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Abstract: A piecewise linear function is not only an extension of a segmented linear function of one variable in the
case of multivariate variables, but also an important bridge to study the approximation of a continuous function by
Mamdani and Takagi-Sugeno fuzzy systems. In this paper, the concepts of a piecewise linear function and subdivision
number are introduced in hyperplane, the analytic expression of the piecewise linear function is given by matrix
determinant, and a new definition of the approximation factor is first proposed by m-mesh subdivision. Secondly, by the
method of generating small polyhedron from three-dimensional cube, the change rule of vertex coordinates of
n-dimensional subdivision polyhedron is studied, the vertex coordinates of small polyhedron are obtained by rotating
component coordinates of their respective coordinate axes. Furthermore, the calculation methods of algebraic cofactor
and matrix norm for the corresponding determinant are given. Finally, according to the method of solving algebraic
cofactors and matrix norms, it is proved that the approximation factor has nothing to do with the subdivision number,
but the approximation precision has something to do with the subdivision number. In addition, the realization process
of a specific binary piecewise linear function approaching a continuous function according to infinite norm in two
dimensions space is given by an example.
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1 Introduction
The core of fuzzy system is to bypass the precise mathematical model to carry out logical reasoning
and calculation for fuzzy information. The main method is to process data information and language
information based on a set of If -Then rules. Generally, Mamdani and T-S fuzzy systems are two kinds
of common models, in which Mamdani fuzzy system is the simplest kind of model, the main
characteristic of which is that the output of each rule is a fuzzy set, while the output of T-S fuzzy
system is a multivariate linear function of the input variables. Although it does not depend on the
accurate mathematical model, it has better logical reasoning and numerical calculation and nonlinear
function approximation ability. In the late 1990s, fuzzy systems as approximators have been widely
used in the fields of system identification, pattern recognition, nonlinear system design and fuzzy
control. See Ref. [1-3]. Especially in 1998, Ying [4] used the linear programming method to study the
general approximation of T-S fuzzy system, and then Zeng [5] gave the sufficient conditions for the
approximation of the fuzzy system. These results provide some new ideas and methods for further
study of the approximation performance of generalized fuzzy systems.
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The essence of a piecewise linear function is an extension of a segmented linear function of one
variable in the case of multivariate variables. It can not only approximate an unknown continuous
function with arbitrary precision, but also play an important role in the approximation theory of fuzzy
system. In 2000, the concept of multivariate piecewise linear function based on the subdivision input
space was first proposed by Prof. Liu in [6], and it is an important bridge to study the approximation of
Takagi- Sugeno fuzzy system to continuous function and integrable function in [7]. Subsequently, in
2001, he studied the approximation performance of generalized Mamdani fuzzy system to a class of
p-integrable functions in [8], for further information. See Ref. [9-11]. In 2006, Zhang and Li [12] proved
that Mamdani fuzzy system is a universal approximator of integrable function by means of a square
piecewise linear function, and provided the necessary conditions for Mamdani fuzzy system to be an
approximator in [13]. In recent years, the convergence of fuzzy transformation and the solution of
fuzzy dual complex linear systems have been studied. See [14,15]. However, these results only take
piecewise linear function as a bridge to complete the proof, and there is no specific method to obtain it,
which naturally limits the wide application of piecewise linear functions.

In 2014, Wang proved the universal approximation of Mamdani fuzzy system by introducing the
piecewise linear function in [16]. In the same year, Peng [17] further gave the construction method and
analytical formula of the piecewise linear function on the basis of Ref. [16], and proposed the solution
formula of corresponding equation system through the matrix determinant. In 2015, Tao et al. [18]
introduced K-quasi-subtraction operation to give the concept of Kp-integral norm, and then discussed
the approximation of piecewise linear functions to a class of integrable functions in 2015. she utilized
the piecewise linear functions as a tool to explore the approximation performance of generalized
Mamdani fuzzy system to Kp-integrable functions in [19]. See [20,22]. In 2017, Wang et al.[21] proposed
that the piecewise linear functions can approximate a continuous function to arbitrary precision in the
sense of maximum norm based on the mesh subdivision of generalized cube. Unfortunately, he only
guessed that the approximation factor part is a constant independent of the subdivision number, but
its proof is not given. The main motivation of this paper is to give a complete proof of them by
calculating the determinant algebraic cofactor and matrix norm.

The remainder of the paper is organized as follows. In Section 2, according to Ref. [14], the concepts
of the piecewise linear function and subdivision number are introduced. Meanwhile, we provide the
analytical expressions of coefficient matrixes of corresponding linear equation system. In Section 3,
the concept of the approximation factor based on the piecewise linear functions is first proposed by
applying m-mesh subdivision of a generalized cube, and the calculation method of algebraic cofactors
and matrix norm for the corresponding determinant are given. In Section 4, we demonstrate that the
approximation factor of a piecewise linear function is independent of the selection of subdivision
number by solving algebraic cofactors and matrix norm. In Section 5, the realization process of the
binary piecewise linear function approaching a continuous function is given by an example analysis,
and it is verified that the approximation factor is independent of the subdivision number, but the
approximation accuracy is related to the subdivision number.

2 Piecewise linear functions
A piecewise linear function is a generalization of a segmented linear function of one variable in the
case of multivariate variables, so it has many excellent properties such as zero outside the compact set
of nR , uniformly continuous on the compact set, existence of unilateral partial derivative and
bounded. Next, we will give some related concepts of n -variables piecewise linear functions, where
the word " n -variables" can be omitted.
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In this paper, we use the symbols nR and N to represent the n -dimensional Euclidean space
and the set of natural numbers, respectively. For any 0a  , let

1 2( ) {( , , , ) 0 ; 1,2, , }n
n ia x x x x a i n       R ,

then ( )a is called the generalized cube with side length a in nR , and it is abbreviated to

( ) [0, ] [0, ] [0, ] [0, ]na a a a a     .

