References
Agathokleous, E., Belz, R. G., Kitao, M., Koike, T., & Calabrese, E., J. (2019). Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. Journal of Forestry Research , 30, 1569–1580. http://doi.org/10.1007/s11676-018-0863-7
Ahlstrom, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., et al. (2015). The dominant role of semi–arid ecosystems in the trend and variability of the land CO2 sink.Science , 348, 895–899. http://doi.org/10.1126/science.aaa1668
Balachowski, J. A., & Volaire, F. A. (2018). Implications of plant functional traits and drought survival strategies for ecological restoration. Journal of Applied Ecology , 55, 631–640. http://doi.org/10.1111/1365-2664.12979
Berendse, F., & Möller, F. (2009). Effects of competition on root-shoot allocation in Plantago lanceolata L .: Adaptive plasticity or ontogenetic drift? Plant Ecology , 201, 567–573. http://doi.org/10.1007/978-90-481-2798-6_16
Boschma, S. P., Murphy, S. R., Harden, S. (2019). Optimum plant density of Digitaria eriantha for herbage accumulation and hydrological performance in a summer dominant rainfall zone. Grass and Forage Science , 74, 389–402. http://doi.org/10.1111/gfs.12409
Casper, B. B., James, F., Cahill, J. R., & Hyatt, L. A. (1998). Above-ground competition does not alter biomass allocated to roots inAbutilon theophrasti . New Phytologist , 140, 231–238. http://doi.org/10.1046/j.1469-8137.1998.00271.x
Chapin, F. S. III, Chapin, M. C., Matson, P. A., & Vitousek, P. (2011). Principles of Terrestrial Ecosystem Ecology (pp. 134–137). Second edition. New York: Springer Science & Business Media.
Coupland, R.T. (1979) Grassland ecosystems of the world: analysis of grasslands and their uses. Cambridge University Press, London.
Dixon, A. P., Faber‐Langendoen, D., Josse, C., Morrison, J., & Loucks, C. J. (2014). Distribution mapping of world grassland types.Journal of Biogeography , 41, 2003–2019. http://doi.org/10.1111/jbi.12381
Dolezal, J., Jandova, V., Macek, M., Liancourt, P. (2020). Contrasting biomass allocation responses across ontogeny and stress gradients reveal plant adaptations to drought and cold. Functional Ecology , 00, 1–11. http://doi.org/10.1111/1365-2435.13687
Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A., C4 Grasses Consortium. (2010). The origins of C4 grasslands: Integrating evolutionary and ecosystem science. Science , 328, 587–591. http://doi.org/10.1126/science.1177216
Enquist, B. J., & Niklas, K. J. (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science , 295, 1517–1520. http://doi.org/10.1126/science.1066360
Esser, G. (2013). Data from: NPP Multi-Biome: Global Osnabruck Data, 1937-1981, R1. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. https://doi.10.3334/ORNLDAAC/214. Available at: http://daac.ornl.gov.
Eziz, A., Yan, Z, Tian, D., Han, W, Tang, Z, & Fang, J (2017). Drought effect on plant biomass allocation: a meta-analysis. Ecology and Evolution , 7, 11002–11010. http://doi.org/10.1002/ece3.3630
Fan J., Zhong H., Harris W., Yu, G., Wang, S., Hu, Z., & Yue, Y. (2008). Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Climatic Change , 86, 375–396. http://doi.org/10.1007/s10584-007-9316-6
Gedroc, J. J., McConnaughay K. D. M., & Coleman, J. S. (1996). Plasticity in root/shoot partitioning: Optimal, ontogenetic, or both?Functional Ecology , 10, 44–50. http://doi.org/10.2307/2390260
Gill, R. A., Jackson, R. B. (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist , 147, 13–31. http://doi.org/10.1046/j.1469-8137.2000.00681.x
Grime, J.P. (2001). Plant Strategies, Vegetation Processes, and Ecosystem Properties. John Wiley & Sons, Chichester, UK.
