References
Ainsworth, E.A., & Long, S.P. (2005). What have we learned from 15
years of free air CO2 enrichment (FACE)? A meta-analytic
review of the responses of photosynthesis, canopy properties and plant
production to rising CO2. New Phytologist, 165,
351-372.
Alawady, A.E., & Grimm, B. (2005). Tobacco Mg protoporphyrin IX
methyltransferase is involved in inverse activation of Mg porphyrin and
protoheme synthesis. Plant Journal, 41(2), 282-290.
Badger, M.R., & Price, G.D. (2003). CO2 concentrating
mechanisms in cyanobacteria: molecular components, their diversity and
evolution. J Exp Bot, 54, 609–622.
Bailey, K.J., Gray, J.E., Walker, R.P., & Leegood, R.C. (2007).
Coordinate regulation of phosphoenolpyruvate carboxylase and
phosphoenolpyruvate carboxykinase by light and CO2during C4 photosynthesis. Plant Physiol, 144, 479-486.
Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis
in vivo. Annu Rev Plant Biol, 59, 89–113.
Baker, N.R., Harbinson, J., & Kramer, D.M. (2007). Determining the
limitations and regulation of photosynthetic energy transduction in
leaves. Plant, Cell & Environment, 30(9), 1107-25.
Bauwe, H. (1986). An efficient method for the determination of Km values
for HCO3– of phosphoenolpyruvate carboxylase.Planta, 169, 356–360.
Bernacchi, C. J., Singsaas, E.L., Pimentel C., Portis, A.R. Jr, & Long,
S.P. (2001). Improved temperature response functions for models of
Rubisco-limited photosynthesis. Plant, Cell and Environ , 24(2),
253-260.
Bernacchi, C.J., Bagley, J.E., Serbin, S.P., RuizVera, U.M., Rosenthal,
D.M., & Vanloocke, A. (2013). Modelling
C3 photosynthesis from the chloroplast to the
ecosystem. Plant Cell Environ , 36 (9), 1641-1657.
Biswal, A.K., Pattanayak, G.K., Pandey, S.S., Leelavathi, S., Reddy,
V.S., Govindjee, & Tripathy, B.C. (2012). Light intensity-dependent
modulation of chlorophyll b biosynthesis and photosynthesis by
overexpression of chlorophyllide a oxygenase in tobacco. Plant
Physiol, 159(1),433-449.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of
protein-dye binding. Anal Biochem, 72, 248–254.
Bonacci, W., Teng, P.K., Afonso, B., Niederholtmeyer, H., Grob, P.,
Silver, P.A., & Savage, D.F. (2012). Modularity of a carbon-fixing
protein organelle. Proc Natl Acad Sci U.S., 109, 478–483.
Borba, A.R., Serra, T.S., Gorska, A., Gouveia, P., Cordeiro, A.M.,
Reyna-Llorens, I., Knerova, J., Barros
P.M., Abreu,
I.A., Oliveira, M.M., Hibberd, J.M., &
Saibo,
N.J.M. (2018). Synergistic binding of bHLH transcription factors to the
promoter of the maize NADP-ME gene used in C4 photosynthesis is based on
an ancient code found in the ancestral C3 state. Mol. Biol. Evol,35, 1690–1705.
Burke, J.J. (1990). High temperature stress and adaptation in crops. In:
Stress Response in Plants: Adaptation and Acclimation Mechanisms. (eds
R.G. Alscher & J.R. Cummings.pp. 295-309. Wiley-Liss, New York.
Cano, F.J., Sharwood, R.E., Cousins, A.B., & Ghannoum, O. (2019). The
role of leaf width and conductances to CO2 in determining water use
efficiency in C4 grasses. New Phytol, 223, 1280–1295.
Cao, J. & Govindjee. (1990). Chlorophyll a fluorescence transient as an
indicator of active and inactive Photosystem II in thylakoid membranes.Biochim Biophys Acta, 1015, 180–188.