Definition 2.1 [1 6 , 2 1 ] Let an n -variables continuous function : nS R R . If the following
conditions ① to ② are satisfied:

1 There is a real number 0a  such that S is always zero outside the generalized cube ( )a ;

2 If there is a group of n-dimensional polyhedrons 1 2{ , , , } ( )Ns
a      with

1
( )N

j
s
j a

  U ,

such that S takes n -variables linear function on each small polyhedron ( 1, 2, , )j sj N     , that
is to say, S can be expressed as

1
( )

n

i i j
i

jS x x 


   , for all 1 2( , , , )n jx x x x   , 1,2,j  , sN   .

Then S is called a piecewise linear function on nR , where i j and j are constants, 1,2, ,i n  .

In fact, the piecewise linear functions play an important role in studying the approximation of

Mamdani fuzzy system and T-S fuzzy system. This is because the fuzzy system can approximate some

piecewise linear function, and the piecewise linear function can approximate a continuous or integrable

function, thus achieving the fuzzy system approximating to some unknown continuous function.

Definition 2.2 Let 1 2( , , , ) n
nb b b b  R , 1 2( ) { ( , , , ) , }n

nx x x x x b       R , then

( ) is call a   hyperplane on nR , where real number  R , symbol    is inner product.

Clearly, the hyperplane ( ) can also be expressed in the form of linear combination of multivariate

variables, that is,

1 2 1 1 2 2( ) {( , , , ) + + + = , , 1,2, , }n
n n n ix x x b x b x b x b i n        R R .

Definition 2.3 Let input space be ( ) [0, ]na a  ( 0a  ), and ( )a is divided into im small

closed intervls along each axis ix ( 1,2, ,i n  ) in turn, [0, ]a is divided into [0, ],[ , 2 ],i i ia m a m a m

,[ ( 2) , ( 1) ], [ ( 1) , ]i i i i i ia m m a m m a m m a   .If all subdivision points can be uniformly listed as
i
j it ja m , 1,2, , ij m  , then im is called an isometry subdivision number of the axis ix in the

input space ( )a , also referred to as im is the subdivision number on the ix axis.

Note 1 For simplicity, this paper always assumes that the same subdivision number is taken on

each axis ix , i.e., im m , 1, 2, ,i n    . In this case, the isometry subdivision of input space ( )a

is also called m mesh subdivision. Under this convention, it is not difficult to obtain the generalized

cube ( )a which can be decomposed into nm generalized small polyhedrons j with right angle

side length as a
m , and

1
( ) j

nm
ja


  U .
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Construction of a piecewise linear function S : According to Refs. [20,21], the input space ( )a is
divided into m-mesh . Let

1 2 ni i i be a small n  dimensional polyhedron after subdivision, and

1 2( , , , )k k k
k nx x x x    is denoted as the k -th vertex coordinate of n -dimensional small polyhedron

1 2 ni i i after subdivision, and suppose that these 1n  vertices are not on the same hyperplane, so as

to ensure that the following determinant | | 0nD  . If 1n  vertices coordinates of
1 2 ni i i are briefly

note as 1 2 1, , , ,n nx x x x   
   in the specified order, then each ( )kf x can take the corresponding value

under the action of f , and the vertices coordinates of each small polyhedron
1 2 ni i i in 1nR can be

expressed as follows:
1 1 1
1 2 1( , , , , ( ) )nx x x f x   , 2 2 2

1 2 2( , , , , ( ) )nx x x f x   ,    , 1 1 1
1 2 1( , , , , ( ) )n n n

n nx x x f x   
   . (1)

Let the hyperplane S be determined by 1n  vertices of form (1) of
1 2 ni i i in 1nR , and the

analytic expression of the linear function S is expressed as

1 2 1 2 1 2

1 2
1 2( )

n n n

n
i i i i i i n i i iS x b x b x b x         , (2)

where
1 21 2( , , , )

nn i i ix x x x    , 1, 2, ,ji m   ; 1,2, ,j n  . In addition, because the hyperplane

1 2
( )

ni i iS x is formed by cutting surface ( )f x in the sense of m mesh, and 1n  vertices kx
 on

1nR are the common intersection of hyperplane
1 2

( )
ni i iS x and surface ( )f x , it is necessary for

each vertex kx
 coordinate to have

1 2
( ) ( )

ni i i k kS x f x 
  , 1,2, , , 1k n n   .

Then, by substituting the coordinates of 1n  vertices of
1 2 ni i i into formula (2), a set of

hyperplane linear equations on 1nR can be obtained as follows:

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 1 2 1 1
1 2 1

1 2 2 2 2
1 2 2

1 2
1 2

1 1 2 1 1
1 2 1

( )

( )

( )

( )

n n

n n

n n

n n

n
i i i n i i i

n
i i i n i i i

n n n n
i i i n i i i n

n n n n
i i i n i i i n

b x b x b x f x

b x b x b x f x

b x b x b x f x

b x b x b x f x


















   
 

        

        



       

       

LLLLLLL






. (3)

Because all vertex coordinates of each small polyhedron
1 2 ni i i in 1nR shown in formula (1)

are known in the sense of m mesh subdivision. Therefore, all coefficients
1 2 1 2

1 2{ , , , , }
n n

n
i i i i i ib b b    

in equation group (3) can be regarded as unknown quantities, and then the values of these coefficients

can be obtained by solving equation group (3). According to Ref. [21], the analytic expression of the
piecewise linear function S on ( )a is

1 2 1

1 2

1 2 1

1 2

1 2 1 2 1 2

| | | | | | | |
,

| | | | | | | |
( , , , ) ( , , , ) , , , {1, 2, , }

0, Otherwise
n

n n
i i i i

n
n n n n

n n i i i n

n n
D D D D

x x x
D D D D

S x x x x x x i i i m








      


              




. (4)
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Here, the coefficients | | | |ji
j nD D ( 1, 2, , , 1j n n     ) of the piecewise linear function S on each

hyperplane
1 2 ni i i are given in the following matrix determinant form, i.e.,

1 1
1 2

2 2
2 2

1

2
1 1

1 2

1

( ) 1
( ) 1

| |
( ) 1
( ) 1

n

n

n n
n n

n n
n n

i

f x x x
f x x x

D
f x x x
f x x x







  




