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Abstract. Maximum Independent Set (MIS) is a popular optimiza-
tion problem of NP-Hard complexity class which is frequently encoun-
tered in areas such as image processing, map marking, molecular bi-
ology, and scheduling in daily life. In this study, close to optimum
quality solutions were searched with genetic algorithm, which is one
of the meta-heuristic methods, for MIS problem. Unlike most of the
studies in the literature, the initial population of the genetic algorithm
was not randomly determined but was formed with the help of var-
ious heuristic approaches. Different heuristic approaches and inverse
examples in which these approaches do not find optimum value are
examined, different solutions have been produced with the help of the
shift operator, and the likelihood of heuristic approaches to reach the
solution has been increased. By the shift operator is meant the se-
lection of a very small subset of permutation space in order to obtain
different solutions which can be generated by the indices vector ordered
by a criterion. The algorithm is coded in C and computational experi-
ments are performed on randomly generated graphs with different edge
densities. It was observed that the algorithm using the methods pro-
posed in the article is efficient in terms of the values of the run time
and objective function.
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1. Introduction

In the given G = (V,E) graph, E represents the edges and V represents the
vertex. The aim of the problem is to find a V ′ set which is made |V ′| value
maximum and conforms with < i, j >/∈ E condition (no edge between vertices
i and j) for a V ′ ⊆ V and ∀i, j ∈ V ′. In other words, MIS is the problem
of finding the largest set of all independent vertices in the graph. The element
(vertex) number of this set is called the independence number and is indicated
by α(G).The exact finding of the independent set with the maximum element by
the enumeration technique requires the examination of all subset selections that
match the problem constraints of the given graph. Since the problem is a subset
selection problem, it is an optimization problem of the NP-Difficult class.

The MIS (Maximum Independent Set) problem, which is one of the basic prob-
lems of graph theory and computational sciences, is encountered in many different
areas of human life such as information theory, biology, transportation manage-
ment, communication, signal processing analysis, classification theory, economics,
timelines, experimental design, computer vision and finance [1].

2. Mathematical Model of the Problem

For a given G = (V,E) graph, the number of elements in the set of vertices
indicated by V is n, Maximum Independent Set is given with mathematical model;

maxf(x) =

n∑
i=1

xi (1)

Such that

xi + xj ≤ 1, ∀(xi, xj) ∈ E (2)

and

xi ∈ {0, 1}, i = 1, , n. (3)

3. Heuristic Solution Approaches

Heuristic algorithms are often preferred because they are fast and can produce
near-optimum solutions in classes with problems of average difficulty. As a subclass
of heuristic algorithms, greedy heuristic approaches prefer the most advantageous
option at the moment and move on to the next step; In this way, myopic approach
can be achieved and in the long term, poor results can be achieved. The most
common sequence-based greedy heuristic methods are MAX, MIN and VO (Se-
quence of vertex degrees). These heuristic methods form the independent set by
either accumulating the independent vertex on a set (conservation of the best) or
by deleting the connected vertex over the original graph (excretion of the worst).
It is applied in some sequence-based heuristic methods for MIS problem. However,
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these new approaches often produce reasonable results on some particular graph
groups [2].

MAX algorithm is a dynamic algorithm that finds solutions according to the
vertex degrees in the graph. In the first step, the vertices and edges that have
the highest degree are deleted from the graph. Repeat vertices are counted. The
eliminating and recalculation process of degree is continued until there are no
vertex connected to each other (edge) in the graph. The remaining independent
vertices are given as solutions [3].

MIN algorithm starts to work with an empty I independent set. The algo-
rithm selects the lowest grade vertex in the G graph, adds it to the I set, and
deletes it from the G graph. This process continues until there is no vertex in the
G graph [4].

