REFERENCES
Ahuja, I., Kissen, R., & Bones, A. M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science , 17(2), 73-90.
Audenaert, K., Pattery, T., Cornelis, P., & Höfte, M. (2002). Induction of systemic resistance to Botrytis cinerea in tomato byPseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Molecular Plant-microbe Interactions , 15(11), 1147-1156.
Ausubel F. M. (2005). Are innate immune signaling pathways in plants and animals conserved?. Nature Immunology , 6(10), 973-979.
Bacete, L., Mélida, H., Miedes, E., & Molina, A. (2018). Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. The Plant Journal , 93(4), 614-636.
Barriuso, J., Solano, B. R., & Gutiérrez Mañero, F. J. (2008). Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. onArabidopsis thaliana . Phytopathology , 98(6), 666–672.
Birkenbihl, R. P., Kracher, B., Roccaro, M., & Somssich, I. E. (2017). Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity. The Plant Cell , 29(1), 20-38.
Böttcher, C., Westphal, L., Schmotz, C., Prade, E., Scheel, D., & Glawischnig, E. (2009). The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana .The Plant Cell , 21(6), 1830-1845.
Browne, L. M., Conn, K. L., Ayert, W.A., & Tewari, J. P. (1991) The camalexins: New phytoalexins produced in the leaves of camelina sativa (cruciferae). Tetrahedron , 47(24).
Bürger, M., & Chory, J. (2019). Stressed Out About Hormones: How Plants Orchestrate Immunity. Cell Host & Microbe , 26(2), 163-172.
Campbell, E. J., Schenk, P. M., Kazan, K., Penninckx, I. A., Anderson, J. P., Maclean, D. J., Cammue, B. P., Ebert, P. R., & Manners, J. M. (2003). Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiology , 133(3), 1272-1284.
Conrath, U., Pieterse, C. M., & Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends in Plant Science , 7(5), 210-216.
Crouzet, J., Trombik, T., Fraysse, A. S., & Boutry, M. (2006). Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Letters , 580(4), 1123–1130.
de Zelicourt, A., Al-Yousif, M., & Hirt, H. (2013). Rhizosphere microbes as essential partners for plant stress tolerance.Molecular Plant , 6(2), 242-245.
Dixon R. A. (2001). Natural products and plant disease resistance.Nature , 411(6839), 843–847.
Gao, Y. F., Liu, J. K., Yang, F. M., Zhang, G. Y., Wang, D., Zhang, L., Ou, Y. B., & Yao, Y. A. (2020). The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum . Physiologia Plantarum , 168(1), 98-117.
Glawischnig E. (2006). The role of cytochrome P450 enzymes in the biosynthesis of camalexin. Biochemical Society Transactions , 34(Pt 6), 1206-1208.
Glawischnig E. (2007). Camalexin. Phytochemistry , 68(4), 401-406.
Glawischnig, E., Hansen, B. G., Olsen, C. E., & Halkier, B. A. (2004). Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis .Proceedings of the National Academy of Sciences of the United States of America , 101(21), 8245-8250.
He, Y., Xu, J., Wang, X., He, X., Wang, Y., Zhou, J., Zhang, S., & Meng, X. (2019). The Arabidopsis Pleiotropic Drug Resistance Transporters PEN3 and PDR12 Mediate Camalexin Secretion for Resistance to Botrytis cinerea . The Plant Cell , 31(9), 2206-2222.
Holland, K. W., & O’Keefe, S. F. (2010). Recent applications of peanut phytoalexins. Recent Patents on Food, Nutrition & Agriculture , 2(3), 221-232.
Jiang, C. H., Huang, Z. Y., Xie, P., Gu, C., Li, K., Wang, D. C., Yu, Y. Y., Fan, Z. H., Wang, C. J., Wang, Y. P., Guo, Y. H., & Guo, J. H. (2016). Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 inArabidopsis . Journal of Experimental Botany , 67(1), 157-174.
