References
Abadassi, J., & Herve, Y. (2000). Introgression of temperate germplasm
to improve an elite tropical maize population. Euphytica, 113(2),
125-133. doi:10.1023/a:1003916928181
Bannayan, M., Eyshi Rezaei, E., & Hoogenboom, G. (2013). Determining
optimum planting dates for rainfed wheat using the precipitation
uncertainty model and adjusted crop evapotranspiration. Agricultural
Water Management, 126, 56-63. doi:10.1016/j.agwat.2013.05.001
Banziger, M., Setimela, P. S., Hodson, D., & Vivek, B. (2006). Breeding
for improved abiotic stress tolerance in maize adapted to southern
Africa. Agricultural Water Management, 80(1-3), 212-224.
doi:10.1016/j.agwat.2005.07.014
BarnabÁS, B., JÄGer, K., & FehÉR, A. (2008). The effect of drought and
heat stress on reproductive processes in cereals. Plant, Cell &
Environment, 31(1), 11-38. doi:10.1111/j.1365-3040.2007.01727.x
Ben-Asher, J., Garcia, A. G. Y., & Hoogenboom, G. (2008). Effect of
high temperature on photosynthesis and transpiration of sweet corn (Zea
mays L. var. rugosa). Photosynthetica, 46(4), 595-603.
doi:10.1007/s11099-008-0100-2
Bohnert, H. J., Gong, Q., Li, P., & Ma, S. (2006). Unraveling abiotic
stress tolerance mechanisms–getting genomics going. Current Opinion
in Plant Biology, 9(2), 180-188. doi:10.1016/j.pbi.2006.01.003
Campos, H., & Caligari, P. D. S. (2017). Genetic Improvement of
Tropical Crops.
Carcova, J., Uribelarrea, M., Borras, L., Otegui, M. E., & Westgate, M.
E. (2000). Synchronous pollination within and between ears improves
kernel set in maize. Crop science, 40(4), 1056-1061.
doi:10.2135/cropsci2000.4041056x
Carlowicz, M. (2010). World of change: global temperatures: feature
articles. Retrieved from
http://earthobservatory.nasa.gov/Features/WorldOfChange/decadaltemp.php
Cerrudo, D., Hernandez, M., Tollenaar, M., Vega, C. R. C., & Echarte,
L. (2020). Kernel number response to plant density in tropical,
temperate, and tropical x temperate maize hybrids. Crop science, 60(1),
381-390. doi:10.1002/csc2.20077
Chiluwal, A., Bheemanahalli, R., Kanaganahalli, V., Boyle, D., Perumal,
R., Pokharel, M., Oumarou, H., Jagadish, S. V. K. (2020). Deterioration
of ovary plays a key role in heat stress-induced spikelet sterility in
sorghum. Plant Cell and Environment, 43(2), 448-462.
doi:10.1111/pce.13673
Cicchino, M., Rattalino Edreira, J. I., & Otegui, M. E. (2010). Heat
Stress during Late Vegetative Growth of Maize: Effects on Phenology and
Assessment of Optimum Temperature. Crop science, 50(4), 1431-1437.
doi:10.2135/cropsci2009.07.0400
Cicchino, M., Rattalino Edreira, J. I., Uribelarrea, M., & Otegui, M.
E. (2010). Heat stress in field-grown maize: response of physiological
determinants of grain yield. Crop science, 50(4), 1438-1448.
doi:10.2135/cropsci2009.10.0574
Commuri, P. D., & Jones, R. J. (2001). High temperatures during
endosperm cell division in maize: A genotypic comparison under in vitro
and field conditions. Crop science, 41(4), 1122-1130.
doi:10.2135/cropsci2001.4141122x
Crafts-Brandner, S. J., & Law, R. D. (2000). Effect of heat stress on
the inhibition and recovery of the ribulose-1,5-bisphosphate
carboxylase/oxygenase activation state. Planta, 212(1), 67-74.
doi:10.1007/s004250000364
Crafts-Brandner, S. J., & Salvucci, M. E. (2002). Sensitivity of
photosynthesis in a C4 plant, maize, to heat stress.
