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A numerical scheme based on the collocation
and optimization methods for accurate
solution of sensitive boundary value problems

M. A. Mehrpouya∗, R. Salehi

Despite the significant advances in the numerical solution of nonlinear boundary value problems, most of the existing

methods still encounter with a high sensitivity to the initial guess. The aim of this paper is to propose a less sensitive robust

numerical scheme for accurate solution of sensitive boundary value problems. For this purpose, an orthogonal collocation

approach for discretization of the problem is utilized. Thereby, the problem is converted to the solution of nonlinear algebraic

equations. However, due to the difficulties of solving the obtained system of nonlinear equations, particularly in providing

the proper initial guess, the obtained system of equations is transferred to an optimization problem in which the values

of the solution at collocation points are considered as decision parameters. The method finds good results even using not

good initial guess for decision parameters and even using a small number of discretization points. Numerical results of two

benchmark examples are presented and the efficiency of the method is reported.
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1. Introduction

The nonlinear boundary value problem, in this paper, is considered of the form

ẏ(t) = f(t,y(t)), t0 ≤ t ≤ t f , (1)

or could be transformed into this form, together with the boundary conditions

ψ(y(t0),y(t f )) = 0, (2)

where, y = [y1, . . . ,yp]
T : [t0, t f ]→ℝp, f = [ f1, . . . , fp]

T : [t0, t f ]×ℝp →ℝp, and ψ : ℝp ×ℝp →ℝp. Obviously, Eq. (1), is a system of

first-order ordinary differential equations. Boundary value problems are the large class of problems that are arisen in a variety of

application areas, such as, engineering, biology, applied mathematics and mathematical modeling of a lot of real world problems.

Because of the complexity in most applications, boundary value problems are most often solved numerically.

So, different kinds of methods and softwares for numerical solution of boundary value problems have appeared. For instances,

we can refer to the simple and multiple shooting methods, finite difference and various weighted residual methods [1, 2, 3].

According to our knowledge, almost all of these methods reduce the solution of the boundary value problem to the solution of

a system of algebraic equations which should be solved by the root finding methods such as Newton’s method. So, convergence

to the optimal solution can suffer from the extreme sensitivity of Newton’s or Newton-like methods, because of the lack of the

good initial guesses for the solution [4]. Especially, if the problem (1) and (2) is unstable, small changes in the initial conditions

lead to the large changes in the solution. Consequently, solving the problem numerically, is very difficult, require many iterations

and often impossible [5].
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The aim of this paper is to present a robust numerical method with less sensitivity to the initial guess, for efficient solution of

such sensitive boundary value problems. For this purpose, using an orthogonal collocation approach for discretization, the problem

is transferred to an optimization problem. Orthogonal collocation methods which are usually known as pseudospectral methods,

are a family of spectral methods which classically were applied in fluid dynamics [6, 7]. The main advantage of them is that,

they have faster convergence rates than other methods and are easy to implement [8]. Orthogonal collocation methods mainly

comprehend two stages which is led to a stable numerical approximation corresponding to the solution of differential equations.

The first stage is choosing a proper finite representation of the solution which is usually done by polynomial interpolation of the

solution based on some suitable points [9]. The second stage is discretizing the equations at the collocation points and finally

obtaining the values of unknown solution at these points in a root finding problem.

In this paper, an orthogonal collocation approach using the Legendre-Gauss-Radau (LGR) points for discretization is utilized in

the first stage. In the second stage, against the other traditional collocation methods [10, 11, 12, 13, 14, 15], by considering the

values of the solution at the LGR points as decision parameters, the problem is transferred to an optimization problem. Indeed,

instead of confronting a root finding problem, an optimization problem is met in the second stage. Because the numerical solution

of the obtained optimization problem does not need a good initial guess to start, so, its solution is much easier than solving

the sensitive root finding problem which is obtained from the second stage of the traditional collocation methods [16]. This

leads, the proposed method is robust and more suitable and can be more easily applicable from the other traditional collocation

methods.

2. The proposed method

In order to approximate the solution of the system of equations (1) and (2), an orthogonal collocation approach is applied. Let

ξ̂ j = ((t0 + t f )ξ j +(t0 + t f ))/2, j = 1, . . . ,n,

for n LGR points {ξ j}n
j=1, where ξ1 =−1 and ξn <+1, be the associated LGR points to the interval (t0, t f ). It is noted that, the

LGR points {ξ j}n
j=1 is the set of n roots of the sum of the Legendre polynomials of degree n and n−1, Pn(t)+Pn−1(t), that are

given by the following recurrence relation [6]

P0(t) = 1, P1(t) = t,

Pn+1(t) =
2n+1
n+1

tPn(t)− n
n+1

Pn−1(t), n = 1,2, . . .