Jiang, C., Fan, Z., Li, Z., Niu, D., Li, Y., Zheng, M., Wang, Q., Jin, H., & Guo, J. (2020). Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv.tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis. Molecular Plant Pathology , 21(6), 854-870.
Kang, J., Hwang, J. U., Lee, M., Kim, Y. Y., Assmann, S. M., Martinoia, E., & Lee, Y. (2010). PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy of Sciences of the United States of America , 107(5), 2355-2360.
Kang, J., Park, J., Choi, H., Burla, B., Kretzschmar, T., Lee, Y., & Martinoia, E. (2011). Plant ABC Transporters. The Arabidopsis Book , 9, e0153.
Kourelis, J., & van der Hoorn, R. (2018). Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. The Plant Cell , 30(2), 285-299.
Lee, B. D., Dutta, S., Ryu, H., Yoo, S. J., Suh, D. S., & Park, K. (2015). Induction of systemic resistance in Panax ginseng againstPhytophthora cactorum by native Bacillus amyloliquefaciensHK34. Journal of Ginseng Research , 39(3), 213–220.
Lee, M., Lee, K., Lee, J., Noh, E. W., & Lee, Y. (2005). AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiology , 138(2), 827-836.
Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., & Zhang, S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. The Plant Cell , 23(4), 1639-1653.
Meng, X., & Zhang, S. (2013). MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology , 51, 245–266.
Mucha, S., Heinzlmeir, S., Kriechbaumer, V., Strickland, B., Kirchhelle, C., Choudhary, M., Kowalski, N., Eichmann, R., Hückelhoven, R., Grill, E., Kuster, B., & Glawischnig, E. (2019). The Formation of a Camalexin Biosynthetic Metabolon. The Plant Cell , 31(11), 2697-2710.
Müller, T. M., Böttcher, C., Morbitzer, R., Götz, C. C., Lehmann, J., Lahaye, T., & Glawischnig, E. (2015). TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12cyp71a13 Double Knockout Lines. Plant Physiology , 168(3), 849-858.
Nafisi, M., Goregaoker, S., Botanga, C. J., Glawischnig, E., Olsen, C. E., Halkier, B. A., & Glazebrook, J. (2007). Arabidopsiscytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. The Plant Cell , 19(6), 2039-2052.
Nguyen, N. H., Trotel-Aziz, P., Villaume, S., Rabenoelina, F., Clément, C., Baillieul, F., & Aziz, A. (2022). Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria againstBotrytis cinerea and Pseudomonas syringae pv.tomato DC3000. Journal of Experimental Botany , 73(11), 3743-3757.
Nie, P., Chen, C., Yin, Q., Jiang, C., Guo, J., Zhao, H., & Niu, D. (2019). Function of miR825 and miR825* as Negative Regulators inBacillus cereus AR156-elicited Systemic Resistance toBotrytis cinerea in Arabidopsis thaliana .International Journal of Molecular Sciences , 20(20), 5032.
Niu, D. D., Liu, H. X., Jiang, C. H., Wang, Y. P., Wang, Q. Y., Jin, H. L., & Guo, J. H. (2011). The plant growth-promoting rhizobacteriumBacillus cereus AR156 induces systemic resistance inArabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Molecular Plant-microbe Interactions , 24(5), 533-542.
Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., & Mauch, F. (2007). Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis . The Plant Journal , 49(1), 159-172.
Pedras, M. S., Yaya, E. E., & Glawischnig, E. (2011). The phytoalexins from cultivated and wild crucifers: chemistry and biology. Natural Product Reports , 28(8), 1381-1405.
Piasecka, A., Jedrzejczak-Rey, N., & Bednarek, P. (2015). Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. The New Phytologist , 206(3), 948-964.
Pieterse, C. M., van Wees, S. C., Hoffland, E., van Pelt, J. A., & van Loon, L. C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. The Plant Cell , 8(8), 1225-1237.
Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., & van Loon, L. C. (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell , 10(9), 1571-1580.