Plant Physiology, 129(4), 1773-1780. doi:10.1104/pp.002170
Duke, E. R., & Doehlert, D. C. (1996). Effects of heat stress on enzyme
activities and transcript levels in developing maize kernels grown in
culture. Environmental Experimental Botany, 36(2), 199-208.
doi:10.1016/0098-8472(96)01004-0
Dupuis, I., & Dumas, C. (1990). Influence of temperature stress on
invitro fertilization and heat-shock protein-synthesis in maize
(Zea mays l) reproductive tissues. Plant Physiology, 94(2),
665-670. doi:10.1104/pp.94.2.665
Echarte, L., & Tollenaar, M. (2006). Kernel set in maize hybrids and
their inbred lines exposed to stress. Crop science, 46(2), 870-878.
doi:10.2135/cropsci2005.0204
Edmeades, G. O., Trevisan, W., Prasanna, B. M., & Campos, H. (2017).
Tropical Maize (Zea mays L.).
Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011).
Heat Stress in Wheat during Reproductive and Grain-Filling Phases.
Critical Reviews in Plant Sciences, 30(6), 491-507.
doi:10.1080/07352689.2011.615687
Ferris, R., Ellis, R. H., Wheeler, T. R., & Hadley, P. (1998). Effect
of high temperature stress at anthesis on grain yield and biomass of
field-grown crops of wheat. Annals of Botany, 82(5), 631-639.
doi:10.1006/anbo.1998.0740
Frova, C., & Sari-Gorla, M. (1994). Quantitative trait loci (QTLs) for
pollen thermotolerance detected in maize. Molecular & General Genetics
Mgg, 245(4), 424-430. doi:10.1007/BF00302254
Fuad-Hassan, A., Tardieu, F., & Turc, O. (2008). Drought-induced
changes in anthesis-silking interval are related to silk expansion: a
spatio-temporal growth analysis in maize plants subjected to soil water
deficit. Plant Cell and Environment, 31(9), 1349-1360.
doi:10.1111/j.1365-3040.2008.01839.x
Giauffret, C., Lothrop, J., Dorvillez, D., Gouesnard, B., & Derieux, M.
(2000). Genotype × environment interactions in maize hybrids from
temperate or highland tropical origin. Crop science, 40(4).
doi:10.2135/cropsci2000.4041004x
Goodman, M. M. (2004). Developing temperate inbreds using tropical maize
germplasm: Rationale, results, conclusions. Maydica, 49(3), 209-219.
Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and
sexual plant reproduction. Trends Plant Sci, 14(1), 30-36.
doi:10.1016/j.tplants.2008.11.001
Herrero, M. P., & Johnson, R. R. (1980). High temperature stress and
pollen viability of maize. Crop science, 20(6), 796-800.
doi:10.2135/cropsci1980.0011183X002000060030x
Hurkman, W. J., McCue, K. F., Altenbach, S. B., Korn, A., Tanaka, C. K.,
Kotharia, K. M., Johnson, E. L., Bechtel, D. B., Wilson, J. D.,
Anderson, O. D., DuPont, F. M. (2003). Effect of temperature on
expression of genes encoding enzymes for starch biosynthesis in
developing wheat endosperm. Plant Science, 164(5), 873-881.
doi:10.1016/s0168-9452(03)00076-1
Jagadish, S. V. K. (2020). Heat stress during flowering in cereals -
effects and adaptation strategies. New Phytologist, 226(6), 1567-1572.
doi:10.1111/nph.16429
Janni, M., Gulli, M., Maestri, E., Marmiroli, M., Valliyodan, B.,
Nguyen, H. T., & Marmiroli, N. (2020). Molecular and genetic bases of
heat stress responses in crop plants and breeding for increased
resilience and productivity. Journal of Experimental Botany, 71(13),
3780-3802. doi:10.1093/jxb/eraa034
Jiang, C., Edmeades, G. O., Armstead, I., Lafitte, H. R., Hayward, M.
D., & Hoisington, D. (1999). Genetic analysis of adaptation differences
between highland and lowland tropical maize using molecular markers.
Theoretical and Applied Genetics, 99(7-8), 1106-1119.
doi:10.1007/s001220051315
Khaliq, A., Iqbal, M. A., & Zafar, M. (2019). Appraising economic
dimension of maize production under coherent fertilization in Azad
Kashmir, Pakistan. Custos e Agronegocio, 15(2), 243-253.