By adding the point ξ̂n+1 = t f , a set of n+ 1 points {ξ̂1 = t0, ξ̂1, . . . , ξ̂n+1 = t f } is constituted which are used for approximating
y(t) as

y(t)≃ ŷn(t) =
n+1

∑
k=1

ĉkφ̂k(t), (3)

in which, ĉk = [ĉ1,k, . . . , ĉp,k]
T ≃ y(ξ̂k) = [y1(ξ̂k), . . . ,yp(ξ̂k)]

T , and {φ̂k(t)}n+1
k=1 are Lagrange polynomials associated with ξ̂k or shifted

Lagrange polynomials on (t0, t f ), with

φ̂k(t) = φk((2/(t f − t0))t − (t f + t0)/(t f − t0)),

and {φk(t)}n+1
k=1 are the nth-order Lagrange interpolating polynomials, defined as

φk(t) =
n+1

∏
l=1,l ∕=k

t −ξl

ξk −ξl
, k = 1, . . . ,n+1,

with the Kronecker property

φk(ξl) = δkl =

{
0, if k ∕= l,
1, if k = l.

(4)

Note that, ξ̂n+1 = t f is not a shifted LGR point but it is used in defining of Lagrange polynomials φ̂k(t). Obviously, from Eq. (3),
and by using the Kronecker property (4), we get

y(ξ̂ j)≃ ŷn(ξ̂ j) =
n+1

∑
k=1

ĉkφ̂k(ξ̂ j) = ĉ j, j = 1, . . . ,n,

y(ξ̂n+1 = t f )≃ ŷn(ξ̂n+1 = t f ) =
n+1

∑
k=1

ĉkφ̂k(ξ̂n+1) = ĉn+1.
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Using Eq. (3), ẏ can be approximated as

ẏ(t)≃ ˙̂yn(t) =
n+1

∑
k=1

ĉk ˙̂φk(t). (5)

Consequently, substituting the Eqs. (3) and (5) into the Eq. (1), next collocating in ξ̂ j, j = 1, . . . ,n, we get

n+1

∑
k=1

ĉk ˙̂φk(ξ̂ j) ≃ f(ξ̂ j,
n+1

∑
k=1

ĉkφ̂k(ξ̂ j)), j = 1, . . . ,n. (6)

So, the Eq. (6) is reduced to

2
t f − t0

n+1

∑
k=1

ĉkdk j ≃ f(ξ̂ j, ĉ j), j = 1, . . . ,n, (7)

where

dk j = φ̇k(ξ j),

is the (k, j)-th element of the matrix D, which is named as the differentiation matrix [7]. It is noted that, the Eqs. (7) provide
np algebraic equations which is demanded to find the unknown vectors ĉk, k = 1, . . . ,n+ 1, and of course p another algebraic
equations should be obtained from the boundary conditions. So, the boundary conditions (2) can be discretized as

ψ(ĉ1, ĉn+1) = 0. (8)

Obviously, the Eqs. (7) and (8) are a nonlinear system of algebraic equations for finding the desired ĉk, k = 1, . . . ,n+1, as follows{
2

t f −t0 ∑n+1
k=1 ĉkdk j ≃ f(ξ̂ j, ĉ j), j = 1, . . . ,n,

ψ(ĉ1, ĉn+1) = 0.
(9)

Then, one can provide the approximate solution of the system of boundary value problems (1) and (2) with

ŷn(t) =
[n+1

∑
k=1

ĉ1,kφ̂k(t), . . . ,
n+1

∑
k=1

ĉp,kφ̂k(t)
]T

.

It is noted that, solving the system of equations (9) with root finding methods such as Newton’s ones may be difficult, as

mentioned in the previous section. So, in this paper, instead of confronting the system of equations (9), a different strategy is

utilized. This strategy is based on transferring (9) to the optimization problem. It should be noted that, this strategy is formed

in two different ways in this paper.

2.1. Transferring the system of equations to a constrained optimization problem

To this aim, with considering the discretized boundary conditions in Eq. (8) in the form of

J =
(
ψ(ĉ1, ĉn+1)

)2
,

as an objective function and considering the Eqs. (7) as the constraints, the system of equations (9) is finally transferred to the

following constrained optimization problem⎧⎨⎩
Min J =

(
ψ(ĉ1, ĉn+1)

)2
,

S.t.