L
L

M M M M
L
L

,

1 1
1 1
2 2
1 2

2

1
1 1

1 1

2

( ) 1
( ) 1

| |
( ) 1
( ) 1

n

n

n n
n n

n n
n n

i

x f x x
x f x x

D
x f x x
x f x x







  




L
L

M M M M
L
L

,

…………………………………,
1 1
1 2 1
2 2
1 2 2

1 2
1 1

1 2 1

( ) 1
( ) 1

| |
( ) 1
( ) 1

n

n n
n

n n
n

ni

x x f x
x x f x

D
x x f x
x x f x







  




L
L

M M M M
L
L

, | |nD 

1 1 1
1 2
2 2 2
1 2

1 2
1 1 1

1 2

1
1

1
1

n

n

n n n
n

n n n
n

x x x
x x x

x x x
x x x  

L
L

M M M M
L
L

. (5)

Moreover, by applying m mesh subdivision, it is not difficult to know that the vertex coordinates

of each small polyhedron
1 2 ni i i can be written as 1 2( ), , ,k

na a a
m m m
i i ix   , and the index of each

coordinate axis is 1 2, , , {1,2, , }ni i i m     .See [21,22].

3 Approximation of Mamdani fuzzy system
With the specific analytical expression of a piecewise linear function S , it is natural to think of
whether piecewise linear function can approximate to a continuous function with any precision?
Regarding to this question, an affirmative answer and a detailed proof have been given in Ref. [21], and
it is studied that Mamdani fuzzy system can not only approximate a piecewise linear function, but also
take the piecewise linear function as a bridge to prove that Mamdani fuzzy system can approach a
continuous function on a compact set with any precision. Refer to Ref. [21].

In fact, Mamdani fuzzy system is one of the simplest fuzzy system models. Its main feature is that
each rule's subsequent output is a fuzzy set, while the subsequent output of T-S fuzzy system is a
multivariate linear function about input variables. Next, we first review some related knowledge of
Mamdani fuzzy system, and assume that the rule base is composed of the following fuzzy rules

1 2 ni i iR  : If 1x is
1

1
iA , 2x is

2

2
iA ,    , nx is

n

n
iA , then u is

1 2 ni i iC L .

The input-output relationship of Mamdani fuzzy system with single point fuzzification, product
reasoning machine and central average fuzzification is as follows:

1 2

1 2

1 2

1 2

1 2
1 1 1 1

1 2

1 1 1 1

( )
( , , , )

( )

n

n

n

n

k

k

nN N N
k

k i i in
i i i k

n nN N N
k

j
i i i k

i

i

A x y
F x x x

A x


   

   

 
     

    
 

     
 

  

  
, (6)
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where 1 2 1 2( , , , ) n
n nx x x x U U U      R is an input variable, 1 2

1 2{ , , , }
n

n
i i iA A A is a family of

antecedent fuzzy sets of Mamdani fuzzy system corresponding to the ji -th coordinate axis, i.e.,
( )

j

j
i jA F U , 1,2, ,j n  , 1,2, ,j ji N  , and 1 2 ni i iC L is a consequent fuzzy set corresponding to

rule 1 2 ni i iR  in the output domain V   , the ,1 2i i iny  is the center of the consequent fuzzy set

1 2 ni i iC L , the real number u is the output variable on V . See [21].
In addition, it is not hard to see that the total number of all possible fuzzy rules in Mamdani fuzzy

system is 1 2 nM N N N   , and
1 2

1 1 1 2 2 2
1 2 1 2{ , , , }, { , , , },N NA A A A A A  1 2,{ , , , }

n

n n n
NA A A  are the

antecedent fuzzy sets on the ji -th coordinate axis, respectively. For simplicity, 1 2 nN N N m   
is chosen in this paper. See [21,22].

Lemma 1 [21] Let S be a piecewise linear function of form (4) on the generalized cube ( )a ,
where 0a  , then, for arbitrary 0  , there is a 0m N such that Mamdani fuzzy system mF of

form (6) determined by subdivision number m satisfies || ||mF S   when 0m m .
In accordance with the properties of determinant, it is not difficult to rewrite the above matrix

determinant (5) as follows:

1 2 1 2
1 2 2 2

2 3 2 3
1 2 3 2 2

1 1
1 2 2

1

( ) ( )
( ) ( )

| |

( ) ( )

n n

n n

n n n n
n n n n

i

f x f x x x x x
f x f x x x x x

D

f x f x x x x x

 

 

   


   
   



   
M M M

,

1 2 1 2
1 1 1 2
2 3 2 3

2 1 1 2 3

1 1
1 1 1

2

( ) ( )
( ) ( )

| |

( ) ( )

n n

n n

n n n n
n n n n

i

x x f x f x x x
x x f x f x x x

D

x x f x f x x x

 

 

   


   
   



   
M M M

,

……………………………………,

1 2 1 2
1 1 2 2 1 2
2 3 2 3
1 1 2 2 2 3

1 1
1 1 2 2 1

( ) ( )
( ) ( )

| |

( ) ( )

n

n n n n
n n

ni

x x x x f x f x
x x x x f x f x

D

x x x x f x f x

 

 

   


   
   



   
M M M

,

1 2 1 2 1 2
1 1 2 2
2 3 2 3 2 3
1 1 2 2

1 1 1
1 1 2 2

| |

n n

n n
n

n n n n n n
n n

x x x x x x
x x x x x x

D

x x x x x x  

   
   



   
M M M

. (7)

Note 2 According to the mmesh subdivision, the difference of all adjacent coordinate

components in these determinants on the same coordinate axis 1j j
i ix x  can only be a

m or zero.

