References
Ainsworth, E.A., & Long, S.P. (2005). What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351-372.
Alawady, A.E., & Grimm, B. (2005). Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant Journal, 41(2), 282-290.
Badger, M.R., & Price, G.D. (2003). CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot,  54, 609–622.
Bailey, K.J., Gray, J.E., Walker, R.P., & Leegood, R.C. (2007). Coordinate regulation of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase by light and CO2during C4 photosynthesis. Plant Physiol, 144, 479-486.
Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol, 59, 89–113.
Baker, N.R., Harbinson, J., & Kramer, D.M. (2007). Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant, Cell & Environment, 30(9), 1107-25.
Bauwe, H. (1986). An efficient method for the determination of Km values for HCO3 of phosphoenolpyruvate carboxylase.Planta, 169, 356–360.
Bernacchi, C. J., Singsaas, E.L., Pimentel C., Portis, A.R. Jr, & Long, S.P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environ , 24(2), 253-260.
Bernacchi, C.J., Bagley, J.E., Serbin, S.P., RuizVera, U.M., Rosenthal, D.M., & Vanloocke, A. (2013). Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell Environ , 36 (9), 1641-1657.
Biswal, A.K., Pattanayak, G.K., Pandey, S.S., Leelavathi, S., Reddy, V.S., Govindjee, & Tripathy, B.C. (2012). Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiol, 159(1),433-449.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248–254.
Bonacci, W., Teng, P.K., Afonso, B., Niederholtmeyer, H., Grob, P., Silver, P.A., & Savage, D.F. (2012). Modularity of a carbon-fixing protein organelle. Proc Natl Acad Sci U.S., 109, 478–483.
Borba, A.R., Serra, T.S., Gorska, A., Gouveia, P., Cordeiro, A.M., Reyna-Llorens, I., Knerova, J., Barros P.M., Abreu, I.A., Oliveira, M.M., Hibberd, J.M., & Saibo, N.J.M. (2018). Synergistic binding of bHLH transcription factors to the promoter of the maize NADP-ME gene used in C4 photosynthesis is based on an ancient code found in the ancestral C3 state. Mol. Biol. Evol,35, 1690–1705.
Burke, J.J. (1990). High temperature stress and adaptation in crops. In: Stress Response in Plants: Adaptation and Acclimation Mechanisms. (eds R.G. Alscher & J.R. Cummings.pp. 295-309. Wiley-Liss, New York.
Cano, F.J., Sharwood, R.E., Cousins, A.B., & Ghannoum, O. (2019). The role of leaf width and conductances to CO2 in determining water use efficiency in C4 grasses. New Phytol, 223, 1280–1295.
Cao, J. & Govindjee. (1990). Chlorophyll a fluorescence transient as an indicator of active and inactive Photosystem II in thylakoid membranes.Biochim Biophys Acta, 1015, 180–188.
Cousins, A.B., Badger, M.R. & von Caemmerer, S. (2006). A transgenic approach to understanding the influence of carbonic anhydrase on C18OO discrimination during C4 photosynthesis. Plant Physiology, 142, 662–672.
Dąbrowska-Bronk, J., Komar, D.N., Rusaczonek, A., Kozłowska-Makulska, A., Szechyńska-Hebda, M., & Karpiński, S. (2016) β-carbonic anhydrases and carbonic ions uptake positively influence Arabidopsis photosynthesis, oxidative stress tolerance and growth in light dependent manner. J Plant Physiol ., 203,44-54.
DiMario, R.J., Quebedeaux, J.C., Longstreth, D.J., Dassanayake, M., Hartman, M.M., & Moroney, J.V. (2016). The cytoplasmic carbonic anhydrases bCA2 and bCA4 are required for optimal plant growth at low CO2. Plant Physiol, 171, 280–293.
Ermakova, M., Lopez-Calcagno, P.E., Raines, C.A., Furbank, R.T., & von Caemmerer, S. (2019). Overexpression of the Rieske FeS protein of the Cytochrome b6f complex increases C4 photosynthesis in Setaria viridis.Commun. Biol, 2, 1 –12
Evans, J.R., & Loreto, F. (2000). Acquisition and diffusion of CO2 in higher plant leaves. In: Leegood, R.C., Sharkey, T.D., Caemmerer, S., eds. Photosynthesis: physiology and metabolism . Dordrecht, the Netherlands: Springer, 321–351.
Ferreira, F.J., Guo, C., & Coleman, J.R. (2008). Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol, 147, 585–594.
Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T.D. (2008). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol, 6, 269–279.
Flexas, J., Niinemets, U, Gallé, A, Barbour, M.M., Centritto, M., Diaz-Espejo, A., Douthe, C., Galmés, J., Ribas-Carbo, M., Rodriguez, P.L., Rosselló, F., Soolanayakanahally, R., Tomas, M., Wright, I.J., Farquhar, G.D., & Medrano, H. (2013). Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency.Photosynthesis Research 117, 45–59.
Garai, S., & Tripathy, B.C. (2018). Alleviation of Nitrogen and Sulfur Deficiency and Enhancement of Photosynthesis in Arabidopsis thaliana by Overexpression of Uroporphyrinogen III Methyltransferase (UPM1).Front Plant Sci, 9, 1365.
Genty, B., Goulas, Y., Dimon, B., Peltier, G., Briantais, J.M., & Moya, I. (1992). Modulation of efficiency of primary conversion in leaves.Photosynthesis Research, 34, 106.
Giordano, M., Beardall, J., & Raven, J.A. (2005). CO2concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol, 56, 99–131. Govindjee (1995). Sixty-three years since Kautsky: chlorophyll a fluorescence.Aust J Plant Physiol, 22, 131–160.
Govindjee (2004). Chlorophyll a fluorescence: a bit of basics and history. In: (eds Papageorgiou G.C. & Govindjee) Chlorophyll a fluorescence: a probe of photosynthesis, advances in photosynthesis and respiration, vol 19, pp. 2–42, Springer, Dordrecht.
Groszmann, M., Osborn, H.L., & Evans, J.R. (2017). Carbon dioxide and water transport through plant aquaporins. Plant, Cell & Environment, 40, 938-961
Hamdani, S., Qu, M., Xin, C.P., Li, Ming., Chu, C., Govindjee, & Zhu, X.G. (2015) Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction. J Plant Physio l, 177,128–138.
Gupta, V., & Tripathy, B.C., (2010). Effect of light quality on chlorophyll accumulation and protein expression in wheat (Triticum aestivum L.) seedlings. International Journal of Biotechnology & Biochemistry, 6(4), 521-537.
Harley, P.C., Loreto, F., Marco, G.D., & Sharkey, T. D. (1992) Theoretical Considerations when Estimating the Mesophyll Conductance to CO2 Flux by Analysis of the Response of Photosynthesis to CO2 Plant Physiol , 98, 1429-1436.
Hatch, M.D. & Burnell, J.N. (1990). Carbonic anhydrase activity in leaves and its role in the first step of c(4) photosynthesis.Plant Physiol, 93, 825–828.
Henry, R.P. (1996). Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Physiol, 58, 523–538.
Hewett-Emmett, D., & Tashian, R.E. (1996). Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol, 5, 50–77.
Hu, H., Boisson-Dernier, A., Israelsson-Nordström, M., Böhmer, M., Xue, S., Ries, A., Godoski, J., Kuhn, J.M., & Schroeder, J.I. (2010). Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells.Nat Cell Biol, 12, 87–93.
Hurt, E., & Hauska, G. (1981). A cytochrome f/b6 complex of five polypeptides with plastoquinol-plastocyanin-oxidoreductase activity from spinach chloroplasts. Eur J Biochem., 117(3), 591-5.
Ignatova, L.K., Moskvin, O.V., Romanova, A.K., & Ivanov, B.N. (1998). Carbonic anhydrases in the C3 -plant leaf cell Aust. J. Plant Physiol, 25, 673-677.
Jacob, J., Greitner, C., & Drake, B.G. (1995). Acclimation of photosynthesis in relation to RuBisco and non-structural carbohydrate contents and in situ carboxylase activity in Scirpus olneyi grown at elevated CO, in the field. Plant Cell Environ, 18, 875-884.
Jeanjean, R., Latifi, A., Matthijs, H.C., & Havaux, M. (2008). The PsaE subunit of photosystem I prevents light-induced formation of reduced oxygen species in the cyanobacterium Synechocystis sp. PCC 6803.Biochim Biophys Acta, 1777(3), 308-16.
Jilani, A., Kar, S., Bose, S., & Tripathy, B.C. (1996). Regulation of the carotenoid content and chloroplast development by levulinic acid.Physiol Plant, 96, 139–145.
