References
Abadassi, J., & Herve, Y. (2000). Introgression of temperate germplasm to improve an elite tropical maize population. Euphytica, 113(2), 125-133. doi:10.1023/a:1003916928181
Bannayan, M., Eyshi Rezaei, E., & Hoogenboom, G. (2013). Determining optimum planting dates for rainfed wheat using the precipitation uncertainty model and adjusted crop evapotranspiration. Agricultural Water Management, 126, 56-63. doi:10.1016/j.agwat.2013.05.001
Banziger, M., Setimela, P. S., Hodson, D., & Vivek, B. (2006). Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agricultural Water Management, 80(1-3), 212-224. doi:10.1016/j.agwat.2005.07.014
BarnabÁS, B., JÄGer, K., & FehÉR, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31(1), 11-38. doi:10.1111/j.1365-3040.2007.01727.x
Ben-Asher, J., Garcia, A. G. Y., & Hoogenboom, G. (2008). Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica, 46(4), 595-603. doi:10.1007/s11099-008-0100-2
Bohnert, H. J., Gong, Q., Li, P., & Ma, S. (2006). Unraveling abiotic stress tolerance mechanisms–getting genomics going. Current Opinion in Plant Biology, 9(2), 180-188. doi:10.1016/j.pbi.2006.01.003
Campos, H., & Caligari, P. D. S. (2017). Genetic Improvement of Tropical Crops.
Carcova, J., Uribelarrea, M., Borras, L., Otegui, M. E., & Westgate, M. E. (2000). Synchronous pollination within and between ears improves kernel set in maize. Crop science, 40(4), 1056-1061. doi:10.2135/cropsci2000.4041056x
Carlowicz, M. (2010). World of change: global temperatures: feature articles. Retrieved from http://earthobservatory.nasa.gov/Features/WorldOfChange/decadaltemp.php
Cerrudo, D., Hernandez, M., Tollenaar, M., Vega, C. R. C., & Echarte, L. (2020). Kernel number response to plant density in tropical, temperate, and tropical x temperate maize hybrids. Crop science, 60(1), 381-390. doi:10.1002/csc2.20077
Chiluwal, A., Bheemanahalli, R., Kanaganahalli, V., Boyle, D., Perumal, R., Pokharel, M., Oumarou, H., Jagadish, S. V. K. (2020). Deterioration of ovary plays a key role in heat stress-induced spikelet sterility in sorghum. Plant Cell and Environment, 43(2), 448-462. doi:10.1111/pce.13673
Cicchino, M., Rattalino Edreira, J. I., & Otegui, M. E. (2010). Heat Stress during Late Vegetative Growth of Maize: Effects on Phenology and Assessment of Optimum Temperature. Crop science, 50(4), 1431-1437. doi:10.2135/cropsci2009.07.0400
Cicchino, M., Rattalino Edreira, J. I., Uribelarrea, M., & Otegui, M. E. (2010). Heat stress in field-grown maize: response of physiological determinants of grain yield. Crop science, 50(4), 1438-1448. doi:10.2135/cropsci2009.10.0574
Commuri, P. D., & Jones, R. J. (2001). High temperatures during endosperm cell division in maize: A genotypic comparison under in vitro and field conditions. Crop science, 41(4), 1122-1130. doi:10.2135/cropsci2001.4141122x
Crafts-Brandner, S. J., & Law, R. D. (2000). Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta, 212(1), 67-74. doi:10.1007/s004250000364
Crafts-Brandner, S. J., & Salvucci, M. E. (2002). Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiology, 129(4), 1773-1780. doi:10.1104/pp.002170
Duke, E. R., & Doehlert, D. C. (1996). Effects of heat stress on enzyme activities and transcript levels in developing maize kernels grown in culture. Environmental Experimental Botany, 36(2), 199-208. doi:10.1016/0098-8472(96)01004-0
Dupuis, I., & Dumas, C. (1990). Influence of temperature stress on invitro fertilization and heat-shock protein-synthesis in maize (Zea mays l) reproductive tissues. Plant Physiology, 94(2), 665-670. doi:10.1104/pp.94.2.665
Echarte, L., & Tollenaar, M. (2006). Kernel set in maize hybrids and their inbred lines exposed to stress. Crop science, 46(2), 870-878. doi:10.2135/cropsci2005.0204
Edmeades, G. O., Trevisan, W., Prasanna, B. M., & Campos, H. (2017). Tropical Maize (Zea mays L.).
Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Critical Reviews in Plant Sciences, 30(6), 491-507. doi:10.1080/07352689.2011.615687
Ferris, R., Ellis, R. H., Wheeler, T. R., & Hadley, P. (1998). Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Annals of Botany, 82(5), 631-639. doi:10.1006/anbo.1998.0740
Frova, C., & Sari-Gorla, M. (1994). Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Molecular & General Genetics Mgg, 245(4), 424-430. doi:10.1007/BF00302254
Fuad-Hassan, A., Tardieu, F., & Turc, O. (2008). Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell and Environment, 31(9), 1349-1360. doi:10.1111/j.1365-3040.2008.01839.x
Giauffret, C., Lothrop, J., Dorvillez, D., Gouesnard, B., & Derieux, M. (2000). Genotype × environment interactions in maize hybrids from temperate or highland tropical origin. Crop science, 40(4). doi:10.2135/cropsci2000.4041004x
Goodman, M. M. (2004). Developing temperate inbreds using tropical maize germplasm: Rationale, results, conclusions. Maydica, 49(3), 209-219.
Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends Plant Sci, 14(1), 30-36. doi:10.1016/j.tplants.2008.11.001
Herrero, M. P., & Johnson, R. R. (1980). High temperature stress and pollen viability of maize. Crop science, 20(6), 796-800. doi:10.2135/cropsci1980.0011183X002000060030x
Hurkman, W. J., McCue, K. F., Altenbach, S. B., Korn, A., Tanaka, C. K., Kotharia, K. M., Johnson, E. L., Bechtel, D. B., Wilson, J. D., Anderson, O. D., DuPont, F. M. (2003). Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 164(5), 873-881. doi:10.1016/s0168-9452(03)00076-1
Jagadish, S. V. K. (2020). Heat stress during flowering in cereals - effects and adaptation strategies. New Phytologist, 226(6), 1567-1572. doi:10.1111/nph.16429
Janni, M., Gulli, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., & Marmiroli, N. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780-3802. doi:10.1093/jxb/eraa034
Jiang, C., Edmeades, G. O., Armstead, I., Lafitte, H. R., Hayward, M. D., & Hoisington, D. (1999). Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theoretical and Applied Genetics, 99(7-8), 1106-1119. doi:10.1007/s001220051315
Khaliq, A., Iqbal, M. A., & Zafar, M. (2019). Appraising economic dimension of maize production under coherent fertilization in Azad Kashmir, Pakistan. Custos e Agronegocio, 15(2), 243-253.
Lafitte, H. R., & Edmeades, G. O. (1997). Temperature effects on radiation use and biomass partitioning in diverse tropical maize cultivars. Field Crops Research, 49(2-3), 231-247. doi:10.1016/s0378-4290(96)01005-2
Lewis, R. S., & Goodman, M. M. (2003). Incorporation of tropical maize germplasm into inbred lines derived from temperate x temperate-adapted tropical line crosses: agronomic and molecular assessment. Theor Appl Genet, 107(5), 798-805. doi:10.1007/s00122-003-1341-x
Lizaso, J. I., Ruiz-Ramos, M., Rodríguez, L., Gabaldon-Leal, C., Oliveira, J. A., Lorite, I. J., Sanchez, D., Garcia, E., Rodríguez, A. (2018). Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 216, 129-140. doi:10.1016/j.fcr.2017.11.013
Masson-Delmotte, V., Z., P., Pörtner, H.-O., Roberts, D., Skea, J., & Shukla, P. R. (2018). Global warming of 1.5 ℃. An IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the contextof strengthening the global response to the threat of C (pp. 32). Retrieved from https://www.ipcc.ch/sr15/
Mayer, L. I., Savin, R., & Maddonni, G. A. (2016). Heat stress during grain filling modifies kernel protein composition in field-grown maize. Crop science, 56(4), 1890-1903. doi:10.2135/cropsci2015.09.0537
Muchow, R. C., & Carberry, P. S. (1989). Environmental-control of phenology and leaf growth in a tropically adapted maize. Field Crops Research, 20(3), 221-236. doi:10.1016/0378-4290(89)90081-6
Muhammad, N., Muhammad, A., Akram, H. M., Muhammad, A., & Nisar, A. (2016). Genetic effects conferring heat tolerance in a cross of tolerant × susceptible maize (Zea mays l.) genotypes. Frontiers in Plant Science, 7, 729-. doi:10.3339/fpls.2016.00729