Cousins, A.B., Badger, M.R. & von Caemmerer, S. (2006). A transgenic
approach to understanding the influence of carbonic anhydrase on C18OO
discrimination during C4 photosynthesis. Plant Physiology, 142,
662–672.
Dąbrowska-Bronk, J., Komar, D.N., Rusaczonek, A., Kozłowska-Makulska,
A., Szechyńska-Hebda, M., & Karpiński, S. (2016) β-carbonic anhydrases
and carbonic ions uptake positively influence Arabidopsis
photosynthesis, oxidative stress tolerance and growth in light dependent
manner. J Plant Physiol ., 203,44-54.
DiMario, R.J., Quebedeaux, J.C., Longstreth, D.J., Dassanayake, M.,
Hartman, M.M., & Moroney, J.V. (2016). The cytoplasmic carbonic
anhydrases bCA2 and bCA4 are required for optimal plant growth at low
CO2. Plant Physiol, 171, 280–293.
Ermakova, M., Lopez-Calcagno, P.E., Raines, C.A., Furbank, R.T., & von
Caemmerer, S. (2019). Overexpression of the Rieske FeS protein of the
Cytochrome b6f complex increases C4 photosynthesis in Setaria viridis.Commun. Biol, 2, 1 –12
Evans, J.R., & Loreto, F. (2000). Acquisition and diffusion of
CO2 in higher plant leaves. In: Leegood, R.C., Sharkey,
T.D., Caemmerer, S., eds. Photosynthesis: physiology and
metabolism . Dordrecht, the Netherlands: Springer, 321–351.
Ferreira, F.J., Guo, C., & Coleman, J.R. (2008). Reduction of
plastid-localized carbonic anhydrase activity results in reduced
Arabidopsis seedling survivorship. Plant Physiol, 147, 585–594.
Flexas, J., Bota, J., Loreto, F., Cornic, G., &
Sharkey, T.D. (2008). Diffusive and metabolic limitations to
photosynthesis under drought and salinity in C3 plants. Plant
Biol, 6, 269–279.
Flexas, J., Niinemets, U, Gallé, A, Barbour,
M.M., Centritto,
M., Diaz-Espejo, A., Douthe,
C., Galmés, J., Ribas-Carbo,
M., Rodriguez, P.L., Rosselló,
F., Soolanayakanahally,
R., Tomas, M., Wright,
I.J., Farquhar,
G.D., & Medrano, H. (2013). Diffusional
conductances to CO2 as a target for increasing
photosynthesis and photosynthetic water-use efficiency.Photosynthesis Research 117, 45–59.
Garai, S., & Tripathy, B.C. (2018). Alleviation of Nitrogen and Sulfur
Deficiency and Enhancement of Photosynthesis in Arabidopsis thaliana by
Overexpression of Uroporphyrinogen III Methyltransferase (UPM1).Front Plant Sci, 9, 1365.
Genty, B., Goulas, Y., Dimon, B., Peltier, G., Briantais, J.M., & Moya,
I. (1992). Modulation of efficiency of primary conversion in leaves.Photosynthesis Research, 34, 106.
Giordano, M., Beardall, J., & Raven, J.A. (2005). CO2concentrating mechanisms in algae: mechanisms, environmental modulation,
and evolution. Annu Rev Plant Biol, 56, 99–131. Govindjee
(1995). Sixty-three years since Kautsky: chlorophyll a fluorescence.Aust J Plant Physiol, 22, 131–160.
Govindjee (2004). Chlorophyll a fluorescence: a bit of basics and
history. In: (eds Papageorgiou G.C. & Govindjee) Chlorophyll a
fluorescence: a probe of photosynthesis, advances in photosynthesis and
respiration, vol 19, pp. 2–42, Springer, Dordrecht.