2
t f − t0

n+1

∑
k=1

ĉkdk j ≃ f(ξ̂ j, ĉ j), j = 1, . . . ,n.
(10)

This strategy is named as the strategy (I), in this paper. Noted that, the constrained optimization problem (10) can be solved

by any well-developed optimization algorithm [17]. In this paper, the Matlab function fmincon is used and we set this solver to

use the interior-point numerical algorithm. In this solver, we can specify the values of termination tolerance on the objective

function value, TolFun, tolerance on the constraint violation, TolCon, and termination tolerance on decision variables, TolX, are

less than 10−10.

2.2. Transferring the system of equations to an unconstrained optimization problem

For this purpose, considering the system of equations (9) in the form of

Min J =
( 2

t f − t0

n+1

∑
k=1

ĉkdk j − f(ξ̂ j, ĉ j)
)2

+
(
ψ(ĉ1, ĉn+1))

2, (11)
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the problem (9) is finally transferred to an unconstrained optimization problem (11). This strategy is also named as the strategy

(II), in this paper. Here, the unconstrained optimization problem (11) is solved by the Matlab function fminunc in which the

trust-region numerical algorithm is used in this solver. In fminunc, we can specify the values of termination tolerance on

the objective function value, FunctionTolerance, termination tolerance on the first-order optimality, OptimalityTolerance,

and termination tolerance on decision variables, StepTolerance, are less than 10−10. In the next section, we will examine the

performance of both strategies in implementing the proposed method.

3. Illustrative examples

In this section, two nontrivial examples are given to demonstrate the applicability of our method. In the first example, the

robustness of the method in solving a benchmark example from boundary layer theory compared to the two famous and common

methods in solving boundary value problems, is highlighted. One of these famous and common methods is the multiple shooting

method and the other is a finite difference method that utilizes the four-stage Lobatto formula implemented by means of the

Matlab function bvp5c [5], where the relative and absolute error tolerances are set to be 10−10 for both. It is noted that, in the

multiple shooting method, the origin interval of the problem is divided into M subintervals and in i-th subinterval, an initial value
problem is met [18]. So, the solution of the boundary value problem is finally reduced to the solution of nonlinear equations which

are named as shooting equations. It is worthwhile to note that, the shooting equations obtained from the multiple shooting

method in this paper, are solved by the Matlab function fsolve and two parameters TolFun and TolX of this solver, in which, the

former specifies the termination tolerance on function value and the latter specifies the termination tolerance on the parameter

value are set to be 10−10. In the second example, the proposed method will be faced with a benchmark example from a family

of Sturm-Liouville boundary value problems. It is necessary to mention that, the first example has no analytical solution while

the second example has an analytical solution. Therefore, using the Euclidian norm of error at collocation points in the second

example as

En =

(
n+1

∑
k=1

[ŷ(ξ̂k)−y∗(ξ̂k)]
2

)1/2

,

where, ŷ is the approximated solution and y∗ is the exact solution, an overview of the rate of convergence by plotting En appears.

Noted that, all computations are performed on a 2.53 GHz Core i5 PC Laptop with 4 GB of RAM running in Matlab R2016a.

3.1. Example 1.

Consider the nonlinear boundary value problem⎧⎨⎩

ẏ1(t) = y2(t),
ẏ2(t) = y3(t),
ẏ3(t) =− 1

2 (3−m)y1(t)y3(t)−my2
2(t)− y2

4(t)+ sy2(t)+1,
ẏ4(t) = y5(t),
ẏ5(t) =− 1

2 (3−m)y1(t)y5(t)− (m−1)y2(t)y4(t)+ s(y4(t)−1),
y1(0) = y2(0) = y4(0) = 0,
y2(t f ) = 0, y4(t f ) = 1,

which is related to the theory of the boundary layer of an incompressible fluid [19]. It is known that, for sufficiently large values

of t f , this problem is hyper-sensitive. Therefore, finding it’s solution is very difficult. In this paper, we consider t f = 20. Now,
the problem is solved using the proposed method. The approximated solution for m = −0.1, s = 0.2 and n = 30 discretization
points, is shown in Fig. 1. Also, to show the numerical convergence and accuracy of the method, different values of y for some
discretization points are shown in Table 1. Because this problem has no analytical solution, so it’s reference solution can be

obtained either with the multiple shooting method or by means of the Matlab function bvp5c and the results are shown in Table

2. Comparing Tables 1 and 2, it can be concluded that the accuracy of the proposed method is high and the convergence is
achieved by using a small number of discretization points. In addition, it can be seen that, the performance of the proposed

method with the strategy (I) is much more effective than using the strategy (II) due to its low cpu time.