Jiménez-Francisco, B., Stirbet, A., Aguado-Santacruz, G.A., Campos, H., Conde-Martínez, F.V., Padilla-Chacón, D., Trejo, C., Bernacchi, C.J., & Govindjee, G. (2020). A comparative chlorophyll a fluorescence study on isolated cells and intact leaves of Bouteloua gracilis (blue grama grass) Photosynthetica, 58, 262-274.
Kandoi, D., Mohanty, S., & Tripathy, B.C. (2018). Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress. Protoplasma, 255(2), 547-563.
Kandoi, D., Mohanty, S., Govindjee, & Tripathy, B.C. (2016). Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana . Photosynth Res,130(1-3), 47-72.
Krause, G.H., & Weis, E. (1991). Chlorophyll Fluorescence and Photosynthesis: The Basics. Annu Rev Plant Physiol Plant Mol Biol, 42, 313–349.
Kolbe, A.R., Brutnell, T.P., Cousins, A.B., & Studer, A.J. (2018). Carbonic anhydrase mutants in Zea mays  have altered stomatal responses to environmental signals. Plant Physiol., 177(3),980–9.
Lam, E., & Malkin, R. (1982). Reconstruction of the chloroplast noncyclic electron transport pathway from water to NADP with three integral protein complexes. Proc Natl Acad Sci U S A,79(18),5494-8.
Lefebvre, S., Lawson, T., Fryer, M., Zakhleniuk, O.V., Lloyd, J.C., & Raines, C.A. (2005). Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol, 138, 451–460.
Li, Y., Gao, Y., Xu, X., Shen, Q., & Guo S. (2009) Light saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplast CO2 concentration. J Exp Bot , 60, 2531–2360.
Liljas, A., & Laurberg, M. (2000). A Wheel Invented Three Times: The Molecular Structures of the Three Carbonic Anhydrases. EMBO, 1, 16–17.
Lin, H.C., Arrivault, S., Coe, R. A., Karki, S., Covshoff, S., Bagunu, E., Lunn, J.E., Stitt, M., Furbank, R.T., Hibberd, & J.M., Quick, W.P. (2020). A Partial C4 Photosynthetic Biochemical Pathway in Rice. Frontiers in Plant Science , 11, 1581.
Lindskog, S. (1997). Structure and mechanism of carbonic anhydrase. Pharmacol Ther, 74, 1–20.
Livak, K.J., Thomas, D., & Schmittgen, T.D. (2001). Analysis of Relative Gene Expression DataUsing RealTime Quantitative PCR and the 22DDCT Method. METHODS, 25, 402–408.
Long S.P., Marshall-Colon A., & Zhu X.G. (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell,  161, 56–66.
Lu,  Y.K., Theg, S.M., & Stemler, A.J. (2005). Carbonic anhydrase activity of the photosystem II OEC33 protein from pea. Plant Cell Physiol,46(12), 1944-53.
Ludwig, M. (2012) Carbonic anhydrase and the molecular evolution of C4 photosynthesis. Plant Cell Environ, 35, 22-37.
Malkin, S., & Kok, B. (1966). Fluorescence induction studies in isolated chloroplasts. I. Number of components involved in the reaction and quantum yields. Biochim. Biophys. Acta, 126, 413-432.
Makino, A., Nakano, H., & Mae, T. (1994). Responses of ribulose-1,5- bisphosphate carboxylase, cytochrome J and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis. Plant Physiol , 105, 173-179.
Manter, D.K., & Kerrigan, J. (2004). A/C(i) curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. J Exp Bot, 55(408), 2581-8.
Misra, P.S., Mertz, E.T., & Glover, D.V. (1975). Studies on corn proteins: VIII. Free amino acid content of opaque-2 and double mutants.Cereal Chem, 52, 844–848.
Miyao, M., Masumoto, C., Miyazawa, S., & Fukayama, H. (2011). Lessons from engineering a single-cell C(4) photosynthetic pathway into rice.J Exp Bot, 62, 3021–3029.
Miyagawa, Y., Tamoi, M., & Shigeoka, S. (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol , 19, 965–9.
Momayyezi, M., McKown, A.D., Bell, S.C.S., & Guy R.D. (2020). Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis. Plant J, 101(4), 831-844.
Moroney, J.V., Bartlett, S.G., & Samuelsson, G. (2001). Carbonic anhydrases in plants and algae: Invited review. Plant, Cell Environ, 24, 141–153.
Moroney, J.V., Ma, Y., Frey, W.D., Fusilier, K.A., Pham, T.T., Simms, T.A., DiMario, R.J., Yang, J., & Mukherjee, B. (2011). The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth Res, 109, 133–49.