Groszmann, M.,
Osborn, H.L.,
&
Evans,
J.R. (2017). Carbon dioxide and water transport through plant
aquaporins. Plant, Cell & Environment, 40, 938-961
Hamdani, S., Qu, M., Xin, C.P., Li, Ming., Chu, C., Govindjee, & Zhu,
X.G. (2015) Variations between the photosynthetic properties of elite
and landrace Chinese rice cultivars revealed by simultaneous
measurements of 820 nm transmission signal and chlorophyll a
fluorescence induction. J Plant Physio l, 177,128–138.
Gupta, V., & Tripathy, B.C., (2010). Effect of light quality on
chlorophyll accumulation and protein expression in wheat (Triticum
aestivum L.) seedlings. International Journal of Biotechnology &
Biochemistry, 6(4), 521-537.
Harley, P.C., Loreto, F., Marco, G.D., & Sharkey, T. D. (1992)
Theoretical Considerations when Estimating the Mesophyll Conductance to
CO2 Flux by Analysis of the Response of Photosynthesis
to CO2 Plant Physiol , 98, 1429-1436.
Hatch, M.D. & Burnell, J.N. (1990). Carbonic anhydrase activity in
leaves and its role in the first step of c(4) photosynthesis.Plant Physiol, 93, 825–828.
Henry, R.P. (1996). Multiple roles of carbonic anhydrase in cellular
transport and metabolism. Annu Rev Physiol, 58, 523–538.
Hewett-Emmett, D., & Tashian, R.E. (1996). Functional diversity,
conservation, and convergence in the evolution of the α-, β-, and
γ-carbonic anhydrase gene families. Mol Phylogenet Evol, 5,
50–77.
Hu, H., Boisson-Dernier, A., Israelsson-Nordström, M., Böhmer, M., Xue,
S., Ries, A., Godoski, J., Kuhn, J.M., & Schroeder, J.I. (2010).
Carbonic anhydrases are upstream regulators of
CO2-controlled stomatal movements in guard cells.Nat Cell Biol, 12, 87–93.
Hurt, E., & Hauska, G. (1981). A cytochrome f/b6 complex of five
polypeptides with plastoquinol-plastocyanin-oxidoreductase activity from
spinach chloroplasts. Eur J Biochem., 117(3), 591-5.
Ignatova, L.K., Moskvin, O.V., Romanova, A.K., & Ivanov, B.N. (1998).
Carbonic anhydrases in the C3 -plant leaf cell Aust. J. Plant
Physiol, 25, 673-677.
Jacob, J., Greitner, C., & Drake, B.G. (1995). Acclimation of
photosynthesis in relation to RuBisco and non-structural carbohydrate
contents and in situ carboxylase activity in Scirpus olneyi grown
at elevated CO, in the field. Plant Cell Environ, 18, 875-884.
Jeanjean, R., Latifi, A., Matthijs, H.C., & Havaux, M. (2008). The PsaE
subunit of photosystem I prevents light-induced formation of reduced
oxygen species in the cyanobacterium Synechocystis sp. PCC 6803.Biochim Biophys Acta, 1777(3), 308-16.
Jilani, A., Kar, S., Bose, S., & Tripathy, B.C. (1996). Regulation of
the carotenoid content and chloroplast development by levulinic acid.Physiol Plant, 96, 139–145.
Jiménez-Francisco, B., Stirbet, A., Aguado-Santacruz, G.A., Campos, H.,
Conde-Martínez, F.V., Padilla-Chacón, D., Trejo, C., Bernacchi, C.J., &
Govindjee, G. (2020). A comparative chlorophyll a fluorescence study on
isolated cells and intact leaves of Bouteloua gracilis (blue grama
grass) Photosynthetica, 58, 262-274.
Kandoi, D., Mohanty, S., & Tripathy, B.C. (2018). Overexpression of
plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis
thaliana confers tolerance to salt stress. Protoplasma, 255(2),
547-563.