Vertex degrees (VO) method, the vertices in the G graph are arranged in a
non-decreasing order (in order to be able to describe equality) according to their
degree. The first unmarked element of the sequence is taken to the solution, the
vertex which is taken to solution and the adjacent vertex of that vertex are marked.
This process is continued until all the vertices in the graph are marked [5]. This
algorithm is run on the 5 vertex G graph shown in Figure 3.1 and taken as an
inverse example. Initially, the solution set (SS) and the set of prohibited vertices
(PS) are arranged to empty sets. Vertex degrees of G graph calculated as [1, 2,
2, 2, 3] respectively and SS = {1} added to solution because of Vertex with 1
indices in sequence has a value 1 which is the smallest. At this stage, the vertex
with 5 indices which is adjacent to peak 1 is marked PS = {5} as the forbidden
peak. Then SS = {1, 2} is included in the solution because of the vertex with
the 2 indices in the updated sequence [1*, 2, 2, 2, 3*] has the smallest value 2
in the sequence and vertices with 3 and 4 indices which are adjacent to vertex 2
are marked PS = {3, 4, 5} as forbidden peaks. Since calculation is done on all
vertices, the algorithm [1 *, 2 *, 2 *, 2 *, 3 *] is terminated and reported as the
result of 2 algorithms, the number of elements in the solution set. However, the
best solution for this example would be 3, which is the number of element of set
includes the vertices 1, 3 and 4.

4. Shift Operator (Carousel Technique)

The MIS problem is a subset selection problem. In order to find the exact
solution by enumeration technique, it is necessary to create all possible subsets and
to test the suitability of these subsets to the constraints of the problem. 2n different
subsets are created and tested for this operation. Instead of this, the vertices are
taken from the sequence of priority formed according to the characteristic of the
problem, in order to comply with the problem constraints. Since the sequence is
created according to the character of the problem, a solution close to the exact
solution is obtained. The situation that precludes the achievement of a full solution
is the selection process between vertices with the same priority value. Due to the
structure of the problem, the vertices adjacent to the vertices taken before the
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Figure 3.1. Example for VO Method

solution are restricted to be included in the solution. In this study, a method has
been proposed to overcome such situations and to find values close to the exact
solution.

Different permutations are generated by using this sequence in the search for
solutions over the priority sequence that is formed according to the characteristic of
the problem. Searching solution by sequentially through the sequence corresponds
to one of the solutions in the combination space. The property of the method used
is search for close solutions of the original sequence, not exceeding its character
and the ease of transition between the produced permutations.

Since different permutations are generated from the first sequence of size N, the
sequence is written n-1 times consecutively. Starting from the first element, the
element is selected from the newly formed n * (n-1) dimension sequence until the n
dimension sequence is obtained. This selection is first done as step length 1. This
is the amount of progression on the indices of the n * (n-1) dimensional sequence
as indicated here. First, starting from the 1st index and since the step length
is 1, the elements in the 2nd, 3rd,..,nth indices are taken and correspond to this
sequence itself. In the next steps, step amount is increased and the elements in
the 1st, 3rd, 5th,..,2n-1.indices are taken. This process is continued until the step
length is n-1, in this case the elements in the indices 1st, nth, 2n-1,..,1 + n*(n-1).
are taken and the final permutation is produced. Here, n-1 different permutations
have been produced and these sequences will be called seed. The new sequences
must comply with the permutation rules. Each sequence must be of dimension
n and each element must be used once. When coincide with a previously used
element, passed to the element in the next index and the step increment continues
to be made over the index of this element.

For example, if the first sequence is given as [1, 2, 3, 4, 5], this sequence is
written consecutively to obtain [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4,
5] sequence in a dimension of 5 *4. If the 1st index of the initial value is selected,
permutations are produced when the step length is 1 [1, 2, 3, 4,5], the step length
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is 2 [1, 3, 5, 2, 4], the step length is 3 [1, 4, 2, 5, 3] and finally the step length is 4
[1, 5, 4, 3, 2] .

First Sequence: [1, 2, 3, 4,5]
Production Sequence: [1, 2, 3, 4,5][1, 2, 3, 4,5][1, 2, 3, 4,5][1, 2, 3, 4,5]
(Production Seq.: [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5])

Produced Seed Permutations:
[1, 2, 3, 4, 5]
[1, 3, 5, 2, 4]
[1, 4, 2, 5, 3]
[1, 5, 4, 3, 2]

The reason that these permutations are called seeds is that by using these seeds,
number of (n-1) permutations will be produced from each of them. By adding 1
to the index values in the seed, the results to be obtained by starting the process
with 2 indices are the same with taking 1 index at first. This is repeated until the
addition process (n-1) is made, and in this last step permutation is produced over
the element in n. index.

By using first seed [1, 2, 3, 4, 5] produced from [1, 2, 3, 4, 5] sequence, increasing
each value by 1 [2, 3, 4, 5, 1] increasing by 2 [3, 4, 5, 1, 2] increasing by 3 [4, 5, 1,
2, 3] and increasing each 4 [5, 1, 2, 3, 4] sequences are produced. This process is
repeated on all seeds and as a result 20 permutations will be produced.