Munday, J.C.M. Jr., & Govindjee. (1969a). Light-Induced Changes in the Fluorescence Yield of Chlorophyll a Fluorescence in Vivo. III. The Dip and the Peak in Fluorescence Transient of Chlorella Pyrenoidosa.Biophysic. J., 9, 1–21.
Munday, J.C.M. Jr., & Govindjee. (1969b). Light-Induced Changes in the Fluorescence Yield of Chlorophyll a Fluorescence in Vivo. IV. The Effect of Preillumination on the Fluorescence Transient of Chlorella Pyrenoidosa. Biophysic. J., 9, 22–35
Mukerji, S., & Yang, S. (1974). Phosphoenolpyruvate Carboxylase from Spinach Leaf Tissue Inhibition by Sulfite Ion. Plant Physiol, 53, 829-834.
Nickrent, D.L. (1994). From field to film: Rapid sequencing methods for field-collected plant species. Biotechniques, 16, 470–5.
Ogée, J., Wingate, L., & Genty, B. (2018). Estimating mesophyll conductance from measurements of C18OO photosynthetic discrimination and carbonic anhydrase activity. Plant Physiol, 178, 728–752.
Okabe, K., Yang, S-Y., Tsuzuki, M., & Miyachi, S. (1984). Carbonic anhydrase: Its content in spinach leaves and its taxonomic diversity studied with anti-spinach leaf carbonic anhydrase antibody. Plant Sci Lett, 33, 145–153.
Ort, D.R., Merchant, S.S., Alric, J., Barkan, A., Blankenship, R.E., Bock, R., Croce, R., Hanson, M.R., Hibberd, J.M., Long, S.P., Moore, T.A., Moroney, J., Niyogi, K.K., Parry, M.A., Peralta-Yahya, P.P., Prince, R.C., Redding, K.E., Spalding, M.H., van Wijk, K.J., Vermaas, W.F., von Caemmerer, S., Weber, A.P., Yeates, T.O., Yuan, J.S., & Zhu, X.G. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA, 112, 8529–8536.
Osborn, H.L., Alonso-Cantabrana, H., Sharwood, R.E., Covshoff, S., Evans, J.R., Furbank, R.T., & von Caemmerer, S. (2017). Effects of Reduced Carbonic Anhydrase Activity on CO2 Assimilation Rates inSetaria Viridis : A Transgenic Analysis. Journal of Experimental Botany, 68, 299–310.
Pal, A., & Borthakur, D. (2015). Transgenic overexpression of Leucaena β-carbonic anhydrases in tobacco does not affect carbon assimilation and overall biomass. Plant Biosystems. 150(5), 1-10.
Papageorgiou, G.C., & Govindjee. (2004). Chlorophyll a fluorescence: a signature of photosynthesis. Springer Netherlands ISBN: 978-1-4020-3217-2. doi: 10.1007/978-1-4020-3218-9.
Pattanayak, G.K., & Tripathy, B.C. (2011). Overexpression of Protochlorophyllide Oxidoreductase C Regulates Oxidative Stress in Arabidopsis. PLoS One, 6(10), e26532.
Pons, T.L., Flexas, J., von Caemmerer, S., Evans, J.R., Genty, B., Ribas-Carbo, M., & Brugnoli E. (2009). Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. Journal of Experimental Botany , 60 (8),2217–2234.
Porra, R.J., Thompson, W.A., & Kriedemann, P.E. (1989). Determination of Accurate Extinction Coefficients and Simultaneous-Equations for Assaying Chlorophyll-a and Chlorophyll-B Extracted with 4 Different Solvents - Verification of the Concentration of Chlorophyll Standards by Atomic-Absorption Spectroscopy. Biochim Biophys Acta, 975, 384–394.
Poschenrieder, C., Fernández, J.A., Rubio, L., Pérez, L., Terés, J., & Barceló, J. (2018). Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead. Int J Mol Sci., 3, 19(5).
Raven, J.A. (1997). Inorganic carbon acquisition by marine autotrophs.Adv Bot Res, 27, 85–209.
Rose, R., Rose, C.L., Omi, S.K., Forry, K.R., Durall, D.M., & Bigg, W.L. (1991). Starch determination by perchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods.J. Agric. Food Chem , 39, 2–11.
Sato, F., Koizumi, N., & Yamada, Y. (1988). Purification and characterization of phosphoenol pyruvate carboxylase of photomixotrophically cultured green tobacco cells. Plant Cell Physiol, 29, 329-337.