If these determinants (except f) are expanded in column 1, column 2, …, column n , and then n
algebraic cofactors of 1n  order m can be obtained by combining and sorting out the factors

1( ( ) ( ))i if x f x 
 item by item, where the 1n order algebraic cofactors corresponding to factor

1 2( ( ) ( ))f x f x  are simply expressed as 1 1 1
1 2| |,| |, ,| |;nB B B factor 2 3( ( ) ( ))f x f x  corresponds to

2 2 2
1 2| |,| |, ,| |nB B B .By analogy, the factor 1( ( ) ( ))i if x f x 

 corresponds to the 1n  order algebraic

cofactors are 1 2| |,| |, ,| |, ,| |i i i i
k nB B B B  , where | |ikB represents the algebraic cofactor of the i-th

determinant, the column k and the i -th element. For example, 1
1| |B is a cofactor of 1

1
| |iD , 1

2| |B

and 2
2| |B are cofactors of 2

2
| |iD , 2| |nB is a cofactor of | |n

niD , and
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2 3 2 3
2 2

1 2
1

1 1
2 2

| | ( 1)
n n

n n n n
n n

x x x x
B

x x x x 

  

  
  M M ,

2 3 2 3
1 1

1 3
2

1 1
1 1 1 1

| | ( 1)
n n

n n n n

x x x x
B

x x x x 

    

    
  M M ,

1 2 1 2
1 1

2 4
2

1 1
1 1

| | ( 1)
n n

n n n n
n n

x x x x
B

x x x x 

  

  
  M M ,

1 2 1 2
1 1 1 1

2 2

1 1
1 1 1 1

| | ( 1)
n n

n
n

n n n n
n n

x x x x
B

x x x x

 


 
 

  

  
  M M .

It should be noted that in the sense of isometric subdivision, the vertex coordinates of each small

polyhedron
1 2 ni i i as 1 2( ), , ,k

na a a
m m m
i i ix   . Hence, the difference 1j j

i ix x  of all adjacent

coordinate components on the same coordinate axis in these algebraic cofactor is only a
m or zero.

Definiton 3.1 Let matrix A be n square array, let || || | ( | | ) |A A , then || ||A is called matrix

norm of A , that is, matrix norm || ||A is absolute value of determinant of A .Obviously, the matrix

norm of any square array A always satisfies || || 0A  .

Lemma 2 [21] Let f be continuous function on compact set ( ) na R , ( ; ( ) )x f x is a given

data pair, but the analytic expression of f is unknown. Then, for any 0  , there is a subdivision

number mN and the piecewise linear function S of form (4), which satisfies the requirements in

the sense of infinite norm S f


 
1 1

|| || 1
|| ||

n n
i
k

i kn

a B
m D


 

 
 

 
 , where the infinite norm is

defined as
( )

sup ( ) ( )
x a

S f S x f x



   .

It is not difficult to see that Lemma 1 and Lemma 2 can be utilized to obtain the following Lemma 3.

That is to say, Mamdani fuzzy system mF of form (6) can indeed approximate f to arbitrary accuracy

with respect to infinite norm.

Lemma 3 [21] If f be a continuous function on compact set ( ) na R , then, for arbitrary 0  ,
there is a subdivision number 0m N and the Mamdani fuzzy system of form (6), such that

|| ||mF f   when 0m m , that is, mF can approximate f to any precision by infinite norm.

However, it must be said that it is a pity, because the Ref. [21] does not give strict proof in theory

that the sum factor
1 1

|| || 1
|| ||

n n
i
k

i kn

a B
m D  

 
 

 
 in Lemma 2 is a constant independent of the

subdivision number m , but simply expounds it in language. Thus, in this paper we will prove that the
sum factor is a constant independent of subdivision number m on nR .

Definition 3.2 Assume that matrix | |ikB ( ,i k  1,2, ,n   ) are the corresponding 1n  order

algebraic cofactors as described above, and || ||i
kB and || ||nD are matrix norms, then the expression

1 1

|| || 1
|| ||

n n
i
k

i kn

a B
m D  

 
 

 
 is called the approximation factor of f S


 , also referred to as the

approximation factor of a piecewise linear function S .
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In fact, the expression of the approximation factor is more complex with the increasing dimension

of the input variable n . Moreover, the isometric subdivision of the generalized cube ( )a no longer

exists when 4n  , which makes it difficult to find the 1n  order algebraic cofactors.

4 Approximation factor and subdivision number
According to Lemma 2, only if the approximation factor is a constant independent of the subdivision

number, the piecewise linear function S has the approximation, so it is very important whether the
approximation factor is a constant independent of the subdivision number. This conclusion is only a
conjecture in Ref. [21], but has not been proved in detail. Therefore, in this paper we will prove that the

approximation factor is indeed a constant independent of the subdivision number m on nR .
In order to verify whether the approximation factor is constant, it is necessary to determin the

vertex coordinates of each small polyhedron
1 2 ni i i in nR and its order, and then find the 1n

order algebraic cofactor and its matrix norm || ||i
kB corresponding to factor 1( ( ) ( ))i if x f x 


according to Note 2. Next, take 3n  as an example to continue to explore the vertex coordinates of
small tetrahedron

1 2 ni i i on nR , and its sorting problem. See Fig. 1.

Fig.1 Subdivision image of a small cube with a side length of a
m when 3n 

In fact, for any input variable 3
1 2 3( , , ) [0, ]x x x a , there are the indexes 1 2 3, ,i i i N , such that

1 2 31 2 3( , , ) i i ix x x  . Suppose all coordinates of four vertices of the small tetrahedron
1 2 3i i i are

1
1 2 31 1( ) ( )

( , , )
i a i a i a
m m mx
   , 2

1 2 31( )
( , , )
i a i a i a
m m mx

  , 3
1 2 31( )

( , , )
i a i a i a
m m mx
  and 4

1 2 31 1 1( ) ( ) ( )
( , , )
i a i a i a
m m mx
   

respectively., as shown in Fig.1.
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Note 3 It is not difficult to find from Fig. 1 that if 1x
 is taken as the base point, the order of

vertices 1x
 and 2 3 4, ,x x x   conforms to the right-hand rule, that is, 1x

 is taken as the base point, and

the bending direction of the four fingers of the right hand is from * *
1 2x x
uuur

to * *
2 3x x
uuur

, so the order of

2 3 4, ,x x x   is determined in turn. According to this sort, we find that the corresponding coordinates

have the following rules: the straight-line distance of vertices 1x
 and 2 3 4, ,x x x   along their respective

coordinate axes is a
m , where the difference between the 2x

 -first component, 3x
 -second component

and 4x
 -third component of vertices and the 1x

 -corresponding coordinate component are all a
m ,

while the other coordinate components have no change (difference is zero), that is, the difference
between the components of adjacent vertices on the same coordinate axis is a

m or zero.