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology , 52, 347-375.
Pieterse, C.M.J., Van Pelt, J. A., Ton, J., Parchmann, S., Mueller, M. J., Buchala, A. J., Métraux, J., Van Loon, L. C. (2000). Rhizobacteria-mediated induced systemic resistance (ISR) inArabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiological and Molecular Plant Pathology , 57(3).
Qi, J., Wang, J., Gong, Z., & Zhou, J. M. (2017). Apoplastic ROS signaling in plant immunity. Current Opinion in Plant Biology , 38, 92-100.
Qiu, J. L., Fiil, B. K., Petersen, K., Nielsen, H. B., Botanga, C. J., Thorgrimsen, S., Palma, K., Suarez-Rodriguez, M. C., Sandbech-Clausen, S., Lichota, J., Brodersen, P., Grasser, K. D., Mattsson, O., Glazebrook, J., Mundy, J., & Petersen, M. (2008). Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. The EMBO Journal , 27(16), 2214-2221.
Schlaeppi, K., Abou-Mansour, E., Buchala, A., & Mauch, F. (2010). Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. The Plant Journal , 62(5), 840-851.
Schuhegger, R., Nafisi, M., Mansourova, M., Petersen, B. L., Olsen, C. E., Svatos, A., Halkier, B. A., & Glawischnig, E. (2006). CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiology , 141(4), 1248-1254.
Seybold, H., Trempel, F., Ranf, S., Scheel, D., Romeis, T., & Lee, J. (2014). Ca2+signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. The New Phytologist , 204(4), 782-790.
Stein, M., Dittgen, J., Sánchez-Rodríguez, C., Hou, B. H., Molina, A., Schulze-Lefert, P., Lipka, V., & Somerville, S. (2006).Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. The Plant Cell , 18(3), 731-746.
Stotz, H. U., Sawada, Y., Shimada, Y., Hirai, M. Y., Sasaki, E., Krischke, M., Brown, P. D., Saito, K., & Kamiya, Y. (2011). Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsisagainst Sclerotinia sclerotiorum . The Plant Journal , 67(1), 81-93.
Strader, L. C., & Bartel, B. (2009). The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. The Plant Cell , 21(7), 1992-2007.
Tang, D., Wang, G., & Zhou, J. M. (2017). Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. The Plant Cell , 29(4), 618-637.
Teixeira, P., Colaianni, N. R., Fitzpatrick, C. R., & Dangl, J. L. (2019). Beyond pathogens: microbiota interactions with the plant immune system. Current Opinion in Microbiology , 49, 7-17.
Thomma, B. P., Nelissen, I., Eggermont, K., & Broekaert, W. F. (1999). Deficiency in phytoalexin production causes enhanced susceptibility ofArabidopsis thaliana to the fungus Alternaria brassicicola . The Plant Journal , 19(2), 163-171.
Ton, J., Davison, S., Van Wees, S. C., Van Loon, L., & Pieterse, C. M. (2001). The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiology , 125(2), 652-661.
Tsuji, J., Jackson, E. P., Gage, D. A., Hammerschmidt, R., & Somerville, S. C. (1992). Phytoalexin Accumulation in Arabidopsis thaliana during the Hypersensitive Reaction to Pseudomonas syringae pv syringae . Plant Physiology , 98(4), 1304-1309.
Van de Mortel, J. E., de Vos, R. C., Dekkers, E., Pineda, A., Guillod, L., Bouwmeester, K., van Loon, J. J., Dicke, M., & Raaijmakers, J. M. (2012). Metabolic and transcriptomic changes induced inArabidopsis by the rhizobacterium Pseudomonas fluorescensSS101. Plant Physiology , 160(4), 2173–2188.
Van de Weyer, A. L., Monteiro, F., Furzer, O. J., Nishimura, M. T., Cevik, V., Witek, K., Jones, J., Dangl, J. L., Weigel, D., & Bemm, F. (2019). A Species-Wide Inventory of NLR Genes and Alleles inArabidopsis thaliana . Cell , 178(5), 1260-1272.e14.