Schreiber, U., & Armond, P. (1978). Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim Biophys Acta, 502, 138–151.
Schuler, M.L., Mantegazza, O., & Weber, A.P. (2016). Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. Plant J. 87, 51-65.
Sharkey, T.D. (1985) O2-Insensitive Photosynthesis in C3 Plants. Its occurrence and a possible explanation.Plant Physiol. , 78(1), 71–75.
Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., & Singsaas, E.L. (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell & Environment , 30 (9), 1035-1040.
Simkin, A.J., McAusland, L., Lawson, T., & Raines, C.A. (2017) Overexpression of the RieskeFeS protein increases electron transport rates and biomass yield. Plant Physiol.  175 , 134–145.
Smith, K.S., & Ferry, J.G. (2000). Prokaryotic carbonic anhydrases. FEMS Microbiol Rev, 24, 335-366.
Soda, N., Gupta, B.K., Anwar, K., Sharan, A., Govindjee, Singla-Pareek, S.L., & Pareek, A. (2018). Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress.Sci Rep, 9(1), 11015.
Stemler, A.J. (1997). The case for chloroplast thylakoid carbonic anhydrase. Physiol Plant, 99, 348–353.
Shevela, D., Eaton-Rye, J.J., Shen, J.R., & Govindjee. (2012). Photosystem II and the unique role of bicarbonate: a historical perspective. Biochim Biophys Acta., 1817, 1134-1151.
Strasser, R.J. & Srivastava, A. (1995). Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 61, 32–42.
Stirbet, A., Lazár, D., Kromdijk, J., & Govindjee (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica, 56, 86-104.
Stirbet, A.,  Lazár, D., Guo, Y., & Govindjee, G. (2020) Photosynthesis: basics, history and modelling Annals of Botany , 126, 4, 511–537.
Sood, S.,  Gupta, V., & Tripathy, B.C. (2005). Photoregulation of the Greening Process of Wheat Seedlings Grown in Red Light. Plant Molecular Biology 59(2), 269-287.
Suorsa, M., & Aro, E.M. (2007). Expression, assembly and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants.Photosynth. Res, 93, 89–100.
Tashian, R.E. (1989). The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays, 10, 186–92.
Tsimilli-Michael, M., Eggenberg, P., Biro, B., Köves-Pechy, K., Vörös, I., & Strasser, R.J. (2000). Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl Soil Ecol., 15, 169–182.
Tsuzuki, M., Miyachi, S., & Edwards, G. (1985). Localization of carbonic anhydrase in mesophyll cells of terrestrial C3 plants in relation to CO2 assimilation. Plant Cell Physiol,26, 881 – 91.
Tyerman, S.D., Niemietz, C.M., & Bramley, H. (2002). Plant aquaporins: multifunctional water and solute channels with expanding roles.Plant Cell Environ, 25(2), 173-194.
von Caemmerer, S., & Farquhar, G.D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.Planta , 153, 376-387.
von Caemmerer, S., & Evans, J.R. (2010). Enhancing C3 photosynthesis. Plant Physiol,  154(2), 589-92.
Wilbur, K.M., & Anderson, N.G. (1948). Electrometric and Colorimetric Determination of Carbonic Anhydrase. J Biol Chem, 176, 147–154.
Wood, P.M., & Bendall, D.S. (1976). The reduction of plastocyanin by plastoquinol-1 in the presence of chloroplasts. A dark electron transfer reaction involving components between the two photosystems. Eur J Biochem, 61(2), 337-44.
Xue, S.W., Hu, H.H., Ries, A., Merilo, E., Kollist, H., & Schroeder, J.I. (2011). Central functions of bicarbonate in S‐type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO Journal,  30, 1645–1658.
Yamane, Y., Kashino, Y., Koioke, H., & Satoh, K. (1997). Increase of the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants.Photosynth Res, 52, 57–64.
Yuan, X., Zhang, L., Ning, N., Wen, Y., Dong, S., Yin, M., Guo, M., Wang, B., Feng, L., & Guo, P. (2014). Photosynthetic physiological response of Radix Isatidis (Isatis indigotica Fort.) seedlings to nicosulfuron. PLoS One, 28:9(8), e105310.
Table 1 Total chlorophyll (Chl), Chl a/b ratio, free amino acids and total protein of vector control (VC) and CAx plants grown in soil.Each data point is an average of six replicates. The error bars represent standard error (±SE). Asterisks indicate significant differences determined by t test (*P<0.05).