Hecht, V. L., Temperton, V. M., Nagel, K. A., Rascher, U., Postma, J. A. (2016). Sowing density: A neglected factor fundamentally affecting root distribution and biomass allocation of field grown spring barley (Hordeum Vulgare L. ). Frontiers in plant science , 7, 944. http://doi.org/10.3389/fpls.2016.00944
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia , 108, 389–411. http://doi.org/10.1007/BF00333714
Kira, T., Ogawa, H., & Sakazaki, N. (1953). Intraspecific competition among higher plants. I. Competition-yield-density interrelationship in regularly dispersed populations. Journal of the Institute of Polytechnics, Osaka City University, Series D , 4, 1–16. http://doi.org/10.18960/seitai.5.4_184_5
Kumar, A., van Duijnen, R., Delory, B. M., Reichel, R., Brüggemann, N., & Temperton, V. M. (2020). Barley shoot biomass responds strongly to N:P stoichiometry and intraspecific competition, whereas roots only alter their foraging. Plant and Soil , 453, 515–528. http://doi.org/10.1007/s11104-020-04626-w
Luo, W., Jiang, Y., Lv, X., Wang, X., Li, M., Bai, E. et al. (2013). Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in Northern China. PLoS ONE , 8, e71749. http://doi.org/10.1371/journal.pone.0071749
Ma, W., & Fang, J. (2006). R/S ratios of temperate steppe and the environmental controls in Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis , 42, 774–778. http://doi.org/10.1016/j.ejps.2006.05.004
Ma, Z., Guo, D., Xu, X. L, Lu, M., Bardgett, R. D., McCormack, M. L. et al. (2018). Evolutionary history resolves global organization of root functional traits. Nature , 555, 94–97. http://doi.org/10.1038/nature26163
McCarthy, M. C., & Enquist, B. J. (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology , 21, 713–720. http://doi.org/10.1111/j.1365-2435.2007.01276.x
Mikola, J., Set\(\ddot{a}l\ddot{a}\), H., Virkaj\(\ddot{a}\)rvi, P., Saarij\(\ddot{a}\)rvi, K., Ilmarinen, K., Voigt, W., Vestberg, M. (2009). Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecological Monographs , 79, 221–244. http://doi.org/10.1890/08-1846.1
Mokany, K., Raison, R. J., & Prokushkin, A. S. (2006). Critical analysis of root : shoot ratios in terrestrial biomes. Global Change Biology , 12, 84–96. http://doi.org/10.1111/j.1365-2486.2005.001043.x
Müller, I., Schmid, B., & Weiner, J. (2000). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology Evolution and Systematics , 3, 115–127. http://doi.org/10.1078/1433-8319-00007
Olson, R. J., Scurlock, J. M. O., Prince, S. D., Zheng, D. L., & Johnson, K. R. (2013). Data from: NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-Data Intercomparison, R2. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. https://doi.10.3334/ORNLDAAC/615. Available at: http://daac.ornl.gov.
Osborne, C. P. (2008). Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? Journal of Ecology , 96, 35– 45. http://doi.org/10.1111/j.1365-2745.2007.01323.x
Pei, J., Li, J., Fang, C., Zhao, J., Nie, M., & Wu, J. (2020). Different responses of root exudates to biochar application under elevated CO2. Agriculture, Ecosystems and Environment , 301, 107061. http://doi.org/10.1016/j.agee.2020.107061
Peng, Y., & Yang, Y. (2016). Allometric biomass partitioning under nitrogen enrichment: evidence from manipulative experiments around the world. Scientific Reports , 6, 28918. http://doi.org/10.1038/srep28918
Piao S., Fang J., Zhou L., Tan, K., Tao, S. (2007). Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles , 21, GB2002. http://doi.org/10.1029/2005GB002634
Poeplau, C. (2016). Estimating root: shoot ratio and soil carbon inputs in temperate grasslands with the RothC model. Plant and Soil , 407, 293–305. http://doi.org/10.1007/s11104-016-3017-8
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control.New Phytologist , 193, 30–50. http://doi.org/10.1111/j.1469-8137.2011.03952.x
Poorter, H., Jagodzinski, A. M., Ruiz-Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., et al. (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist , 208, 736–749. http://doi.org/10.1111/nph.13571
Rasse, D. P., Rumpel, C., & Dignac, M. F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil , 269, 341–356. http://doi.org/10.1007/s11104-004-0907-y
Reich, P. B., Luo, Y. J., Bradford, J. B., Poorter, H., Perry, C. H., & Oleksyn, J. (2014). Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Science of the United States of America , 111(38), 13721–13726. http://doi.org/10.1073/pnas.1216053111
Scurlock, J. M. O., Johnson, K. R., & Olson, R. J. (2002). Estimating net primary productivity from grassland biomass dynamics measurements.Global Change Biology , 8, 736–753. http://doi.org/10.1046/j.1365-2486.2002.00512.x
Scurlock, J. M. O., Johnson, K. R., & Olson, R. J. (2015). Data from: NPP Grassland: NPP Estimates from Biomass Dynamics for 31 Sites, 1948-1994, R1. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. Available at: http://daac.ornl.gov.