Permutations Produced from First Seed
[1, 2, 3, 4, 5]
[2, 3, 4, 5, 1]
[3, 4, 5, 1, 2]
[4, 5, 1, 2, 3]
[5, 1, 2, 3, 4]

With the described process, n*(n-1) permutations are produced. Considering that
n! different permutations can be produced in an N dimensional space, it is seen that

only permutations belonging to a certain part of space are reached ( (n(n−1))
n! ). As

a result of using these permutation sequences, solutions suitable for MIS problem
are produced.

In order to reduce the place complexity in the method described, instead of
opening n*(n-1) dimensional sequence, the n dimensional sequence is considered
to be circular, and it is realized by using the modulation operation according to
the n value. Since the process is carried out in the form of rotation on a circle, it
is referred to as the carousel technique. Figure 4.1.

5. Genetic Algorithms

Genetic algorithms are search and optimization algorithms that emerge from
computer simulation of natural processes. The genetic algorithms that adopt
Darwin’s principle of survival of individuals who adapt to environmental conditions
were first developed by John Holland at the University of Michigan [6]. Holland
made these studies to explain the processes of natural systems and to design
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Figure 4.1. Shift Operator Production Circle

artificial system software that includes the steps of these systems. This has led to
significant innovations in both natural and artificial systems. Genetic algorithms
are a search method obtained by applying the principle of conservation of the best
and natural selection principle to the computers by simulation. Genetic algorithms
were first used to solve the MIS problem by Back and Khuri in 1994 [7].

In this method, work starts with populations of individuals, the individual pa-
rameter space represented by the binary sequence represents a point in Rp. In
each generation, the value of the objective function for each individual is eval-
uated as its suitability and a new population is obtained by selecting the more
appropriate individuals. Thus, new solutions are created based on the suitability
of individuals [8]. Since individuals with high relevance value are often chosen,
there is pressure to include more eligible individuals in the population. After sev-
eral generations, the best individual is expected to represent or at least approach
the optimal solution [9].

5.1. Creating the Initial Population

In this study, in contrast to the general approach, prior solutions were not com-
pletely randomized when using genetic algorithms. In order to facilitate the solu-
tion to achieve better results, the pioneering solutions are produced with heuristic
approaches. These approaches are the process of solving the independent vertices
by examining the structure of the problem and making a logical decision. [10] The
solutions from the heuristic approaches have been improved by using the shift
technique and the solutions from this technique have provided diversity in the ini-
tial population. In order to increase the diversity in the initial population, some
of the solutions were completely random.
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5.2. Reproduction Methods Used

The first generation is created in genetic algorithms and ranked according to the
conformity function values of these generation chromosomes. The chromosomes
with the highest value in the rankings are taken to the new generation without
any changes. This process is called elitism. Thanks to elitism, chromosomes with
good values are preserved and the new generation will be at least as strong as
the previous generation [11]. The chromosomes that are left empty in the new
population are formed by crossing from the dual parent chromosomes determined
by using roulette wheel technique on all chromosomes of the previous generation.

5.3. Crossing method used

The determination of the individuals to be crossed are realized by the roulette
wheel method which is selects according to the suitability value of individuals
(chromosomes). The technique used to produce a new chromosome from two
parent chromosomes determined by the roulette wheel technique is the process of
deciding whether each gene value will come from the mother or father. In this
decision-making process, a dice with two values as usual is thrown, if the value of
the first chromosome is found according to the dice, the corresponding gene of the
first chromosome is taken and in the other case, the corresponding value of the
second chromosome is taken. However, a fraudulent dice is used in this process
in order to increase the conformity value of the chromosome to be higher. The
probability distribution in the dice is directly proportional to the compatibility
values of the mother and father chromosomes. In the newly formed chromosome,
the relevant gene is more likely to be obtained from the chromosome with high
conformity value.

5.4. Mutation

Mutation was applied to prevent the solutions from being attached to local
maximums. The implement of mutation to which gene of which chromosome
is determined randomly. Since binary coding is used in the solutions, the gene
selected in the mutation process is 0 if 1, and 1 if 0. The best results were obtained
by using 10% mutation. [12].

