References
Acs, Z., Bori, Z., Takeda, M., Osvath, P., Berkes, I., Taylor, A. W., . . . Radak, Z. (2014). High altitude exposure alters gene expression levels of DNA repair enzymes, and modulates fatty acid metabolism by SIRT4 induction in human skeletal muscle. Respiratory Physiology & Neurobiology, 196 , 33-37.
Ahmad, Y., Sharma, N. K., Ahmad, M. F., Sharma, M., Garg, I., Srivastava, M., & Bhargava, K. (2015). The proteome of hypobaric induced hypoxic lung: insights from temporal proteomic profiling for biomarker discovery. Scientific reports, 5 , 10681.
Aldashev, A. A., Sarybaev, A. S., Sydykov, A. S., Kalmyrzaev, B. B., Kim, E. V., Mamanova, L. B., . . . Wilkins, M. R. (2002). Characterization of high-altitude pulmonary hypertension in the Kyrgyz: association with angiotensin-converting enzyme genotype. American journal of respiratory and critical care medicine, 166 (10), 1396-1402.
Anand, A., Jha, S., Saha, A., Sharma, V., & Adya, C. (2001). Thrombosis as a complication of extended stay at high altitude. National Medical Journal of India, 14 (4), 197-201.
Antezana, A., Antezana, G., Aparicio, O., Noriega, I., Velarde, F., & Richalet, J. (1998). Pulmonary hypertension in high-altitude chronic hypoxia: response to nifedipine. European Respiratory Journal, 12 (5), 1181-1185.
Bailey, D. M., Bärtsch, P., Knauth, M., & Baumgartner, R. W. (2009). Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological. Cellular and Molecular Life Sciences, 66 (22), 3583-3594. doi:10.1007/s00018-009-0145-9
Bailey, D. M., & Davies, B. (2001). Acute mountain sickness; prophylactic benefits of antioxidant vitamin supplementation at high altitude. High Altitude Medicine & Biology, 2 (1), 21-29.
Barnholt, K. E., Hoffman, A. R., Rock, P. B., Muza, S. R., Fulco, C. S., Braun, B., . . . Friedlander, A. L. (2006). Endocrine responses to acute and chronic high-altitude exposure (4,300 meters): modulating effects of caloric restriction. American Journal of Physiology-Endocrinology and Metabolism, 290 (6), E1078-E1088. doi:10.1152/ajpendo.00449.2005
Barry, P., & Pollard, A. (2003). Altitude illness. Bmj, 326 (7395), 915-919.
Boulos, P., Kouroukis, C., & Blake, G. (1999). Superior sagittal sinus thrombosis occurring at high altitude associated with protein C deficiency. Acta haematologica, 102 (2), 104-106.
Boyer, S. J., & Blume, F. D. (1984). Weight loss and changes in body composition at high altitude. Journal of Applied Physiology, 57 (5), 1580-1585.
Brantly, M. L., Paul, L. D., Miller, B. H., Falk, R. T., Wu, M., & Crystal, R. G. (1988). Clinical features and history of the destructive lung disease associated with alpha-1-antitrypsin deficiency of adults with pulmonary symptoms. Am Rev Respir Dis, 138 (2), 327-336.
Butterfield, G. E., Gates, J., Fleming, S., Brooks, G. A., Sutton, J. R., & Reeves, J. T. (1992). Increased energy intake minimizes weight loss in men at high altitude. Journal of Applied Physiology, 72 (5), 1741-1748.
Cerretelli, P., & Hoppeler, H. (1996). Morphologic and metabolic response to chronic hypoxia: the muscle system. Handbook of Physiology, 2 , 1155-1181.
Chaiban, J. T., Bitar, F. F., & Azar, S. T. (2008). Effect of chronic hypoxia on leptin, insulin, adiponectin, and ghrelin. Metabolism, 57 (8), 1019-1022.
Chiodi, H. (1957). Respiratory Adaptations to Chronic High Altitude Hypoxia. Journal of Applied Physiology, 10 (1), 81-87. doi:10.1152/jappl.1957.10.1.81
Danen, E. H., van Rheenen, J., Franken, W., Huveneers, S., Sonneveld, P., Jalink, K., & Sonnenberg, A. (2005). Integrins control motile strategy through a Rho–cofilin pathway. J Cell Biol, 169 (3), 515-526.