Mushayi, M., Shimelis, H., Derera, J., Shayanowako, A. I. T., & Mathew, I. (2020). Multi-environmental evaluation of maize hybrids developed from tropical and temperate lines. Euphytica, 216(5). doi:10.1007/s10681-020-02618-6
Nicolas, M. E., Gleadow, R. M., & Dalling, M. J. (1985). Effect of post-anthesis drought on cell division and starch accumulation in developing wheat grains. Annals of Botany, 55(3), 433-444. doi: 10.1093/oxfordjournals.aob.a086922
Ortiz-Monasterio, J. I., Dhillon, S. S., & Fischer, R. A. (1994). Date of sowing effects on grain yield and yield components of irrigated spring wheat cultivars and relationships with radiation and temperature in Ludhiana, India. Field Crops Research, 37(3), 169-184. doi:10.1016/0378-4290(94)90096-5
Prasad, P. V. V., Bheemanahalli, R., & Jagadish, S. V. K. (2017). Field crops and the fear of heat stress-Opportunities, challenges and future directions. Field Crops Research, 200, 114-121. doi:10.1016/j.fcr.2016.09.024
Rattalino Edreira, J. I., Budakli Carpici, E., Sammarro, D., & Otegui, M. E. (2011). Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 123(2), 62-73. doi:10.1016/j.fcr.2011.04.015
Rattalino Edreira, J. I., Mayer, L. I., & Otegui, M. E. (2014). Heat stress in temperate and tropical maize hybrids: Kernel growth, water relations and assimilate availability for grain filling. Field Crops Research, 166, 162-172. doi:10.1016/j.fcr.2014.06.018
Rattalino Edreira, J. I., & Otegui, M. E. (2012). Heat stress in temperate and tropical maize hybrids: differences in crop growth, biomass partitioning and reserves use. Field Crops Research, 130, 87-98. doi:10.1016/j.fcr.2012.02.009
Rattalino Edreira, J. I., & Otegui, M. E. (2013). Heat stress in temperate and tropical maize hybrids: A novel approach for assessing sources of kernel loss in field conditions. Field Crops Research, 142, 58-67. doi:10.1016/j.fcr.2012.11.009
Richardson, B. A., Chaney, L., Shaw, N. L., & Still, S. M. (2017). Will phenotypic plasticity affecting flowering phenology keep pace with climate change? Global Change Biology, 23(6), 2499-2508. doi:10.1111/gcb.13532
Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16(C), 145-163. doi:10.1016/j.crm.2017.02.001
Sadras, V. O., Vadez, V., Purushothaman, R., Lake, L., & Marrou, H. (2015). Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature. Field Crops Research, 177, 1-8. doi:10.1016/j.fcr.2015.02.024
Sanchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: a review. Global Change Biology, 20(2), 408-417. doi:10.1111/gcb.12389
Schmid, S. F., Stocklin, J., Hamann, E., & Kesselring, H. (2017). High-elevation plants have reduced plasticity in flowering time in response to warming compared to low-elevation congeners. Basic and Applied Ecology, 21, 1-12. doi:10.1016/j.baae.2017.05.003
Schoper, J. B., Lambert, R. J., Vasilas, B. L., & Westgate, M. E. (1987). Plant factors controlling seed set in maize. Plant Physiology, 83, 121-125. doi:10.1104/pp.83.1.121
Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V., Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci, 9, 1705. doi:10.3389/fpls.2018.01705
Shi, W. J., Yin, X. Y., Struik, P. C., Solis, C., Xie, F. M., Schmidt, R. C., Huang, M., Zou, Y. B., Ye, C. R., Jagadish, S. V. K. (2017). High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes. Journal of Experimental Botany, 68(18), 5233-5245. doi:10.1093/jxb/erx344
Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307-327. doi:10.1007/s12571-011-0140-5
Siebers, M. H., Slattery, R. A., Yendrek, C. R., Locke, A. M., Drag, D., Ainsworth, E. A., Bernacchi, C. J., Ort, D. R. (2017). Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agriculture Ecosystems & Environment, 240, 162-170. doi:10.1016/j.agee.2016.11.008