Similarly, the method can be extended to n -dimensional polyhedron. Specific method: firstly,
select a vertex on n -dimensional polyhedron

1 2 ni i i as the base point
1 2 ni i ix 

 , let the base point be

1 2

11 2( , ), , ,
ni i i

n naa a a
m m m m
i i i ix 

  , and then rotate each coordinate component j a
m
i

to
( 1)j a
m
i 

or
( 1)j a
m

i 
(

1,2, ,j n  ) along its coordinate axis ji in turn. If the other components are invariant, then the total

1n vertex coordinates of
1 2 ni i i can be obtained.

Thorem4.1 Let f be a continuous function on compact set ( ) na  R ,
1 2 ni i i be the small

polyhedron of the above n-dimensional subdivision, and the coordinates of all vertices are denoted as

1 2

1 2( ),, , ,
ni i i

na a a
m m m
i i ix    1 2, , , {1, 2, , }ni i i m      . Matrix determinant | |ikB is the algebraic cofactor

of 1n  order defined in Note 2, ,i k  1,2, ,n , || ||i
kB and || ||nD are matrix norms, then the

approximation factor
1 1

|| || 1
|| ||

n n
i
k

i kn

a B
m D  

 
 

 
 is independent of the subdivision number m .

Proof According to Ref. [19], for any input variable 1 2( , , , ) ( )nx x x a     , there is m--mesh

subdivision and index 1 2, , , {1,2, , }ni i i m   on cube ( )a , such that 1 21 2( , , , )
nn i i ix x x   , where

the right angle side length of each small polyhedron
1 2 ni i i is a

m .

Without losing generality, we can choose vertex 3 11 2 (1 ) (1 )(1 )(1 )( , , , , , )n na aa a a
m m m m m

ii i i i   as the base

point of
1 2 ni i i , the other n vertex coordinates are

3 11 2 (1 ) (1 )(1 )( , , , , , )n na aa a a
m m m m m

ii i i i   , 1 3 12 (1 ) (1 )(1 )( , , , , , )i na i a i a aa
m m m m m
i i i   , 3 11 2 (1 )(1 )(1 )( , , , , , )n na aa a a

m m m m m
ii i i i  ,

, 3 11 2 (1 ) (1 )(1 ) 1(1 ) ( )( , , , , , )nna aa a a
m m m m m

ii i ii    .
By Note 3, these vertex coordinates are directly substituted into the formula (7) to obtain

0 0 0 0
0 0 0

0 0 0
= ( ) ( )

0 0 0 0
0 0 0

n n
n n

a
m
a a
m m

a a
m m a a

m m

a
m
a a
m m

D D

  
   

   
   

  
    

M M M M M
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According to Note 2, the difference 1j j
i ix x  of adjacent coordinate components on the same

coordinate axis in matrix determinant 1
1

| |iD , 2
2

| |iD ,  , | |n
niD can only be a

m or zero. If the above

vertex coordinates are directly substituted into formula (7), it can be obtained immediately.
* *
1 2
* *
2 3
* *

1 3 4
* *
4 5

* *
+1

1

( ) ( ) 0 0 0 0
( ) ( ) 0 0 0
( ) ( ) 0 0

| | = ,
( ) ( ) 0 0 0

( ) ( ) 0 0n n

i

a
m
a a
m m

a
m

a a
m m

f x f x
f x f x
f x f x

D
f x f x

f x f x

 
 
  
  

   
M M M M M

* *
1 2
* *
2 3
* *

2 3 4
* *
4 5

* *
+1

2

( ) ( ) 0 0 0
( ) ( ) 0 0 0

0 ( ) ( ) 0 0
| | = ,

0 ( ) ( ) 0 0

0 ( ) ( ) 0n n

i

a
m
a
m

a
m
a
m

a a
m m

f x f x
f x f x
f x f x

D
f x f x

f x f x

 
  

 
  

   
M M M M M

* *
1 2
* *
2 3
* *

3 3 4
* *
4 5

* *
+1

3

0 ( ) ( ) 0 0
( ) ( ) 0 0

0 ( ) ( ) 0 0
| | = ,

0 0 ( ) ( ) 0 0

0 0 ( ) ( )n n

i

a
m
a a
m m

a
m

a a
m m

f x f x
f x f x
f x f x

D
f x f x

f x f x

 
  

  
 

   
M M M M M

……,

* *
1 2
* *
2 3
* *
3 4
* *
4 5

* *
+1

0 0 0 ( ) ( )
0 0 ( ) ( )

0 0 ( ) ( )
| |= .

0 0 0 ( ) ( )

0 0 0 ( ) ( )

n

n n

ni

a
m
a a
m m

a a
m m

a
m

a
m

f x f x
f x f x
f x f x

D
f x f x

f x f x

 
  

  
  

  
M M M M M

By Note 2, the 1n  order algebraic cofactors are obtained by expanding 1

1
| |iD with column 1, i.e.,

1
1

1

0 0 0
0 0

| | 0 0 0 ( ) ,

0 0

n

a
m
a a
m m

a a
m m

a a
m m

B 

  
   

      

    
M M M M

2
1

0 0 0 0
0 0

0 0 0| | 0,

0 0

a a
m m

a
m

a a
m m

B

  
   

    

    
M M M M

3
1

0 0 0 0
0 0 0

0 0 0| | 0, ,

0 0

a
m

a
m

a a
m m

B

  
  

    

    

     
M M M M

1

0 0 0 0
0 0 0

0 0| | 0

0 0 0

n

a
m
a a
m m

a
m

B

  
   

    

  
M M M M

.

In the same way, the 1n  order algebraic cofactors are obtained by expanding 2

2
| |iD with

column 2 , that is,

1 1
2

0 0 0
0 0 0

| | 0 0 0 ( )

0 0

n

a
m

a
m
a a
m m

a a
m m

B 

   
  

     

    
M M M M

, 2 1
2

0 0 0
0 0 0

| | 0 0 0 ( )

0 0

n

a
m

a
m
a a
m m

a a
m m

B 

  
  

      

    
M M M M

,
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3
2

0 0 0
0 0 0

| | 0 0 0 0

0 0

a
m
a
m

a
m

a a
m m

B

  
   

     

    
M M M M

,…… ,
2

0 0 0
0 0 0

| | 0 0 0 0

0 0 0

n

a
m
a
m

a
m

a
m

B

  
   

    

  
M M M M

.