5.5. Parameter Values Used

Genetic algorithm, which was created in order to work efficiently on the prob-
lem, has many different parameters. These parameters are; population size, max-
imum number of iterations, crossing rate, mutation rate and stop criteria. [13]
While determining these parameters, experiments were conducted on different pa-
rameter values as well as literature and tested with problems of different size and
density. The size of the population has been kept constant in new generation
productions and has led to the destruction of bad value solutions.
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6. Calculation Tests

110 problems which has vertex numbers 50, 100, 150, 200, 250, 300, 350, 400,
450 and 500 and has edge density for each vertex number 5%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90% and 95% are randomly generated. In order to test
the success of the genetic algorithm, it is necessary to know the exact solutions of
the generated problems. The generated problems were first solved with GAMS-
CPLEX and the results are reported in tables in this section. In addition to the
GAMS-CPLEX decoder, an intelligent enumeration algorithm is used for dense
graphs. Due to the structure of the problems, it was not possible to reach the
optimum results of low density problems with edge intensities 5%, 10%, 20%, 30%,
in order to test the genetic algorithm, a new set of problems corresponding to said
edge intensities has been produced. The optimum values of the new problems were
determined during the production of the problems and the ability of the genetic
algorithm to reach these values was tested and the results were reported in tables.

6.1. GAMS-CPLEX Calculation Tests

Randomly generated problems were solved with GAMS-CPLEX solver. The
optimum values of the problems are given in Table 3 and the working times are
given in Table 1 and Table 2. In the tables, n is the size of the problem and d is
the edge density value of the problem. The problems indicated by ” > ” in Table 1
and Table 2 shows the problems that have not been achieved within a reasonable
time. Since the optimum value is not found for these problems, they are marked
with ”− ” in Table 3. The said time was determined as 13 hours working time.

Table 1. GAMS Times (sec)

n \ d 5 10 20 30 40 50
50 0,01 0,02 0,05 0,17 0,05 0,03
100 0,12 0,69 1,58 2,81 3,05 2,39
150 2,33 46,72 72,52 50,70 52,05 21,17
200 76,59 1125,37 999,97 442,95 253,11 152,41
250 6132,94 > > > 3009,44 1246,92
300 > > > > > >
350 > > > > > >
400 > > > > > >
450 > > > > > >
500 > > > > > >
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Table 2. GAMS Times (sec)

n \ d 60 70 80 90 95
50 0,25 0,06 0,03 0,02 0,05
100 2,25 2,42 2,59 1,06 0,39
150 23,22 26,44 26,39 11,47 3,14
200 233,50 318,55 99,530 56,81 18,81
250 773,72 987,39 622,13 150,91 58,44
300 3759,56 1977,97 696,39 183,25 200,28
350 > 3679,44 1771,89 435,72 444,67
400 > > 4662,31 2177,01 493,23
450 > > > 4131,50 942,38
500 > > > 9870,61 1974,53

Table 3. GAMS Optimum Values

n \ d 5 10 20 30 40 50 60 70 80 90 95
50 25 20 15 11 10 8 7 5 4 4 3
100 42 29 21 14 11 9 7 6 5 4 3
150 51 35 23 17 12 10 9 7 5 4 4
200 60 41 25 18 14 11 9 7 6 4 4
250 68 - - - 14 12 9 7 6 4 4
300 - - - - - - 10 8 7 5 4
350 - - - - - - - 8 7 5 4
400 - - - - - - - - 6 5 4
450 - - - - - - - - - 5 4
500 - - - - - - - - - 5 4

6.2. Exact Solution Algorithm Calculation Tests for Intense Graphs

The GAMS-CPLEX solver may not be efficient in terms of time for some large-
scale problems. In order to test the accuracy of the results generated by the genetic
algorithm, it is necessary to calculate the optimum values of the problems which
are solved. For this reason, an algorithm that makes a complete solution is needed
to find the optimum values for the problems. The algorithm, which makes the
enumeration process logically and resolves the problems within acceptable times
for intense graphs, is run on the problems which are coded and created in C
language. The working time of the program is listed in Table 5 and Table 6 and
the optimum values for the problems are listed in 4. The problems indicated by
” > ” in Table 5 and Table 6 shows the problems that have not been achieved
because of solution time is more than 10000 sec. Although 2 weeks of working
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time is expected for some problems with low edge density in the calculation tests,
the algorithm did not finish the case studies and did not reach the result. [14]

