methotrexate according to ALL-BFM treatment regimen. Haematologica.
2020. 105(4): 1013-1020.
[30] Cwiklinska M, Czogala M, Kwiecinska K, et al. Polymorphisms of
SLC19A1 80 G>A, MTHFR 677 C>T, and Tandem TS
Repeats Influence Pharmacokinetics, Acute Liver Toxicity, and Vomiting
in Children With Acute Lymphoblastic Leukemia Treated With High Doses of
Methotrexate. Front Pediatr. 2020. 8: 307.
[31] Esmaili MA, Kazemi A, Faranoush M, et al. Polymorphisms within
methotrexate pathway genes: Relationship between plasma methotrexate
levels, toxicity experienced and outcome in pediatric acute
lymphoblastic leukemia. Iran J Basic Med Sci. 2020. 23(6): 800-809.
[32] Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD.
Preventing and Managing Toxicities of High-Dose Methotrexate.
Oncologist. 2016. 21(12): 1471-1482.
[33] Nakano T, Kobayashi R, Matsushima S, et al. Risk factors for
delayed elimination of high-dose methotrexate in childhood acute
lymphoblastic leukemia and lymphoma. Int J Hematol. 2021. 113(5):
744-750.
[34] Chen AR, Wang YM, Lin M, Kuo DJ. High-Dose Methotrexate in
Pediatric Acute Lymphoblastic Leukemia: Predictors of Delayed Clearance
and the Effect of Increased Hydration Rate on Methotrexate Clearance.
Cureus. 2020. 12(6): e8674.
[35] Sterba J, Valík D, Bajciová V, Kadlecová V, Gregorová V,
Mendelová D. High-dose methotrexate and/or leucovorin rescue for the
treatment of children with lymphoblastic malignancies: do we really know
why, when and how. Neoplasma. 2005. 52(6): 456-463.
[36] Camitta B, Mahoney D, Leventhal B, et al. Intensive intravenous
methotrexate and mercaptopurine treatment of higher-risk non-T, non-B
acute lymphocytic leukemia: A Pediatric Oncology Group study. J Clin
Oncol. 1994. 12(7): 1383-1389.
[37] Li J, Wang XR, Zhai XW, et al. Association of SLCO1B1 gene
polymorphisms with toxicity response of high dose methotrexate
chemotherapy in childhood acute lymphoblastic leukemia. Int J Clin Exp
Med. 2015. 8(4): 6109-6113.
[38] Liu SG, Gao C, Zhang RD, et al. Polymorphisms in methotrexate
transporters and their relationship to plasma methotrexate levels,
toxicity of high-dose methotrexate, and outcome of pediatric acute
lymphoblastic leukemia. Oncotarget. 2017. 8(23): 37761-37772.
[39] Skärby TV, Anderson H, Heldrup J, et al. High leucovorin doses
during high-dose methotrexate treatment may reduce the cure rate in
childhood acute lymphoblastic leukemia. Leukemia. 2006. 20(11):
1955-1962.
[40] Niinimäki R, Aarnivala H, Banerjee J, Pokka T, Vepsäläinen K,
Harila-Saari A. Reduced dose folinic acid rescue after rapid high-dose
methotrexate clearance is not associated with increased toxicity in a
pediatric cohort. Support Care Cancer. 2022. 30(1): 127-133.
[41] Hayashi RJ, Winter SS, Dunsmore KP, et al. Successful Outcomes
of Newly Diagnosed T Lymphoblastic Lymphoma: Results From Children’s
Oncology Group AALL0434. J Clin Oncol. 2020. 38(26): 3062-3070.
[42] Schmidt D, Kristensen K, Schroeder H, et al. Plasma creatinine
as predictor of delayed elimination of high-dose methotrexate in
childhood acute lymphoblastic leukemia: A Danish population-based study.
Pediatr Blood Cancer. 2019. 66(6): e27637.
[43] Wu C, Li W. Genomics and pharmacogenomics of pediatric acute
lymphoblastic leukemia. Crit Rev Oncol Hematol. 2018. 126: 100-111.
[44] Ebid A, Hossam A, El Gammal MM, Soror S, Mangoud N, Mahmoud MA.
High dose methotrexate in adult Egyptian patients with hematological
malignancies: impact of ABCB1 3435C > T rs1045642 and MTHFR
677C > T rs1801133 polymorphisms on toxicities and delayed
elimination. J Chemother. 2021: 1-10.
[45] Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al.
Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity
in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011.
57(4): 612-619.
[46] Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Garcia-Orad A.
A systematic review and meta-analysis of MTHFR polymorphisms in
methotrexate toxicity prediction in pediatric acute lymphoblastic
leukemia. Pharmacogenomics J. 2013. 13(6): 498-506.
[47] Frikha R, Jemaa MB, Frikha F, et al. Involvement of C677T MTHFR
variant but not A1298C in methotrexate-induced toxicity in acute
lymphoblastic leukemia. J Oncol Pharm Pract. 2021. 27(6): 1382-1387.