Kandoi, D., Mohanty, S., Govindjee, & Tripathy, B.C. (2016). Towards
efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate
carboxylase in Arabidopsis thaliana . Photosynth Res,130(1-3), 47-72.
Krause, G.H., & Weis, E. (1991). Chlorophyll Fluorescence and
Photosynthesis: The Basics. Annu Rev Plant Physiol Plant Mol
Biol, 42, 313–349.
Kolbe, A.R., Brutnell, T.P., Cousins, A.B., & Studer, A.J. (2018).
Carbonic anhydrase mutants in Zea mays have altered stomatal
responses to environmental signals. Plant Physiol., 177(3),980–9.
Lam, E., & Malkin, R. (1982). Reconstruction of the chloroplast
noncyclic electron transport pathway from water to NADP with three
integral protein complexes. Proc Natl Acad Sci U S A,79(18),5494-8.
Lefebvre, S., Lawson, T., Fryer, M., Zakhleniuk, O.V., Lloyd, J.C., &
Raines, C.A. (2005). Increased sedoheptulose-1,7-bisphosphatase activity
in transgenic tobacco plants stimulates photosynthesis and growth from
an early stage in development. Plant Physiol, 138, 451–460.
Li, Y., Gao, Y., Xu, X., Shen, Q., & Guo S. (2009) Light saturated
photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is
related to chloroplast CO2 concentration. J Exp Bot , 60,
2531–2360.
Liljas, A., & Laurberg, M. (2000). A Wheel Invented Three Times: The
Molecular Structures of the Three Carbonic Anhydrases. EMBO, 1,
16–17.
Lin, H.C., Arrivault, S., Coe, R. A., Karki, S., Covshoff, S., Bagunu,
E., Lunn, J.E., Stitt, M., Furbank, R.T., Hibberd, & J.M., Quick, W.P.
(2020). A Partial C4 Photosynthetic Biochemical Pathway
in Rice. Frontiers in Plant Science , 11, 1581.
Lindskog, S. (1997). Structure and mechanism of carbonic anhydrase.
Pharmacol Ther, 74, 1–20.
Livak, K.J., Thomas, D., & Schmittgen, T.D. (2001). Analysis of
Relative Gene Expression DataUsing RealTime Quantitative PCR and the
22DDCT Method. METHODS, 25, 402–408.
Long S.P., Marshall-Colon A., & Zhu X.G. (2015) Meeting the global food
demand of the future by engineering crop photosynthesis and yield
potential. Cell, 161, 56–66.
Lu,
Y.K., Theg,
S.M., & Stemler, A.J. (2005). Carbonic anhydrase activity of the
photosystem II OEC33 protein from pea. Plant Cell Physiol,46(12), 1944-53.
Ludwig, M. (2012) Carbonic anhydrase and the molecular evolution of C4
photosynthesis. Plant Cell Environ, 35, 22-37.
Malkin, S., & Kok, B. (1966). Fluorescence induction studies in
isolated chloroplasts. I. Number of components involved in the reaction
and quantum yields. Biochim. Biophys. Acta, 126, 413-432.
Makino, A., Nakano, H., & Mae, T. (1994). Responses of ribulose-1,5-
bisphosphate carboxylase, cytochrome J and sucrose synthesis
enzymes in rice leaves to leaf nitrogen and their relationships to
photosynthesis. Plant Physiol , 105, 173-179.
Manter, D.K., & Kerrigan, J. (2004). A/C(i) curve analysis across a
range of woody plant species: influence of regression analysis
parameters and mesophyll conductance. J Exp Bot, 55(408), 2581-8.
Misra, P.S., Mertz, E.T., & Glover, D.V. (1975). Studies on corn
proteins: VIII. Free amino acid content of opaque-2 and double mutants.Cereal Chem, 52, 844–848.
Miyao, M., Masumoto, C., Miyazawa, S., & Fukayama, H. (2011). Lessons
from engineering a single-cell C(4) photosynthetic pathway into rice.J Exp Bot, 62, 3021–3029.