Analogously, the determinant | |n
niD is expanded by column n to obtain 1n  order algebraic

cofactors as follows:

1

0 0 0 0
0 0 0 0
0 0 0 0

| | 0 0 0 0 0

0 0 0 0
0 0 0 0 0

n

a a
m m

a a
m m

a a
m m

a
m

a a
m m

a
m

B

 
 

 
 

 
 


M M M M M M

, 2

0 0 0 0 0
0 0 0 0
0 0 0 0

| | 0 0 0 0 0

0 0 0 0
0 0 0 0 0

n

a
m

a a
m m

a a
m m

a
m

a a
m m

a
m

B

  
   

   
   

   
   


M M M M M M

1 1( 1) ( )n na
m

  ,
2 1( 1) ( )n na
m

   ,

3

0 0 0 0 0
0 0 0 0

0 0 0 0
| | 0 0 0 0 0

0 0 0 0
0 0 0 0 0

n

a
m
a a
m m

a a
m m

a
m

a a
m m

a
m

B

  
 

 
 

   
 


M M M M M M

,……,

0 0 0 0 0
0 0 0 0

0 0 0 0
| | 0 0 0 0

0 0 0 0 0
0 0 0 0

n
n

a
m
a a
m m

a a
m m

a a
m m

a
m
a a
m m

B

  
   

   
   

  
   


M M M M M M

.

3 1=( 1) ( ) ,n na
m

  1( )na
m

 .

In summary, after the determinant 1

1
| |iD is expanded according to the column 1, except for the

1n  order algebraic cofactor 1 1
1| | ( )na

mB   , all other 1n  order algebraic cofactors are zero, that

is, 1| | 0iB  , 2,3, ,i n  ; the 2

2
| |iD is expanded according to the column 2 , except for the 1n 

order algebraic cofactors 1 1
2| | ( )na

mB  and 2 1
2| | ( )na

mB   , all other 1n  order algebraic

cofactors are zero, i.e., 2| | 0iB  , 3,4, ,i n  . Similarly, the 3

3
| |iD is expanded as column 3 , except

for 1 1
3| | ( )na

mB   , 3 1
3| | ( )na

mB   and 2
3

1| | ( )na
mB  , all others have 4 5

3 3 3| | | | | | 0nB B B    .

Generally, the determinant | |n
niD is expanded by column n , we always have

1 1 1| | ( 1) ( )n n
n

a
mB    , 2 2 1| | ( 1) ( )n n

n
a
mB    , 3 3 1| | =( 1) ( )n n

n
a
mB   ,  , 1| | ( )n n

n
a
mB  .

Finally, by Definition 3.2 we can immediately get that

   1 2 1 2
1 1 1 2 2 2

1 1
|| || || || || || || || || || || || || ||

|| || || ||

n n
i n n
k

i kn n

a aB B B B B B B
m D m D 

      

   1 2 1 2
3 3 3|| || || || || || || || || || || ||n n

n n nB B B B B B      
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1 1 1 1( ) 2( ) 3( ) ( )
|| ||

n n n n

n

a a a a
m m m m

a n
m D

          

1( 1) ( )
( ) 2

n
n

a
m

a n n
m a m




( 1)
2

n n .

Hence, the approximation factor is
1 1

( 1) 2
2|| ||+1=

|| ||

n n
i
k

i kn

n na B
m D  

  , and it is indeed a constant

independent of the subdivision fraction m .

Actually, although the subdivision number m of input space ( )a is independent of the

approximation factor, the subdivision number m is closely related to the corresponding piecewise
linear function, Mamdani fuzzy system and approximation accuracy. For example, piecewise linear
functions are mainly constructed by the subdivision of input space. Generally speaking, the larger the
m value, the finer the subdivision, the better the approximation accuracy, but the greater the
complexity. Conversely, if the m value is too small, although the complexity is reduced, it may not
achieve the required approximation accuracy . See Fig. 2 below.

In addition, from the construction of Mamdani fuzzy system (6), the antecedent fuzzy sets

1 2

1 1 1 2 2 2
1 2 1 2{ , , , }, { , , , }N NA A A A A A  and

3

3 3 3
1 2{ , , , }NA A A on the three coordinate axes also depend on

the subdivision number m , but in this paper we assume that there is always 1 2 3N N N m   .

5 An example analysis
In this part, the important role of approximation factor of a piecewise linear function S is illustrated
through a practical example. For simplicity, we may extend the condition of the given binary pair
(( , ) ; ( , ))x y f x y to the analytic expression of the known function ( , )x yf , and assume that the binary

function ( , )f x y is a continuous differentiable function.

An Example Let 2n  , 1a  ,
2 2( ) 40( , ) x yf x y e  , ( , ) [0,1] [0,1]x y   , and the precision of a

given piecewise linear function S approximate to f is 0.1  . Please give the realization process

of this approximation by the approximation factor.
In fact, by Definition 2.3 and m  mesh subdivision of Note 1, for arbitrary ( , ) [0,1] [0,1]x y   ,

there are 1 2,i i N such that 1 2
( , ) i ix y  , and the length of the right angle side of triangle 1 2i i is

1am m , where m is a subdivision number waiting to be determined, and each component

coordinate on 1 2i i meets 1 2
1| | mx x  and 1 2

1| | my y  . See Fig. 1 or Fig. 2 below.

Obviously, the function
2 2( ) 40( , ) x yf x y e  is uniform continuity on closed set 1 2i i , then, for

arbitrary 0  , there is 0  , such that 1 1 2 2( , ) ( , )f x y f x y   when for any
1 21 1 2 2( , ), ( , ) i ix y x y 

with 1 1 2 2|| ( , ) ( , ) ||x y x y   . Now, if it is satisfies

2 2 2
1 1 2 2 1 2 1 2

21|| ( , ) ( , ) || ( ) ( ) 2( )x y x y x x y y m m         , (8)

http://www.iciba.com/obvious
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then, we only need to select the natural number with the subdivision number 2m  .