Lafitte, H. R., & Edmeades, G. O. (1997). Temperature effects on
radiation use and biomass partitioning in diverse tropical maize
cultivars. Field Crops Research, 49(2-3), 231-247.
doi:10.1016/s0378-4290(96)01005-2
Lewis, R. S., & Goodman, M. M. (2003). Incorporation of tropical maize
germplasm into inbred lines derived from temperate x temperate-adapted
tropical line crosses: agronomic and molecular assessment. Theor Appl
Genet, 107(5), 798-805. doi:10.1007/s00122-003-1341-x
Lizaso, J. I., Ruiz-Ramos, M., Rodríguez, L., Gabaldon-Leal, C.,
Oliveira, J. A., Lorite, I. J., Sanchez, D., Garcia, E., Rodríguez, A.
(2018). Impact of high temperatures in maize: Phenology and yield
components. Field Crops Research, 216, 129-140.
doi:10.1016/j.fcr.2017.11.013
Masson-Delmotte, V., Z., P., Pörtner, H.-O., Roberts, D., Skea, J., &
Shukla, P. R. (2018). Global warming of 1.5 ℃. An IPCC special report on
the impacts of global warming of 1.5℃ above pre-industrial levels and
related global greenhouse gas emission pathways, in the contextof
strengthening the global response to the threat of C (pp. 32). Retrieved
from https://www.ipcc.ch/sr15/
Mayer, L. I., Savin, R., & Maddonni, G. A. (2016). Heat stress during
grain filling modifies kernel protein composition in field-grown maize.
Crop science, 56(4), 1890-1903. doi:10.2135/cropsci2015.09.0537
Muchow, R. C., & Carberry, P. S. (1989). Environmental-control of
phenology and leaf growth in a tropically adapted maize. Field Crops
Research, 20(3), 221-236. doi:10.1016/0378-4290(89)90081-6
Muhammad, N., Muhammad, A., Akram, H. M., Muhammad, A., & Nisar, A.
(2016). Genetic effects conferring heat tolerance in a cross of tolerant
× susceptible maize (Zea mays l.) genotypes. Frontiers in Plant
Science, 7, 729-. doi:10.3339/fpls.2016.00729
Mushayi, M., Shimelis, H., Derera, J., Shayanowako, A. I. T., & Mathew,
I. (2020). Multi-environmental evaluation of maize hybrids developed
from tropical and temperate lines. Euphytica, 216(5).
doi:10.1007/s10681-020-02618-6
Nicolas, M. E., Gleadow, R. M., & Dalling, M. J. (1985). Effect of
post-anthesis drought on cell division and starch accumulation in
developing wheat grains. Annals of Botany, 55(3), 433-444. doi:
10.1093/oxfordjournals.aob.a086922
Ortiz-Monasterio, J. I., Dhillon, S. S., & Fischer, R. A. (1994). Date
of sowing effects on grain yield and yield components of irrigated
spring wheat cultivars and relationships with radiation and temperature
in Ludhiana, India. Field Crops Research, 37(3), 169-184.
doi:10.1016/0378-4290(94)90096-5
Prasad, P. V. V., Bheemanahalli, R., & Jagadish, S. V. K. (2017). Field
crops and the fear of heat stress-Opportunities, challenges and future
directions. Field Crops Research, 200, 114-121.
doi:10.1016/j.fcr.2016.09.024
Rattalino Edreira, J. I., Budakli Carpici, E., Sammarro, D., & Otegui,
M. E. (2011). Heat stress effects around flowering on kernel set of
temperate and tropical maize hybrids. Field Crops Research, 123(2),
62-73. doi:10.1016/j.fcr.2011.04.015
Rattalino Edreira, J. I., Mayer, L. I., & Otegui, M. E. (2014). Heat
stress in temperate and tropical maize hybrids: Kernel growth, water
relations and assimilate availability for grain filling. Field Crops
Research, 166, 162-172. doi:10.1016/j.fcr.2014.06.018
Rattalino Edreira, J. I., & Otegui, M. E. (2012). Heat stress in
temperate and tropical maize hybrids: differences in crop growth,
biomass partitioning and reserves use. Field Crops Research, 130, 87-98.
doi:10.1016/j.fcr.2012.02.009
Rattalino Edreira, J. I., & Otegui, M. E. (2013). Heat stress in
temperate and tropical maize hybrids: A novel approach for assessing
sources of kernel loss in field conditions. Field Crops Research, 142,
58-67. doi:10.1016/j.fcr.2012.11.009
Richardson, B. A., Chaney, L., Shaw, N. L., & Still, S. M. (2017). Will
phenotypic plasticity affecting flowering phenology keep pace with
climate change? Global Change Biology, 23(6), 2499-2508.
doi:10.1111/gcb.13532
Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S.