Table 4. Algorithm Producing Optimum Solution Results

n \ d 5 10 20 30 40 50 60 70 80 90 95
50 25 20 15 11 10 8 7 5 4 4 3
100 - - 21 14 11 9 7 6 5 4 3
150 - - - 17 12 10 9 7 5 4 4
200 - - - - 14 11 9 7 6 4 4
250 - - - - 14 12 9 7 6 4 4
300 - - - - 15 12 10 8 7 5 4
350 - - - - 16 13 10 8 7 5 4
400 - - - - 16 13 10 8 6 5 4
450 - - - - 16 14 11 9 6 5 4
500 - - - - 17 13 10 9 7 5 4

Table 5. Algorithm Producing Optimum Solution Times

n \ d 5 10 20 30 40 50
50 151,271 3,797 0,093 0,000 0,000 0,000
100 > > 87,253 1,062 0,078 0,015
150 > > > 45,814 1,344 0,124
200 > > > > 11,719 0,610
250 > > > > 54,237 2,375
300 > > > > 284,230 8,797
350 > > > > 1014,426 27,782
400 > > > > 3476,524 68,315
450 > > > > 7392,594 165,366
500 > > > > > 267,617

All optimum solution values found with GAMS-CPLEX solver and the algo-
rithm that produces complete solution for intense graphs are combined in Table
7. The results of the genetic algorithm will be compared with the values in this
table.

6.3. Calculation Tests for Genetic Algorithm

The initial population has been run on randomly generated problems for the
work of genetic algorithms created through heuristic solution approaches outside
of the general approach in the literature. The genetic algorithm, which contains
randomness due to the operators it uses, was executed 100 times for each problem
and the resulting minimum, maximum values were given in Table 8 and Table 9
respectively. The average values achieved in 100 times of operation are given in
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Table 6. Algorithm Producing Optimum Solution Times

n \ d 60 70 80 90 95
50 0,000 0,000 0,000 0,000 0,000
100 0,000 0,000 0,000 0,000 0,000
150 0,015 0,000 0,000 0,000 0,000
200 0,109 0,000 0,000 0,000 0,000
250 0,188 0,031 0,015 0,000 0,000
300 0,641 0,078 0,015 0,000 0,000
350 1,640 0,156 0,015 0,000 0,000
400 3,407 0,297 0,047 0,000 0,000
450 7,109 0,594 0,063 0,015 0,000
500 10,657 0,766 0,079 0,016 0,000

Table 7. Optimum Results for Problems

n \ d 5 10 20 30 40 50 60 70 80 90 95
50 25 20 15 11 10 8 7 5 4 4 3
100 42 29 21 14 11 9 7 6 5 4 3
150 51 35 23 17 12 10 9 7 5 4 4
200 60 41 25 18 14 11 9 7 6 4 4
250 68 - - - 14 12 9 7 6 4 4
300 - - - - 15 12 10 8 7 5 4
350 - - - - 16 13 10 8 7 5 4
400 - - - - 16 13 10 8 6 5 4
450 - - - - 16 14 11 9 6 5 4
500 - - - - 17 13 10 9 7 5 4

Table 10 and Table 11 and the average operating times in seconds are given in
Table 12 and Table 13.

Table 8. Genetic Algorithms Minimum Values

n \ d 5 10 20 30 40 50 60 70 80 90 95
50 25 20 15 11 10 8 7 5 4 4 3
100 41 29 20 14 11 9 7 6 5 4 3
150 51 34 22 17 12 10 9 7 5 4 4
200 56 39 24 17 13 11 9 7 6 4 4
250 65 41 25 18 13 11 9 7 6 4 4
300 68 44 26 19 14 12 9 8 7 5 4
350 73 45 26 19 15 12 10 8 7 5 4
400 77 49 28 20 15 12 10 8 6 5 4
450 81 49 28 20 15 12 10 9 6 5 4
500 83 52 29 20 16 13 10 8 7 5 4
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Table 9. Genetic Algorithms Maximum Values

n \ d 5 10 20 30 40 50 60 70 80 90 95
50 25 20 15 11 10 8 7 5 4 4 3
100 42 29 21 14 11 9 7 6 5 4 3
150 51 35 23 17 12 10 9 7 5 4 4
200 60 41 25 18 14 11 9 7 6 4 4
250 67 44 27 19 14 12 9 7 6 4 4
300 71 46 29 20 15 12 10 8 7 5 4
350 75 48 29 21 16 13 10 8 7 5 4
400 79 53 30 21 16 13 10 8 6 5 4
450 83 53 30 21 16 14 11 9 6 5 4
500 88 54 31 23 17 13 10 9 7 5 4