Next, we will determine the value of the minimum subdivision number m according to the path

m     in turn with approximation accuracy 0.1  .

Firstly, for the above 0  , 2n  and given accuracy 0.1  , by Theorem 4.1 and Lemma 2, if
2 2

1 12

( 1) 2
2|| || 1 4 0.1

|| ||
i
k

i k

n naS f B
m D

   


 

  
       

 
  .

The solution is 0.1 4 1 40   . So we may take 1 40  .

Secondly, as ( , )f x y is a continuous differentiable function on the closed set 1 2i i , and the partial

derivatives of f satisfy
2 2( ) 401 1

20 20
x ye

f x
x

 
 


and

2 2( ) 401 1
20 20

x ye
f y
y

 
 


.

By the binary Taylor formula, we can expand ( , )f x y at point 1 1( , )x y in the first order, that is,

for all
1 2

( , ) i ix y  , there is (0,1)  , such that

   1 1 1 1 1 1 1 1
1 1 1 1

( ), ( ) ( ), ( )
( , ) ( , ) ( ) ( )

f x x x y y y f x x x y y y
f x y f x y x x y y

x y
            

    
 

.

Let 2 2( , ) ( , )x y x y , then we have

   1 2 1 1 2 1 1 2 1 1 2 1
2 2 1 1 2 1 2 1

( ), ( ) ( ), ( )
( , ) ( , ) ( ) ( )

f x x x y y y f x x x y y y
f x y f x y x x y y

x y
            

    
 

   1 2 1 1 2 1 1 2 1 1 2 1
2 1 2 1

( ), ( ) ( ), ( )f x x x y y y f x x x y y y
x x y y

x y
            

   
 

Especially, when 1 1x y   and 2 2x y   , it is not hard to get that

2 2 1 1( , ) ( , )f x y f x y    2 1 2 1
1 1
20 20 10

x x y y         .

According to the uniform continuity of
2 2( ) 40( , ) x yf x y e  on 1 2i i , for 1 40  0 , if

2 2 1 1( , ) ( , )f x y f x y
1

10 40
    .

The solution is 1 4  , we take 1 4  . Finally , we can gain the subdivision number based on

formula (8)
2 4 2 5.656m


  . Thus, the minimum subdivision number is 6m .

Next, we will construct a specific bivariate piecewise linear function on 2R with the subdivision

number 6m  as follows:

Firstly, the compact set [0,1] [0,1] (1)   is divided into 6-meshes, and 36 small squares with

side length of 1 6 are obtained. In order to satisfy the rule of three points to determine a plane, then

divide each small square into two parts with the diagonal, so as to get 72 small isosceles right angle

triangles. We denote they as 1 2i i , where 1 21,2, ,6; 1,2, ,12i i L L .See Fig. 2.
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Fig. 2 6-mesh subdivision graph of (1) when 2n 

It is not difficult to see that the vertex coordinates of all these small triangles can be determined.
For example,

1,2
1 1 1: (0,0), ( ,0), ( , )
6 6 6

 ; 2,3
1 1 1 1 1 1: ( , ), ( , ), ( , )
6 6 6 3 3 3

 ; 6,12
5 5 5: ( , ), (1, ), (1,1)
6 6 6

 .

Now, the vertex coordinates of the surface of each triangular prism that each small triangle ,j i

on 3R under the action of f are also determined in turn. For example, the vertex coordinates of the

triangular prism of 2,3 on 3R are in turn
1 5 1

720 1440 1801 1 1 1 1 1( , , ), ( , , ), ( , , )
6 6 6 3 3 3

e e e
  

.

According to the formulas (5) and (7), it is not difficult to obtain the plane equation determined by
these three points. The specific steps are as follows:

2

1 1 1 1
6 6 6 6
1 1 1
6 3 6
1 1 1 1
3 3 6 6

1 1
11 0 0
36

1 0

D     ,

1
720

5 5 1
3 1440 1440 180
21

1
180

1
6

1
3

1
3

1

1 11
6 6

1

e

D e e e

e



  



   ;

1
180

1
720

5 1 5
3 1440 720 1440
22

1
6

1
6

1
3

1

1 11 ,
6 6

1

e

eD e e

e




  
  

1
720

5 1 1
3 1440 180 720
23

1
180

1 1
6 6

1 1
6 3

1 1
3 3

1 1 .
36 18

e

D e e e

e



  



  

We will immediately obtain the plane equation determined by 2,3 in 3R with plugging these

determinant values into the formula (4), it's not hard to get that
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1 5 5 1 1 1
180 1440 1440 720 720 180

2,3( , ) 6 +6 2S x y e e x e e y e e
        

       
   

, 2,3( , )x y 

Similarly, the analytic expression of each piecewise linear function of 1,1 1,2 2,1 6,1, , , , , ,    

6,12, in 3R can be determined in turn. Therefore, the analytic expression of the piecewise linear

function ( , )S x y on [0,1] [0,1] as follows:
1
720

1 1
1440 1440

1,1

1 1 1
1440 720 1440

1,2

1 5 5 1 1 1
180 1440 1440 720 720 180

2,3

61
1440

6 6 1 1, ( , ) ,

6 1 6 1, ( , ) ,

( , )
6 +6 2 , ( , ) ,

6

e e x e y x y

e x e e y x y

S x y
e e x e e y e e x y

e

  

  

     



   
       

   
   

       
   


   

       
   

LL

LL
1 61 15 5
20 1440 20144 144

6,126 6 5 , ( , ) .e x e e y e e x y
   















                

With the analytic expression of the piecewise linear function ( , )S x y , it is not difficult to draw the

spatial surface graph and mixed surface graph of ( , )f x y and ( , )S x y on [0,1] [0,1] by using

MATLAB software programming, as shown in Figs. 3-4.