A. (2017). Climate change and livestock: Impacts, adaptation, and
mitigation. Climate Risk Management, 16(C), 145-163.
doi:10.1016/j.crm.2017.02.001
Sadras, V. O., Vadez, V., Purushothaman, R., Lake, L., & Marrou, H.
(2015). Unscrambling confounded effects of sowing date trials to screen
for crop adaptation to high temperature. Field Crops Research, 177, 1-8.
doi:10.1016/j.fcr.2015.02.024
Sanchez, B., Rasmussen, A., &
Porter, J. R. (2014). Temperatures and the growth and development of
maize and rice: a review. Global Change Biology, 20(2), 408-417.
doi:10.1111/gcb.12389
Schmid, S. F., Stocklin, J., Hamann, E., & Kesselring, H. (2017).
High-elevation plants have reduced plasticity in flowering time in
response to warming compared to low-elevation congeners. Basic and
Applied Ecology, 21, 1-12. doi:10.1016/j.baae.2017.05.003
Schoper, J. B., Lambert, R. J., Vasilas, B. L., & Westgate, M. E.
(1987). Plant factors controlling seed set in maize. Plant Physiology,
83, 121-125. doi:10.1104/pp.83.1.121
Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S.,
Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V.,
Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in
food crops: impacts on functional biochemistry, seed yields, and
nutritional quality. Front Plant Sci, 9, 1705.
doi:10.3389/fpls.2018.01705
Shi, W. J., Yin, X. Y., Struik, P.
C., Solis, C., Xie, F. M., Schmidt, R. C., Huang, M., Zou, Y. B., Ye, C.
R., Jagadish, S. V. K. (2017). High day- and night-time temperatures
affect grain growth dynamics in contrasting rice genotypes. Journal of
Experimental Botany, 68(18), 5233-5245. doi:10.1093/jxb/erx344
Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops
that feed the world 6. Past successes and future challenges to the role
played by maize in global food security. Food Security, 3(3), 307-327.
doi:10.1007/s12571-011-0140-5
Siebers, M. H., Slattery, R. A., Yendrek, C. R., Locke, A. M., Drag, D.,
Ainsworth, E. A., Bernacchi, C. J., Ort, D. R. (2017). Simulated heat
waves during maize reproductive stages alter reproductive growth but
have no lasting effect when applied during vegetative stages.
Agriculture Ecosystems & Environment, 240, 162-170.
doi:10.1016/j.agee.2016.11.008
Sinsawat, V., Leipner, J., Stamp, P., & Fracheboud, Y. (2004). Effect
of heat stress on the photosynthetic apparatus in maize (Zea maysL.) grown at control or high temperature. Environmental and Experimental
Botany, 52(2), 123-129. doi:10.1016/j.envexpbot.2004.01.010
Smith, L. M. (2019). The heat is on: maize pollen development after a
heat wave. Plant Physiology, 181(2), 387-388. doi:10.1104/pp.19.01025
Suwa, R., Hakata, H., Hara, H., El-Shemy, H. A., Adu-Gyamfi, J. J.,
Nguyen, N. T., Kanai, S., Lightfoot, D. A., Mohapatra, P. K., Fujita, K.
(2010). High temperature effects on photosynthate partitioning and sugar
metabolism during ear expansion in maize (Zea mays L.) genotypes.
Plant Physiol Biochem, 48(2-3), 124-130.
doi:10.1016/j.plaphy.2009.12.010
Talukder, S. K., Babar, M. A., Vijayalakshmi, K., Poland, J., Prasad, P.
V. V., Bowden, R., & Fritz, A. (2014). Mapping QTL for the traits
associated with heat tolerance in wheat (Triticum aestivum L.).
