References
1. Ding D, Maeyoshi Y, Kubota M, Wakasugi J, Kanamura K, Abe H. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4composite cathode for high-performance lithium batteries. J. Power Sources. 2020;449:227553.
2. Huynh LTN, Tran TTD, Nguyen HHA, et al. Carbon-coated LiFePO4–carbon nanotube electrodes for high-rate Li-ion battery. J. Solid State Electr. 2018;22(7):2247-2254.
3. Jessl S, Beesley D, Engelke S, et al. Carbon nanotube conductive additives for improved electrical and mechanical properties of flexible battery electrodes. Mater. Sci. Eng., A.2018;735:269-274.
4. Peng T, Guo W, Zhang Y, et al. The Core-Shell Heterostructure CNT@Li2FeSiO4@C as a Highly Stable Cathode Material for Lithium-Ion Batteries.Nanoscale Res. Lett. 2019;14(1):326.
5. Yuan L-X, Wang Z, Zhang W-X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energ. Environ. Sci. 2010;4:269-284.
6. Raj H, Sil A. Energy and power densities of novel composite electrode driven by synergy of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) and single walled carbon nanotubes for lithium-ion battery. J. Power Sources.2020;458:228052.
7. Feng Y. The preparation and electrochemical performances of LiFePO4-multiwalled nanotubes composite cathode materials for lithium ion batteries. Mater. Chem. Phys.2010;121(1):302-307.
8. Wen Q, Qian WZ, Wei F, Liu Y, Ning GQ, Zhang Q. CO2-assisted SWNT growth on porous catalysts.Chem. Mater. 2007;19(6):1226-1230.
9. Liu Y, Li X, Guo H, et al. Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery. J. Power Sources. 2008;184(2):522-526.
10. Sheem K, Lee YH, Lim HS. High-density positive electrodes containing carbon nanotubes for use in Li-ion cells. J. Power Sources. 2006;158(2):1425-1430.
11. Wei W, Guo L, Qiu X, Qu P, Xu M, Guo L. Porous micro-spherical LiFePO4/CNT nanocomposite for high-performance Li-ion battery cathode material. RSC. Adv.2015;5(47):37830-37836.
12. Valentin N P. Carbon nanotubes: properties and application.Mater. Sci. Eng. R. 2004;43(3):61-102.
13. Huang Y, Li Z, Jin S, et al. Carbon nanohorns/nanotubes: An effective binary conductive additive in the cathode of high energy-density zinc-ion rechargeable batteries. Carbon.2020;167:431-438.
14. Yoo J-K, Oh Y, Park T, Lee KE, Um M-K, Yi J-W. Optimization of Carbon Nanotubes as Conductive Additives for High-Energy-Density Electrodes for Lithium-Ion Batteries. Energy Technol.2019;7(5):1800845.
15. Ning G, Zhang S, Xiao Z, Wang H, Ma X. Efficient conductive networks constructed from ultra-low concentration carbon nanotube suspension for Li ion battery cathodes. Carbon. 2018;132:323-328.
16. Zhang M, Ning G, Xiao Z. Binder-Assisted Dispersion of Agglomerated Carbon Nanotubes for Efficiently Establishing Conductive Networks in Cathodes of Li-Ion Batteries. Energy Technol. 2020;8(12):2000589.
17. Punetha V, Rana S, Yoo HJ, et al. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog. Polym. Sci. 2016;67:1-47.
18. Talla JA, Ghozlan AA. Effect of boron and nitrogen co-doping on CNT’s electrical properties: Density functional theory.Chinese. J. Phys. 2018;56(2):740-746.
19. Yuan L, Shen Y, Sun L, et al. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 2016;7:10921.
20. Dong X, Chao S, Wan F, Guan Q, Wang G, Li W. Sulfur and nitrogen co-doped mesoporous carbon with enhanced performance for acetylene hydrochlorination. J. Catal. 2018;359:161-170.
21. Cao Y, Mao S, Li M, Chen Y, Wang Y. Metal/Porous Carbon Composites for Heterogeneous Catalysis: Old Catalysts with Improved Performance Promoted by N-Doping. ACS Catal.2017;7(12):8090-8112.
22. Qi C, Ma X, Ning G, et al. Aqueous slurry of S-doped carbon nanotubes as conductive additive for lithium ion batteries.Carbon. 2015;92:245-253.
23. Hao Y, Qunfeng Z, Fei W, Weizhong Q, Guohua L. Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism. Carbon. 2003;41(14):2855-2863.
24. Qian W, Yu H, Wei F, Zhang Q, Wang Z. Synthesis of carbon nanotubes from liquefied petroleum gas containing sulfur. Carbon.2002;40(15):2968-2970.
25. Huang J-Q, Zhao M-Q, Zhang Q, et al. Efficient synthesis of aligned nitrogen-doped carbon nanotubes in a fluidized-bed reactor.Catal. Today. 2012;186(1):83-92.
26. Choi Ch, Park S, Woo S. Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions. Green Chem.2011;13:406-412.
27. Yang Z, Yao Z, Li G, et al. Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS nano. 2011;6:205-211.
28. Yu X, Park HS. Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon.2014;77:59-65.
29. Huang J-Q, Zhang Q, Zhao M-Q, Wei F. The release of free standing vertically-aligned carbon nanotube arrays from a substrate using CO2 oxidation. Carbon. 2010;48(5):1441-1450.
30. Ning G, Ma X, Zhu X, et al. Enhancing the Li Storage Capacity and Initial Coulombic Efficiency for Porous Carbons by Sulfur Doping. ACS App Mater & Interfaces. 2014;6(18):15950-15958.
31. Ma X, Ning G, Kan Y, et al. Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors. Electrochim. Acta. 2014;150(0):108-113.