Now, in order to show the robustness of the proposed method, a comparison is made between the sensitivity of the presented

method and two common multiple shooting and bvp5c methods, which in both of them, the solution of the problem is reduced

to the solution of nonlinear system of algebraic equations [1, 5]. So, the proposed method, the multiple shooting and bvp5c

methods are separately utilized for 100 initial values randomized distributed in the interval [0,1], and the average of the CPU
time of each method is also reported. The results are shown in Table 3. According to Table 3, both bvp5c and the multiple

shooting methods are more sensitive to the initial guess than the proposed method. However, the robustness of the proposed

method besides to its low cpu time can be clearly seen in this table.

3.2. Example 2.

The second example is the Bratu boundary value problem, a class of nonlinear eigenvalue problems which arises in the model of

thermal reaction process and the Chandrasekhar model of the expansion of the universe [20]. The Bratu boundary value problem
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Figure 1. Approximated Solution of Example 1 for n = 30.

Table 1. The initial and final values of y3(t) and y5(t) for different number of discretization points obtained by the presented
method in Example 1.

Present method with strategy (I) Present method with strategy (II)

t n y3(t) y5(t) CPU Time(s) y3(t) y5(t) CPU Time(s)

0 20 -0.96631801 0.65290641 1.78 -0.96631801 0.65290641 36.28

25 -0.96631161 0.65290974 2.64 -0.96631161 0.65290974 60.51

30 -0.96631181 0.65290957 3.22 -0.96631180 0.65290958 97.23

35 -0.96631181 0.65290957 4.44 -0.96631180 0.65290958 122.83

20 20 -0.00867774 0.00879331 1.78 -0.00867774 0.00879332 36.28

25 -0.00867617 0.00879305 2.64 -0.00867617 0.00879307 60.51

30 -0.00867621 0.00879306 3.22 -0.00867621 0.00879307 97.23

35 -0.00867622 0.00879307 4.44 -0.00867621 0.00879307 122.83

Table 2. The initial and final values of y3(t) and y5(t) obtained by bvp5c and multiple shooting method in Example 1.

y3(0) y5(0) y3(20) y5(20)
Solution by bvp5c -0.96631180 0.65290958 -0.00867621 0.00879307

Solution by the multiple shooting method with M = 5 -0.96631180 0.65290958 -0.00867621 0.00879307

Solution by the multiple shooting method with M = 10 -0.96631180 0.65290958 -0.00867621 0.00879307

Table 3. The convergence percentage of bvp5c, the multiple shooting method (with M = 5,10) and the proposed method (with
n = 15,20) for 100 random initial guess in the the interval [0,1], in Example 1.

bvp5c The multiple shooting method The proposed method with strategy (I)

M = 5 M = 10 n = 15 n = 20
[0,1] 14 58 65 100 100

The average of CPU time(s) 2.35 Over 1000 1.63

has the form

ÿ(x)+λey(x) = 0, y(0) = y(1) = 0, 0 ≤ x ≤ 1,

where, λ > 0 is a constant. It is simple to show that, by using a substitution

y1 = y,

y2 = ẏ,

the order of the problem is reduced to one and the following system of first-order boundary value problems is derived⎧⎨⎩
ẏ1(x) = y2(x),
ẏ2(x) =−λey1(x),

y1(0) = y1(1) = 0.

This problem has the exact solution, y∗1(x) = −2ln
[ cosh((x− 1

2 )
θ
2 )

cosh( θ
4 )

]
and y∗2(x) = − θ sinh((x− 1

2 )
θ
2 )

cosh((x− 1
2 )

θ
2 )
, where θ is the solution of the

equation

θ =
√

2λ cosh(
θ
4
). (12)

Now, the problem is solved using the proposed method, when λ is considered as 2. It is noted that in this situation, the Eq. (12)
has two roots, i.e., θ = 2.35755105385 and θ = 8.50719957071. The exact, approximated and error functions, for the various
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Figure 2. Solution of Example 2 with strategy (I) for n = 20, λ = 2 and θ = 2.35755105385.
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Figure 3. Solution of Example 2 with strategy (I) for n = 35, λ = 2 and θ = 8.50719957071.
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Figure 4. Solution of Example 2 with strategy (II) for n = 20, λ = 2 and θ = 2.35755105385.

discretization points, are shown in Figs. 2-5. Also, for exploring the dependence of error of the solutions on the parameter n, the
proposed method is applied on this problem for various values of n and the results are shown in Figs. 6 and 7. Furthermore, in
Table 4, the absolute error of the proposed method when using n = 20 discretization points and with strategy (I) in comparison
with five other numerical methods is given. The results show that, the proposed method approximates the exact solution with

the high precision. Finally, to show the robustness of the proposed method, once, it is used in a situation that it does not utilize

the strategies (I) or (II) and only solves the system of algebraic equations (9), and again when the proposed method uses the

strategy (I). Noted that, for solving the system of algebraic equations (9) in this paper, the Matlab function fsolve is utilized

and we have considered the Bratu boundary value problem with λ = 2 and θ = 8.50719957071. The results are shown in Fig.
8. It is clear that, by utilizing the optimization strategy, the CPU time, the number of iterations and the number of function

evaluation is significantly reduced.