DeMali, K. A., Wennerberg, K., & Burridge, K. (2003). Integrin signaling to the actin cytoskeleton. Current Opinion in Cell Biology, 15 (5), 572-582. doi:https://doi.org/10.1016/S0955-0674(03)00109-1
Dosek, A., Ohno, H., Acs, Z., Taylor, A. W., & Radak, Z. (2007). High altitude and oxidative stress. Respiratory Physiology & Neurobiology, 158 (2-3), 128-131.
Durand, J. (1982). Physiologic adaptation to altitude and hyperexis.High Altitude Physiology and Medicine , 209-211.
Dustin, M. L., & Cooper, J. A. (2000). The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling.Nature immunology, 1 (1), 23.
Edwards, L. M., Murray, A. J., Tyler, D. J., Kemp, G. J., Holloway, C. J., Robbins, P. A., . . . Caudwell Xtreme Everest Research, G. (2010). The Effect of High-Altitude on Human Skeletal Muscle Energetics: 31P-MRS Results from the Caudwell Xtreme Everest Expedition. PLOS ONE, 5 (5), e10681. doi:10.1371/journal.pone.0010681
Essop, M. F. (2007). Cardiac metabolic adaptations in response to chronic hypoxia. The Journal of physiology, 584 (3), 715-726.
Fiore, D. C., Hall, S., & Shoja, P. (2010). Altitude illness: risk factors, prevention, presentation, and treatment. American family physician, 82 (9).
Fujimaki, T., Matsutani, M., Asai, A., Kohno, T., & Koike, M. (1986). Cerebral venous thrombosis due to high-altitude polycythemia: case report. Journal of neurosurgery, 64 (1), 148-150.
Gao, Y., Portugal, A. D., Negash, S., Zhou, W., Longo, L. D., & Usha Raj, J. (2007). Role of Rho kinases in PKG-mediated relaxation of pulmonary arteries of fetal lambs exposed to chronic high altitude hypoxia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 292 (3), L678-L684.
Garratt, L. W., Sutanto, E. N., Ling, K.-M., Looi, K., Iosifidis, T., Martinovich, K. M., . . . Lannigan, F. J. (2016). Alpha-1 antitrypsin mitigates the inhibition of airway epithelial cell repair by neutrophil elastase. American journal of respiratory cell and molecular biology, 54 (3), 341-349.
Ge, R.-L., & Helun, G. (2001). Current concept of chronic mountain sickness: pulmonary hypertension–related high-altitude heart disease.Wilderness & environmental medicine, 12 (3), 190-194.
Gøtzsche, P. C., & Johansen, H. K. (2016). Intravenous alpha‐1 antitrypsin augmentation therapy for treating patients with alpha‐1 antitrypsin deficiency and lung disease. Cochrane database of systematic reviews (9).
Hamad, N., & Travis, S. P. (2006). Weight loss at high altitude: pathophysiology and practical implications. European journal of gastroenterology & hepatology, 18 (1), 5-10.
Hoppeler, H., Kleinert, E., Schlegel, C., Claassen, H., Howald, H., Kayar, S. R., & Cerretelli, P. (1990). II. Morphological Adaptations of Human Skeletal Muscle to Chronic Hypoxia*. Int J Sports Med, 11 (S 1), S3-S9. doi:10.1055/s-2007-1024846
Howald, H., Pette, D., Simoneau, J. A., Uber, A., Hoppeler, H., & Cerretelli, P. (1990). III. Effects of Chronic Hypoxia on Muscle Enzyme Activities*. Int J Sports Med, 11 (S 1), S10-S14. doi:10.1055/s-2007-1024847
Kayser, B., Narici, M., Binzoni, T., Grassi, B., & Cerretelli, P. (1994). Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass. Journal of Applied Physiology, 76 (2), 634-640.
Kornberg, L. J., Earp, H. S., Turner, C. E., Prockop, C., & Juliano, R. L. (1991). Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins.Proceedings of the National Academy of Sciences, 88 (19), 8392-8396.
Le Roux, G., Larmignat, P., Marchal, M., & Richalet, J. (1992). Haemostasis at high altitude. International journal of sports medicine, 13 (S 1), S49-S51.