Fig. 3 Surface graph of a given function f on (1) Fig. 4 Mixed surface graphs of f and S on (1)

However, only from the mixed Fig. 4, we have not enough reason to say that S can approximate
f to arbitrary accuracy. Hence, we will test the approximation ability of the piecewise linear function

S by sample points. We may randomly take 30 samples on [0,1] [0,1] , and calculate their values

and errors at these sample points according to the analytical expressions of ( , )f x y and ( , )S x y ,
respectively, as follows:
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Table 1 The corresponding values and errors of ( , )f x y and ( , )S x y at 30 sample points

Number i
Sample point

1 2( , )x x 1 2( , ) if x x X 1 2( , ) iS x x Y i i iD X Y 

1 (1 / 6, 1/ 6) 0.998612075 0.998612075 0
2 (1/ 3, 1 / 3) 0.994459848 0.994459848 0
3
4
5
6
7
8
9
10
11

( 1/ 2, 1/ 3 )
( 2/ 3, 1/ 6 )
( 2/ 3, 1 / 2)
(5 / 6, 1/ 3)
(5/ 6, 5 / 6)
(1/ 6, 1/ 3)
(1/ 2, 1 / 2)
(5/6, 2 / 3)
( 1/6, 1/12)

0.991012850
0.988263857
0.982788725
0.980062544
0.965873677
0.996533799
0.987577800
0.971929292
0.999132321

0.991012850
0.988263857
0.982788725
0.980062544
0.965873677
0.996533799
0.987577800
0.971929292
0.998958935

0
0
0
0
0
0
0
0

0.000173386
12 ( 1/4, 1/ 3 ) 0.995669128 0.995496825 0.000172303
13 ( 1/12, 1/8) 0.999435923 0.999132486 0.000303437
14 (1/24,1/12) 0.999783010 0.999479468 0.000303542
15 (1/12,1/24) 0.999783010 0.999479468 0.000303542
16 (1/ 8, 1/12) 0.999435923 0.999132487 0.000303436
17 (1/12,1/12) 0.999652838 0.999306037 0.000346801
18 ( 1/ 6, 1/ 4) 0.997745601 0.996532355 0.001213246
19 (11/12, 5/6) 0.962358674 0.962198631 0.000160043
20 ( 1, 11 / 12) 0.955035330 0.954876504 0.000476796
21 ( 1/ 4, 1/ 8 ) 0.998048781 0.997746368 0.000302413
22 ( 1/ 4, 1 /24) 0.998395386 0.998092867 0.001302519
23 (11/12,11/12) 0.958856463 0.958551551 0.000304912
24 ( 1 / 4, 1 / 4) 0.996879878 0.996535960 0.000343918
25 ( 1/ 12, 5/24) 0.998742111 0.997572213 0.001169898
26 (1/12,23/24) 0.977131852 0.976841083 0.000290769
27 (11/12,23/24) 0.956985524 0.956714027 0.000271497
28 (11/12,21/24) 0.960647666 0.960375091 0.000272575
29 ( 5/ 6,11 /12) 0.962358674 0.962198631 0.000160043
30 ( 1/ 4, 1/ 12 ) 0.998265395 0.997919798 0.000345597

It is not difficult to see from Table 1 that the values of the function ( , )f x y and ( , )S x y are the

same at the vertex coordinates, and their error values iD are all zero, which is consistent with the

condition
1 2

( ) ( )
ni i i k kS x f x 

  under the piecewise linear function is constructed in Section 2.

However, it is not enough to judge that S can approximate f to arbitrary precision according to

infinite norm only by randomly selecting the values of these 30 sample points in Table 1.

Next, we will apply the t  test method in statistics to verify that the piecewise linear function S
can indeed approximate to a continuous function f by the subdivision number 6m .
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Assuming that the error data ii XYiD )( ( 1,2, ,30i   ) in Table 1 are from a sample from the

normal population distribution 2( , )D DN   , where both mean value D and variance 2
D are

unknown. According to the t  hypothesis test method in statistical inference, we can easily calculate
the values of the mean value D and variance Ds as follows:

30

1

1 0.008520673( )= =0.000284022
30 30i

D D i


  ,

30
2

1

1 0.0000035988( ) 0.000352274
30 1 29D i

i
s D D



   
  .

For the error data { }i iY X in Table 1, we can test the hypothesis 0 1{ , }H H under the

significance level 0.05  , where the hypothesis (acceptance domain 0H and rejection domain )

satisfies 0 : 0DH   , 1 : 0DH   .

Adopting the approach of the t  test, we select the test statistic ( 0) ( )Dt D s n  , let
30, 0n   and 05.0 . By looking up to the t  distribution Table for t  hypothesis test, we

can obtain 0.05( 1) (29) 1.6991t n t    . Therefore, the rejection domain of the hypothesis test is

0 ( 1) 1.6991.
D

Dt t n
s n 


   

On the other hand, according to the above mean value D and variance Ds we can easily
calculate the observational value of t is

0 0.000284022 4.41603003 1.6991
30 0.000352274 30D

Dt
s


    .

Clearly, the observation value t falls within the rejection region 1H . Hence, we must reject the

hypothesis 0H under significance level 0.05  . Therefore, the piecewise linear function S can
approximate to the continuous function f with arbitrary accuracy.

6 Conclusion
In this paper, the vertex coordinates of each small polyhedron are analyzed by mesh generation of
three-dimensional cubes, and then it is analyzed that the approximation factor is indeed a constant
independent of the subdivision number in the case of n-dimension, so as to give a complete answer in
[21]. It is not difficult to see from Lemma 2 and Theorem 4.1 that when the piecewise linear functions
approach an unknown continuous function, the approximation factor is only related to the space
dimension n, but not to the subdivision number m . Moreover, the larger the value is, the larger the
approximation factor is, while the approximation accuracy is reduced. Therefore, it is not enough to
increase the approximation accuracy of piecewise linear functions only by increasing the subdivision
number m when the dimension of input space is determined. In addition, how to select the vertex
coordinates of polyhedron is also a key issue when calculating algebraic cofactors of determinant in
Theorem 4.1. In three-dimensional space, it may change the approximation factor and affect the
approximation accuracy if we select the vertex coordinates according to the left-hand rule. Therefore,
it will be the next focus of the study on how to select the optimal vertex coordinates to minimize the
approximation factor and improve the approximation accuracy.
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