BMC Genetics, 15(97), (11 November 2014) - (2011 November 2014).
doi:10.1186/s12863-014-0097-4
Thitisaksakul, M., Jiménez, R. C., Arias, M. C., & Beckles, D. M. J. J.
o. C. S. (2012). Effects of environmental factors on cereal starch
biosynthesis and composition. 56(1), 67-80.
doi:10.1016/j.jcs.2012.04.002
Thomas, D., & Franklin-Tong, N. (2013). Male-female crosstalk during
pollen germination, tube growth and guidance, and double fertilization.
Molecular Plant, 6(4), 1018-1036. doi:10.1093/mp/sst061
Tian, B. J., Zhu, J. C., Nie, Y. S., Xu, C. L., Meng, Q. F., & Wang, P.
(2019). Mitigating heat and chilling stress by adjusting the sowing date
of maize in the North China Plain. Journal of Agronomy and Crop Science,
205(1), 77-87. doi:10.1111/jac.12299
Uribelarrea, M., Carcova, J., Otegui, M. E., & Westgate, M. E. (2002).
Pollen production, pollination dynamics, and kernel set in maize. Crop
science, 42(6), 1910-1918. doi:10.2135/cropsci2002.1910
Wang, Y. Y, Sheng, D. C., Zhang, P., Dong, X., Yan, Y., Hou, X. F.,
Wang, P., Huang, S. B. (2020). High temperature sensitivity of kernel
formation in different short periods around silking in maize.
Environmental and Experimental Botany, 104343.
doi:10.1016/j.envexpbot.2020.104343
Wang, Y. Y, Tao, H., Tian, B. J., Sheng, D. C., Xu, C. C., Zhou, H. M.,
Huang, S. B., Wang, P. (2019). Flowering dynamics, pollen, and pistil
contribution to grain yield in response to high temperature during maize
flowering. Environmental and Experimental Botany, 158, 80-88.
doi:10.1016/j.envexpbot.2018.11.007
White, W. G., Vincent, M. L., Moose, S. P., & Below, F. E. (2012). The
sugar, biomass and biofuel potential of temperate by tropical maize
hybrids. Global Change Biology Bioenergy, 4(5), 496-508.
doi:10.1111/j.1757-1707.2012.01158.x
Wilhelm, E. P., Mullen, R. E., Keeling, P. L., & Singletary, G. W.
(1999). Heat stress during grain filling in maize: Effects on kernel
growth and metabolism. Crop science, 39(6), 1733-1741.
doi:10.2135/cropsci1999.3961733x
Wolde, L., Keno, T., Tadesse, B., Bogale, G., & Abebe, B. J. E. J. o.
A. S. (2018). Mega-environment targeting of maize varieties using AMMI
and GGE bi-plot analysis in Ethiopia. 28(2), 65-84.
Yamakawa, H., & Hakata, M. (2010). Atlas of Rice Grain Filling-Related
Metabolism under High Temperature: Joint Analysis of Metabolome and
Transcriptome Demonstrated Inhibition of Starch Accumulation and
Induction of Amino Acid Accumulation. Plant and Cell Physiology, 51(9),
1599-1599. doi:10.1093/pcp/pcq122
Yang, H., Gu, X., Ding, M., Lu, W., & Lu, D. (2018). Heat stress during
grain filling affects activities of enzymes involved in grain protein
and starch synthesis in waxy maize. Sci Rep, 8(1), 15665.
doi:10.1038/s41598-018-33644-z
Yang, H., Gu, X. T., Ding, M. Q., Lu, W. P., & Lue, D. L. (2018). Heat
stress during grain filling affects activities of enzymes involved in
grain protein and starch synthesis in waxy maize. Scientific Reports, 8,
9. doi:10.1038/s41598-018-33644-z
Zhang, P., Chen, G., Geng, P., Gao, Y., Zheng, L., Zhang, S., & Wang,
P. (2017). Effects of high temperature during grain filling period on
superior and inferior kernels’ development of different heat sensitive
maize varieties. Scientia Agricultura Sinica, 50(11), 2061-2070.
Zhou, L. Z., Juranic, M., & Dresselhaus, T. (2017). Germline
Development and Fertilization Mechanisms in Maize. Molecular Plant,
10(3), 389-401. doi:10.1016/j.molp.2017.01.012
Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature
stress and plant sexual reproduction: uncovering the weakest links.
Journal of Experimental Botany, 61(7), 1959-1968. doi:10.1093/jxb/erq053