Levett, D. Z., Radford, E. J., Menassa, D. A., Graber, E. F., Morash, A. J., Hoppeler, H., . . . Murray, A. J. (2011). Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. The FASEB Journal, 26 (4), 1431-1441. doi:10.1096/fj.11-197772
Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., . . . Narumiya, S. (1999). Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science, 285 (5429), 895-898.
Maggiorini, M., & Leon-Velarde, F. (2003). High-altitude pulmonary hypertension: a pathophysiological entity to different diseases.European Respiratory Journal, 22 (6), 1019-1025.
Mathieu-Costello, O., Poole, D. C., & Logemann, R. B. (1989). Muscle Fiber Size and Chronic Exposure to Hypoxia. In K. Rakusan, G. P. Biro, T. K. Goldstick, & Z. Turek (Eds.), Oxygen Transport to Tissue XI (pp. 305-311). Boston, MA: Springer US.
Mazzeo, R. S., Bender, P. R., Brooks, G. A., Butterfield, G. E., Groves, B. M., Sutton, J. R., . . . Reeves, J. T. (1991). Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure.American Journal of Physiology-Endocrinology and Metabolism, 261 (4), E419-E424. doi:10.1152/ajpendo.1991.261.4.E419
McMurtry, I., Petrun, M. D., & Reeves, J. T. (1978). Lungs from chronically hypoxic rats have decreased pressor response to acute hypoxia. American Journal of Physiology-Heart and Circulatory Physiology, 235 (1), H104-H109.
Meyer, M., Rahmel, A., Marconi, C., Grassi, B., Cerretelli, P., & Skinner, J. (1998). Stability of heartbeat interval distributions in chronic high altitude hypoxia. Integrative physiological and behavioral science, 33 (4), 344-362.
Naeije, R., De Backer, D., Vachiery, J.-L., & De Vuyst, P. (1996). High-altitude pulmonary edema with primary pulmonary hypertension.Chest, 110 (1), 286-289.
Nair, V., Mohapatro, A., Sreedhar, M., Indrajeet, I., Tewari, A., Anand, A., & Mathew, O. (2008). A case of hereditary protein S deficiency presenting with cerebral sinus venous thrombosis and deep vein thrombosis at high altitude. Acta haematologica, 119 (3), 158-161.
Ohata, Y., Ogata, S., Nakanishi, K., Kanazawa, F., Uenoyama, M., Hiroi, S., . . . Kawai, T. (2013). Proteomic analysis of the lung in rats with hypobaric hypoxia-induced pulmonary hypertension. Histol Histopathol, 28 , 893-902.
Ostadal, B., & Kolar, F. (2007). Cardiac adaptation to chronic high-altitude hypoxia: Beneficial and adverse effects. Respiratory Physiology & Neurobiology, 158 (2), 224-236. doi:https://doi.org/10.1016/j.resp.2007.03.005
Paul, S., Bhargava, K., & Ahmad, Y. (2017). The meta‐analytical paradigm in an in silico hybrid: Pathways and networks perturbed during exposure to varying degrees of hypobaric hypoxia.PROTEOMICS–Clinical Applications, 11 (7-8), 1600160.
Paul, S., Gangwar, A., Bhargava, K., & Ahmad, Y. (2018). STAT3-RXR-Nrf2 activates systemic redox and energy homeostasis upon steep decline in pO2 gradient. Redox biology, 14 , 423-438.
Poole, D. C., & Mathieu-Costello, O. (1989). Skeletal muscle capillary geometry: adaptation to chronic hypoxia. Respiration physiology, 77 (1), 21-29.
Rabinovitch, M., Gamble, W. J., Miettinen, O. S., & Reid, L. (1981). Age and sex influence on pulmonary hypertension of chronic hypoxia and on recovery. American Journal of Physiology-Heart and Circulatory Physiology, 240 (1), H62-H72.
Raquil, M.-A., Anceriz, N., Rouleau, P., & Tessier, P. A. (2008). Blockade of antimicrobial proteins S100A8 and S100A9 inhibits phagocyte migration to the alveoli in streptococcal pneumonia. The Journal of Immunology, 180 (5), 3366-3374.
Scherrer, U., Sartori, C., Lepori, M., Allemann, Y., Duplain, H., Trueb, L., & Nicod, P. (1999). High-altitude pulmonary edema: from exaggerated pulmonary hypertension to a defect in transepithelial sodium transport. In Hypoxia (pp. 93-107): Springer.