Van der Ent, S., Verhagen, B. W., Van Doorn, R., Bakker, D., Verlaan, M. G., Pel, M. J., Joosten, R. G., Proveniers, M. C., Van Loon, L. C., Ton, J., & Pieterse, C. M. (2008). MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance inArabidopsis . Plant Physiology , 146(3), 1293-1304.
Van Wees, S. C., Luijendijk, M., Smoorenburg, I., van Loon, L. C., & Pieterse, C. M. (1999). Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge.Plant Molecular Biology , 41(4), 537-549.
Verrier, P. J., Bird, D., Burla, B., Dassa, E., Forestier, C., Geisler, M., Klein, M., Kolukisaoglu, U., Lee, Y., Martinoia, E., Murphy, A., Rea, P. A., Samuels, L., Schulz, B., Spalding, E. J., Yazaki, K., & Theodoulou, F. L. (2008). Plant ABC proteins–a unified nomenclature and updated inventory. Trends in Plant Science , 13(4), 151-159.
Wang, Y., Schuck, S., Wu, J., Yang, P., Döring, A. C., Zeier, J., & Tsuda, K. (2018). A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance. The Plant Cell , 30(10), 2480-2494.
Xin, X. F., Nomura, K., Underwood, W., & He, S. Y. (2013). Induction and suppression of PEN3 focal accumulation during Pseudomonas syringae pv. tomato DC3000 infection of Arabidopsis .Molecular Plant-microbe Interactions , 26(8), 861-867.
Xing, D. H., Lai, Z. B., Zheng, Z. Y., Vinod, K. M., Fan, B. F., & Chen, Z. X. (2008). Stress- and pathogen-induced ArabidopsisWRKY48 is a transcriptional activator that represses plant basal defense. Molecular Plant , 1(3), 459-470.
Yang, F., Zhao, D., Fan, H., Zhu, X., Wang, Y., Liu, X., Duan, Y., Xuan, Y., & Chen, L. (2020). Functional analysis of long non-coding RNAs reveal their novel roles in biocontrol of bacteria-induced tomato resistance to Meloidogyne incognita . International Journal of Molecular Sciences , 21(3), 911.
Yang, L., Browning, J. D., & Awika, J. M. (2009). Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. Journal of Agricultural and Food Chemistry , 57(5), 1797-1804.
Yu, Y. Y., Si, F. J., Wang, N., Wang, T., Jin, Y., Zheng, Y., Yang, W., Luo, Y. M., Niu, D. D., Guo, J. H., & Jiang, C. H. (2022).Bacillus -secreted oxalic acid induces tomato resistance against gray mold disease caused by Botrytis cinerea by activating the JA/ET pathway. Molecular Plant-microbe Interactions , 35(8), 659–671.
Zamioudis, C., & Pieterse, C. M. (2012). Modulation of host immunity by beneficial microbes. Molecular plant-microbe interaction , 25(2), 139-150.
Zheng, Z., Qamar, S. A., Chen, Z., & Mengiste, T. (2006).Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal , 48(4), 592-605.
Zhou, J., Mu, Q., Wang, X., Zhang, J., Yu, H., Huang, T., He, Y., Dai, S., & Meng, X. (2022). Multilayered synergistic regulation of phytoalexin biosynthesis by ethylene, jasmonate, and MAPK signaling pathways in Arabidopsis. The Plant Cell , 34(8), 3066-3087.
Zhou, J., Wang, X., He, Y., Sang, T., Wang, P., Dai, S., Zhang, S., & Meng, X. (2020). Differential Phosphorylation of the Transcription Factor WRKY33 by the Protein Kinases CPK5/CPK6 and MPK3/MPK6 Cooperatively Regulates Camalexin Biosynthesis in Arabidopsis .The Plant Cell , 32(8), 2621-2638.