Singh, J. S., Lauenroth, W. K. & Steinhorst, R. K. (1975). Review and assessment of various techniques for estimating net aerial primary production in grassland from harvest data. Botanical Review , 41, 181–232. http://doi.org/10.1007/BF02860829
Sun, Y., Yang, Y., Zhao, X., Tang, Z., Wang, S., & Fang, J. (2020). Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Science China Life Sciences , 63, http://doi.org/10.1007/s11427-020-1837-9
Umaña, M. N. Cao, M., Lin, L., Swenson, N. G., & Zhang, C. (2020). Trade‐offs in above and belowground biomass allocation influencing seedling growth in a tropical forest. Journal of Ecology , https://doi.org/10.1111/1365-2745.13543
Wang, L., Niu, K., Yang, Y., & Zhou, P. (2010). Patterns of above- and belowground biomass allocation in China’s grasslands: evidence from individual-level observations. Science China Life Science , 2010, 53, 851–857. http://doi.org/10.1007/s11427-010-4027-z
Wang, P., Heijmans, M. M. P. D., Mommer, L., van Ruijven, J., Maximov, T. C., & Berendse, F. (2016). Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature.Environmental Research Letters , 11, 055003. http://doi.org/10.1088/1748-9326/11/5/055003
Wang, W., Peng, S., & Fang, J. (2008). Biomass distribution of natural grasslands and it response to climate change in North China. Arid Zone Research , 25, 90–97. http://doi.org/10.3724/SP.J.1148.2008.00090
Weiner, J. (1986). How competition for light and nutrients affects size variability in Ipomoea tricolor populations. Ecology , 67, 1425–1427. http://doi.org/10.2307/1938699
Weiner, J. (1990). Asymmetric competition in plant populations.Trends in ecology & evolution , 5, 360–364. http://doi.org/10.1016/0169-5347(90)90095-U
Weiner, J. (2004). Allocation, plasticity and allometry in plants.Perspectives in Plant Ecology Evolution and Systematics , 6, 207–215. http://doi.org/10.1078/1433-8319-00083
Weiner, J., & Freckleton, R. P. (2010). Constant final yield.Annual Review of Ecology, Evolution, and Systematics , 41, 173–192. http://doi.org/10.1146/annurev-ecolsys-102209-144642
Weiner, J., & Thomas, S.C. (1986) Size variability and competition in plant monocultures. Oikos , 47, 211–222. http://doi.org/10.2307/3566048
West, G. B., Brown, J. H. & Enquist, B. G. (1999). A general model for the structure and allometry of plant vascular systems. Nature , 400, 664–667. http://doi.org/10.1038/23251
White, R., Murray, S., & Rohweder, M. (2000). Pilot analysis of global ecosystems: grassland ecosystems technical report. World Resources Institute, Washington DC, USA
Xie, J., Tang, L., Wang, Z., Xu, G., & Li, Y. (2012). Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture. PLoS ONE , 7, e41502. http://doi.org/10.1371/journal.pone.0041502
Yang, Y., Fang, J., Ma, W., Guo, D., & Mohammat, A. (2010). Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography , 19, 268–277. http://doi.org/10.1111/j.1466-8238.2009.00502.x
Yan, Z., Eziz, A, Tian, D., Li, X., Hou, X., Peng, H. et al. (2019). Biomass allocation in response to nitrogen and phosphorus availability: Insight from experimental manipulations of Arabidopsis thaliana .Frontiers in plant science , 10, 598. http://doi.org/10.3389/fpls.2019.00598
Yoda, K., Kira, T., Ogawa, H., & Hozumi K. (1963). Self-thinning in over-crowded pure stands under cultivated and natural conditions.Journal of Biology of Osaka City University , 14, 107–129.
Zhou, X., Zhang, Y., & Niklas, K.J. (2014). Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China.Annals of Botany , 113, 501–511. http://doi.org/10.1093/aob/mct275
Table 1 Summary of the standard major axis (SMA) regressions about the allometric relationships between shoot and root biomass (log10 Shoot biomass =α *log10 (Root biomass +β ) of the six species based on the pool data (all) and the five density treatments, respectively.