Miyagawa, Y., Tamoi, M., & Shigeoka, S. (2001) Overexpression of a
cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco
enhances photosynthesis and growth. Nat Biotechnol , 19, 965–9.
Momayyezi, M., McKown, A.D., Bell, S.C.S., & Guy R.D. (2020). Emerging
roles for carbonic anhydrase in mesophyll conductance and
photosynthesis. Plant J, 101(4), 831-844.
Moroney, J.V., Bartlett, S.G., & Samuelsson, G. (2001). Carbonic
anhydrases in plants and algae: Invited review. Plant, Cell
Environ, 24, 141–153.
Moroney, J.V., Ma, Y., Frey, W.D., Fusilier, K.A., Pham, T.T., Simms,
T.A., DiMario, R.J., Yang, J., & Mukherjee, B. (2011). The carbonic
anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location,
expression, and physiological roles. Photosynth Res, 109,
133–49.
Munday, J.C.M. Jr., & Govindjee. (1969a). Light-Induced Changes in the
Fluorescence Yield of Chlorophyll a Fluorescence in Vivo. III. The Dip
and the Peak in Fluorescence Transient of Chlorella Pyrenoidosa.Biophysic. J., 9, 1–21.
Munday, J.C.M. Jr., & Govindjee. (1969b). Light-Induced Changes in the
Fluorescence Yield of Chlorophyll a Fluorescence in Vivo. IV. The Effect
of Preillumination on the Fluorescence Transient of Chlorella
Pyrenoidosa. Biophysic. J., 9, 22–35
Mukerji, S., & Yang, S. (1974). Phosphoenolpyruvate Carboxylase from
Spinach Leaf Tissue Inhibition by Sulfite Ion. Plant Physiol, 53,
829-834.
Nickrent, D.L. (1994). From field to film: Rapid sequencing methods for
field-collected plant species. Biotechniques, 16, 470–5.
Ogée, J., Wingate, L., & Genty, B. (2018). Estimating mesophyll
conductance from measurements of C18OO photosynthetic discrimination and
carbonic anhydrase activity. Plant Physiol, 178, 728–752.
Okabe, K., Yang, S-Y., Tsuzuki, M., & Miyachi, S. (1984). Carbonic
anhydrase: Its content in spinach leaves and its taxonomic diversity
studied with anti-spinach leaf carbonic anhydrase antibody. Plant
Sci Lett, 33, 145–153.
Ort, D.R., Merchant, S.S., Alric, J., Barkan, A., Blankenship, R.E.,
Bock, R., Croce, R., Hanson, M.R., Hibberd, J.M., Long, S.P., Moore,
T.A., Moroney, J., Niyogi, K.K., Parry, M.A., Peralta-Yahya, P.P.,
Prince, R.C., Redding, K.E., Spalding, M.H., van Wijk, K.J., Vermaas,
W.F., von Caemmerer, S., Weber, A.P., Yeates, T.O., Yuan, J.S., & Zhu,
X.G. (2015). Redesigning photosynthesis to sustainably meet global food
and bioenergy demand. Proc Natl Acad Sci USA, 112, 8529–8536.
Osborn, H.L., Alonso-Cantabrana, H., Sharwood, R.E., Covshoff, S.,
Evans, J.R., Furbank, R.T., & von Caemmerer, S. (2017). Effects of
Reduced Carbonic Anhydrase Activity on CO2 Assimilation Rates inSetaria Viridis : A Transgenic Analysis. Journal of
Experimental Botany, 68, 299–310.
Pal, A., & Borthakur, D. (2015). Transgenic overexpression of Leucaena
β-carbonic anhydrases in tobacco does not affect carbon assimilation and
overall biomass. Plant Biosystems. 150(5), 1-10.
Papageorgiou, G.C., & Govindjee. (2004). Chlorophyll a fluorescence: a
signature of photosynthesis. Springer Netherlands ISBN:
978-1-4020-3217-2. doi: 10.1007/978-1-4020-3218-9.