Schmidt, A., & Hall, M. N. (1998). SIGNALING TO THE ACTIN CYTOSKELETON.Annual Review of Cell and Developmental Biology, 14 (1), 305-338. doi:10.1146/annurev.cellbio.14.1.305
Severinghaus, J. W., Bainton, C. R., & Carcelen, A. (1966). Respiratory insensitivity to hypoxia in chronically hypoxic man. Respiration physiology, 1 (3), 308-334. doi:https://doi.org/10.1016/0034-5687(66)90049-1
Stream, J. O., & Grissom, C. K. (2008). Update on high-altitude pulmonary edema: pathogenesis, prevention, and treatment.Wilderness & environmental medicine, 19 (4), 293-303.
Surks, M., Chinn, K., & Matoush, L. (1966). Alterations in body composition in man after acute exposure to high altitude. Journal of Applied Physiology, 21 (6), 1741-1746.
Tschöp, M., & Morrison, K. M. (2001). Weight loss at high altitude. InHypoxia (pp. 237-247): Springer.
Tschöp, M., Strasburger, C. J., Hartmann, G., Biollaz, J., & Bärtsch, P. (1998). Raised leptin concentrations at high altitude associated with loss of appetite. The Lancet, 352 (9134), 1119-1120.
Tucker, A., McMurtry, I., Alexander, A., Reeves, J., & Grover, R. (1977). Lung mast cell density and distribution in chronically hypoxic animals. Journal of Applied Physiology, 42 (2), 174-178.
Tucker, A., McMurtry, I., Reeves, J., Alexander, A., Will, D., & Grover, R. (1975). Lung vascular smooth muscle as a determinant of pulmonary hypertension at high altitude. American Journal of Physiology-Legacy Content, 228 (3), 762-767.
Tuder, R. M., Flook, B. E., & Voelkel, N. F. (1995). Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. The Journal of clinical investigation, 95 (4), 1798-1807.
Valitutti, S., Dessing, M., Aktories, K., Gallati, H., & Lanzavecchia, A. (1995). Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton.Journal of Experimental Medicine, 181 (2), 577-584.
Van Rheenen, P. F., Van de Vijver, E., & Fidler, V. (2010). Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. Bmj, 341 , c3369.
Vender, R. L. (1994). Chronic hypoxic pulmonary hypertension.Chest, 106 (1), 236.
Wang, W., Eddy, R., & Condeelis, J. (2007). The cofilin pathway in breast cancer invasion and metastasis. Nature Reviews Cancer, 7 (6), 429.
Weil, J. V. (1986). Ventilatory control at high altitude. Handbook of physiology, Section, 3 , 703-727.
Weil, J. V., Byrne-Quinn, E., Sodal, I. E., Filley, G. F., & Grover, R. F. (1971). Acquired attenuation of chemoreceptor function in chronically hypoxic man at high altitude. The Journal of clinical investigation, 50 (1), 186-195.
West, J., Colice, G., Lee, Y., Namba, Y., Kurdak, S., Fu, Z., . . . Mathieu-Costello, O. (1995). Pathogenesis of high-altitude pulmonary oedema: direct evidence of stress failure of pulmonary capillaries.European Respiratory Journal, 8 (4), 523-529.
West, J., & Mathieu-Costello, O. (1992). High altitude pulmonary edema is caused by stress failure of pulmonary capillaries.International journal of sports medicine, 13 (S 1), S54-S58.
Winter, C. G., Wang, B., Ballew, A., Royou, A., Karess, R., Axelrod, J. D., & Luo, L. (2001). Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell, 105 (1), 81-91.
Wu, C., & Dedhar, S. (2001). Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. The Journal of cell biology, 155 (4), 505-510.
Yagi, H., Yamada, H., Kobayashi, T., & Sekiguchi, M. (1990). Doppler assessment of pulmonary hypertension induced by hypoxic breathing in subjects susceptible to high altitude pulmonary edema. American Review of Respiratory Disease, 142 (4), 796-801.
Young, A., Evans, W., Cymerman, A., Pandolf, K., & Knapik, J. (1981).Sparing effect of chronic high-altitude exposure on muscle glycogen utilization during exercise . Retrieved from
Yui, S., Nakatani, Y., & Mikami, M. (2003). Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biological and Pharmaceutical Bulletin, 26 (6), 753-760.