4. Conclusion

In the present work, an accurate and robust numerical method was applied for efficient solution of the first-order system of

nonlinear sensitive boundary value problems. The method reduced the solution of the problem to the solution of an optimization

problem which is easier to solve than the sensitive root finding problem appears in the traditional collocation methods. The

proposed method is especially useful where the classical methods fail for sensitivity or stiffness of the problem. Illustrative

examples were given to demonstrate the validity and applicability of the proposed method. It was seen that, good results are

obtained even using a small number of discretization points, the rate of convergence is high and the proposed method did not
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Figure 5. Solution of Example 2 with strategy (II) for n = 30, λ = 2 and θ = 8.50719957071.
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Figure 6. Euclidian norm of error versus n with strategy (I) for λ = 2 and θ = 2.35755105385, in Example 2.
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Figure 7. Euclidian norm of error versus n with strategy (II) for λ = 2 and θ = 2.35755105385, in Example 2.

Table 4. The absolute error for λ = 2 and θ = 2.35755105385, in Example 2.

t Method of [21] Method of [22] Method of [23] Method of [24] Method of [25] Proposed method

0.1 1.52e−02 2.13e−03 1.52e−02 1.72e−05 4.04e−08 2.47e−10
0.2 1.47e−02 4.21e−03 1.47e−02 3.26e−05 2.76e−08 2.27e−10
0.3 5.89e−03 6.19e−03 5.89e−03 4.49e−05 4.59e−08 2.00e−10
0.4 3.25e−03 8.00e−03 3.25e−03 5.28e−05 3.03e−08 1.68e−10
0.5 6.98e−03 9.60e−03 6.98e−03 5.56e−05 2.83e−08 1.31e−10
0.6 3.25e−03 1.09e−03 3.25e−03 5.28e−05 4.11e−08 8.98e−11
0.7 5.89e−03 1.19e−02 5.89e−03 4.49e−05 3.37e−08 4.58e−11
0.8 1.47e−02 1.24e−02 1.47e−02 3.26e−05 1.79e−08 1.75e−14
0.9 1.52e−02 1.09e−02 1.52e−02 1.72e−05 2.95e−08 4.61e−11

need to start with a good initial guess. We believe that the idea used in this work can also be utilized for robust solution of

partial differential equations.
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14. Patŕıcio MS, Ramos H, Patŕıcio M. Solving initial and boundary value problems of fractional ordinary differential equations by using

collocation and fractional powers. Journal of Computational and Applied Mathematics 2019; 354:348–359.

15. Delkhosh M, Parand K. Generalized pseudospectral method: Theory and applications. Journal of Computational Science 2019; 34:11–

32.

16. Dennis J, Schnabel R. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Classics in Applied Mathematics,

Society for Industrial and Applied Mathematics, 1996.

17. Nocedal J, Wright SJ. Numerical Optimization. 2nd edn., Springer: New York, 2006.

18. Osborne MR. On shooting methods for boundary value problems. Journal of mathematical analysis and applications 1969; 27(2):417–

433.

19. Kubicek M, Hlavacek V. Numerical solution of nonlinear boundary value problems with applications. Courier Corporation, 2008.

20. Tomar S, Pandey R. An efficient iterative method for solving Bratu-type equations. Journal of Computational and Applied Mathematics

2019; 357:71–84.

8 Copyright c⃝ 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–9

Prepared using mmaauth.cls



A numerical scheme for accurate solution of sensitive boundary value problems

Mathematical
Methods in the
Applied Sciences

21. Deeba E, Khuri S, Xie S. An algorithm for solving boundary value problems. Journal of Computational Physics 2000; 159(2):125–138.

22. Khuri SA. A new approach to Bratus problem. Applied mathematics and computation 2004; 147(1):131–136.

23. Wazwaz AM. Adomian decomposition method for a reliable treatment of the Bratu-type equations. Applied Mathematics and

computation 2005; 166(3):652–663.
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