Pattanayak, G.K., & Tripathy, B.C. (2011). Overexpression of
Protochlorophyllide Oxidoreductase C Regulates Oxidative Stress in
Arabidopsis. PLoS One, 6(10), e26532.
Pons, T.L., Flexas, J., von Caemmerer, S., Evans, J.R., Genty, B.,
Ribas-Carbo, M., & Brugnoli E. (2009). Estimating mesophyll conductance
to CO2: methodology, potential errors, and
recommendations. Journal of Experimental Botany , 60
(8),2217–2234.
Porra, R.J., Thompson, W.A., & Kriedemann, P.E. (1989). Determination
of Accurate Extinction Coefficients and Simultaneous-Equations for
Assaying Chlorophyll-a and Chlorophyll-B Extracted with 4 Different
Solvents - Verification of the Concentration of Chlorophyll Standards by
Atomic-Absorption Spectroscopy. Biochim Biophys Acta, 975,
384–394.
Poschenrieder, C., Fernández, J.A., Rubio, L., Pérez, L., Terés, J., &
Barceló, J. (2018). Transport and Use of Bicarbonate in Plants: Current
Knowledge and Challenges Ahead. Int J Mol Sci., 3, 19(5).
Raven, J.A. (1997). Inorganic carbon acquisition by marine autotrophs.Adv Bot Res, 27, 85–209.
Rose, R., Rose, C.L., Omi, S.K., Forry, K.R., Durall, D.M., & Bigg,
W.L. (1991). Starch determination by perchloric acid vs enzymes:
evaluating the accuracy and precision of six colorimetric methods.J. Agric. Food Chem , 39, 2–11.
Sato, F., Koizumi, N., & Yamada, Y. (1988). Purification and
characterization of phosphoenol pyruvate carboxylase of
photomixotrophically cultured green tobacco cells. Plant Cell
Physiol, 29, 329-337.
Schreiber, U., & Armond, P. (1978). Heat-induced changes of chlorophyll
fluorescence in isolated chloroplasts and related heat-damage at the
pigment level. Biochim Biophys Acta, 502, 138–151.
Schuler, M.L., Mantegazza, O., & Weber, A.P. (2016). Engineering C4
photosynthesis into C3 chassis in the synthetic biology age. Plant
J. 87, 51-65.
Sharkey, T.D. (1985) O2-Insensitive Photosynthesis in
C3 Plants. Its occurrence and a possible explanation.Plant
Physiol. , 78(1), 71–75.
Sharkey, T.D.,
Bernacchi, C.J.,
Farquhar, G.D.,
&
Singsaas,
E.L. (2007) Fitting photosynthetic carbon dioxide response curves for
C3 leaves. Plant Cell & Environment ,
30 (9),
1035-1040.
Simkin, A.J., McAusland, L., Lawson, T., & Raines, C.A. (2017)
Overexpression of the RieskeFeS protein increases electron transport
rates and biomass yield. Plant Physiol. 175 , 134–145.
Smith, K.S., & Ferry, J.G. (2000). Prokaryotic carbonic anhydrases.
FEMS Microbiol Rev, 24, 335-366.
Soda, N., Gupta, B.K., Anwar, K., Sharan, A., Govindjee, Singla-Pareek,
S.L., & Pareek, A. (2018). Rice intermediate filament, OsIF, stabilizes
photosynthetic machinery and yield under salinity and heat stress.Sci Rep, 9(1), 11015.
Stemler, A.J. (1997). The case for chloroplast thylakoid carbonic
anhydrase. Physiol Plant, 99, 348–353.
Shevela, D., Eaton-Rye, J.J., Shen, J.R., & Govindjee. (2012).
Photosystem II and
the unique role of bicarbonate: a historical perspective. Biochim
Biophys Acta., 1817, 1134-1151.