Sinsawat, V., Leipner, J., Stamp, P., & Fracheboud, Y. (2004). Effect of heat stress on the photosynthetic apparatus in maize (Zea maysL.) grown at control or high temperature. Environmental and Experimental Botany, 52(2), 123-129. doi:10.1016/j.envexpbot.2004.01.010
Smith, L. M. (2019). The heat is on: maize pollen development after a heat wave. Plant Physiology, 181(2), 387-388. doi:10.1104/pp.19.01025
Suwa, R., Hakata, H., Hara, H., El-Shemy, H. A., Adu-Gyamfi, J. J., Nguyen, N. T., Kanai, S., Lightfoot, D. A., Mohapatra, P. K., Fujita, K. (2010). High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol Biochem, 48(2-3), 124-130. doi:10.1016/j.plaphy.2009.12.010
Talukder, S. K., Babar, M. A., Vijayalakshmi, K., Poland, J., Prasad, P. V. V., Bowden, R., & Fritz, A. (2014). Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genetics, 15(97), (11 November 2014) - (2011 November 2014). doi:10.1186/s12863-014-0097-4
Thitisaksakul, M., Jiménez, R. C., Arias, M. C., & Beckles, D. M. J. J. o. C. S. (2012). Effects of environmental factors on cereal starch biosynthesis and composition. 56(1), 67-80. doi:10.1016/j.jcs.2012.04.002
Thomas, D., & Franklin-Tong, N. (2013). Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Molecular Plant, 6(4), 1018-1036. doi:10.1093/mp/sst061
Tian, B. J., Zhu, J. C., Nie, Y. S., Xu, C. L., Meng, Q. F., & Wang, P. (2019). Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. Journal of Agronomy and Crop Science, 205(1), 77-87. doi:10.1111/jac.12299
Uribelarrea, M., Carcova, J., Otegui, M. E., & Westgate, M. E. (2002). Pollen production, pollination dynamics, and kernel set in maize. Crop science, 42(6), 1910-1918. doi:10.2135/cropsci2002.1910
Wang, Y. Y, Sheng, D. C., Zhang, P., Dong, X., Yan, Y., Hou, X. F., Wang, P., Huang, S. B. (2020). High temperature sensitivity of kernel formation in different short periods around silking in maize. Environmental and Experimental Botany, 104343. doi:10.1016/j.envexpbot.2020.104343
Wang, Y. Y, Tao, H., Tian, B. J., Sheng, D. C., Xu, C. C., Zhou, H. M., Huang, S. B., Wang, P. (2019). Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 158, 80-88. doi:10.1016/j.envexpbot.2018.11.007
White, W. G., Vincent, M. L., Moose, S. P., & Below, F. E. (2012). The sugar, biomass and biofuel potential of temperate by tropical maize hybrids. Global Change Biology Bioenergy, 4(5), 496-508. doi:10.1111/j.1757-1707.2012.01158.x
Wilhelm, E. P., Mullen, R. E., Keeling, P. L., & Singletary, G. W. (1999). Heat stress during grain filling in maize: Effects on kernel growth and metabolism. Crop science, 39(6), 1733-1741. doi:10.2135/cropsci1999.3961733x
Wolde, L., Keno, T., Tadesse, B., Bogale, G., & Abebe, B. J. E. J. o. A. S. (2018). Mega-environment targeting of maize varieties using AMMI and GGE bi-plot analysis in Ethiopia. 28(2), 65-84.
Yamakawa, H., & Hakata, M. (2010). Atlas of Rice Grain Filling-Related Metabolism under High Temperature: Joint Analysis of Metabolome and Transcriptome Demonstrated Inhibition of Starch Accumulation and Induction of Amino Acid Accumulation. Plant and Cell Physiology, 51(9), 1599-1599. doi:10.1093/pcp/pcq122
Yang, H., Gu, X., Ding, M., Lu, W., & Lu, D. (2018). Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Sci Rep, 8(1), 15665. doi:10.1038/s41598-018-33644-z
Yang, H., Gu, X. T., Ding, M. Q., Lu, W. P., & Lue, D. L. (2018). Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Scientific Reports, 8, 9. doi:10.1038/s41598-018-33644-z
Zhang, P., Chen, G., Geng, P., Gao, Y., Zheng, L., Zhang, S., & Wang, P. (2017). Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Scientia Agricultura Sinica, 50(11), 2061-2070.
Zhou, L. Z., Juranic, M., & Dresselhaus, T. (2017). Germline Development and Fertilization Mechanisms in Maize. Molecular Plant, 10(3), 389-401. doi:10.1016/j.molp.2017.01.012
Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959-1968. doi:10.1093/jxb/erq053