Strasser, R.J. & Srivastava, A. (1995). Polyphasic chlorophyll a
fluorescence transient in plants and cyanobacteria. Photochem
Photobiol, 61, 32–42.
Stirbet, A., Lazár, D., Kromdijk, J., & Govindjee (2018).
Chlorophyll
a fluorescence induction: Can just a one-second measurement be used to
quantify abiotic stress responses? Photosynthetica, 56, 86-104.
Stirbet, A., Lazár,
D., Guo, Y., & Govindjee, G.
(2020) Photosynthesis: basics, history and modelling Annals of
Botany , 126, 4, 511–537.
Sood,
S.,
Gupta,
V., &
Tripathy,
B.C. (2005). Photoregulation of the Greening Process of Wheat Seedlings
Grown in Red Light. Plant Molecular Biology 59(2), 269-287.
Suorsa, M., & Aro, E.M. (2007). Expression, assembly and auxiliary
functions of photosystem II oxygen-evolving proteins in higher plants.Photosynth. Res, 93, 89–100.
Tashian, R.E. (1989). The carbonic anhydrases: widening perspectives on
their evolution, expression and function. Bioessays, 10, 186–92.
Tsimilli-Michael, M., Eggenberg, P., Biro, B., Köves-Pechy, K., Vörös,
I., & Strasser, R.J. (2000). Synergistic and antagonistic effects of
arbuscular mycorrhizal fungi and Azospirillum and Rhizobium
nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the
polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl Soil
Ecol., 15, 169–182.
Tsuzuki, M., Miyachi, S., & Edwards, G. (1985). Localization of
carbonic anhydrase in mesophyll cells of terrestrial C3 plants in
relation to CO2 assimilation. Plant Cell Physiol,26, 881 – 91.
Tyerman, S.D., Niemietz, C.M., & Bramley, H. (2002). Plant aquaporins:
multifunctional water and solute channels with expanding roles.Plant Cell Environ, 25(2), 173-194.
von Caemmerer, S., & Farquhar, G.D. (1981). Some relationships between
the biochemistry of photosynthesis and the gas exchange of leaves.Planta , 153, 376-387.
von
Caemmerer, S., &
Evans,
J.R. (2010). Enhancing C3 photosynthesis. Plant Physiol, 154(2),
589-92.
Wilbur, K.M., & Anderson, N.G. (1948). Electrometric and Colorimetric
Determination of Carbonic Anhydrase. J Biol Chem, 176, 147–154.
Wood, P.M., & Bendall, D.S. (1976). The reduction of plastocyanin by
plastoquinol-1 in the presence of chloroplasts. A dark electron transfer
reaction involving components between the two photosystems. Eur J
Biochem, 61(2), 337-44.
Xue, S.W., Hu, H.H., Ries, A., Merilo, E., Kollist, H., & Schroeder,
J.I. (2011). Central functions of bicarbonate in S‐type anion channel
activation and OST1 protein kinase in CO2 signal
transduction in guard cell. EMBO Journal, 30, 1645–1658.
Yamane, Y., Kashino, Y., Koioke, H., & Satoh, K. (1997). Increase of
the fluorescence F0 level and reversible inhibition of photosystem II
reaction center by high-temperature treatments in higher plants.Photosynth Res, 52, 57–64.
Yuan, X., Zhang, L., Ning, N., Wen, Y., Dong, S., Yin, M., Guo, M.,
Wang, B., Feng, L., & Guo, P. (2014). Photosynthetic physiological
response of Radix Isatidis (Isatis indigotica Fort.) seedlings to
nicosulfuron. PLoS One, 28:9(8), e105310.
Table 1 Total chlorophyll (Chl), Chl a/b ratio, free amino acids
and total protein of vector control (VC) and CAx plants grown in soil.Each data point is an average of six replicates. The error bars
represent standard error (±SE). Asterisks indicate significant
differences determined by t test (*P<0.05).