Table 10. Genetic Algorithms Average Values

n \ d 5 10 20 30 40 50
50 25,00 20,00 15,00 11,00 10,00 8,00
100 41,64 29,00 20,75 14,00 11,00 9,00
150 51,00 34,04 22,93 17,00 12,00 10,00
200 59,16 40,59 24,23 17,85 13,84 11,00
250 65,24 41,94 25,94 18,93 13,99 11,93
300 68,80 45,00 27,72 19,16 14,71 12,00
350 74,01 46,73 27,72 19,38 15,59 12,92
400 78,06 51,23 29,28 20,16 15,73 12,70
450 82,44 50,45 29,69 20,62 15,98 13,42
500 86,44 52,95 29,91 21,47 16,10 13,00

Table 11. Genetic Algorithms Average Values

n \ d 60 70 80 90 95
50 7,00 5,00 4,00 4,00 3,00
100 7,00 6,00 5,00 4,00 3,00
150 9,00 7,00 5,00 4,00 4,00
200 9,00 7,00 6,00 4,00 4,00
250 9,00 7,00 6,00 4,00 4,00
300 9,98 8,00 7,00 5,00 4,00
350 10,00 8,00 7,00 5,00 4,00
400 10,00 8,00 6,00 5,00 4,00
450 10,94 9,00 6,00 5,00 4,00
500 10,00 8,98 7,00 5,00 4,00
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Table 12. Genetic Algorithms Average Times

n \ d 5 10 20 30 40 50
50 0,006 0,007 0,007 0,007 0,005 0,006
100 0,055 0,075 0,084 0,068 0,061 0,050
150 0,174 0,283 0,292 0,231 0,232 0,185
200 0,713 1,019 0,646 0,681 0,541 0,406
250 1,174 1,783 1,785 1,208 1,164 0,887
300 1,501 1,999 2,653 2,382 2,031 1,604
350 3,078 5,610 5,262 3,946 3,052 2,254
400 4,648 7,713 7,102 5,519 4,888 4,580
450 7,271 14,016 10,100 8,773 7,532 6,335
500 8,849 12,771 14,476 11,777 10,34 8,008

Table 13. Genetic Algorithms Average Times

n \ d 60 70 80 90 95
50 0,006 0,006 0,006 0,004 0,004
100 0,058 0,056 0,050 0,043 0,047
150 0,152 0,144 0,175 0,161 0,103
200 0,375 0,340 0,371 0,364 0,243
250 0,819 0,781 0,737 0,748 0,513
300 1,340 1,300 0,969 1,170 0,951
350 2,573 2,074 1,554 1,708 1,572
400 3,433 2,959 3,460 2,829 2,620
450 4,853 4,038 5,050 4,035 4,037
500 10,558 5,811 5,099 6,011 5,692

In order to see the success of the genetic algorithms created by heuristic method,
the average values of the solved problems (Table 10 and Table 11) and the optimum
values for these problems ( Table 7) should be examined. The average values
mentioned are the averages of the values found by running the program 100 times.
The relative error tables in Table 14 and Table 15 were created using the average
values reached by the genetic algorithm in problems and the optimum values for
problems.

6.4. Additional Problems with Low Density

Since the randomly generated low density problems (5%, 10%, 20%, 30%) could
not be fully solved by the efficient enumeration algorithm and GAMS, the compar-
ative performance ratio of the proposed genetic algorithm could not be calculated.
In order to eliminate this handicap, low-density problems were not generated ran-
domly but were obtained according to a certain systematic: Firstly, the number
of edges of the related density was obtained depending on the number of vertices.
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Table 14. Genetic Algorithms Relative Error

n \ d 5 10 20 30 40 50
50 0,000 0,000 0,000 0,000 0,000 0,000
100 0,009 0,000 0,012 0,000 0,000 0,000
150 0,000 0,027 0,003 0,000 0,000 0,000
200 0,014 0,010 0,031 0,008 0,011 0,000
250 0,041 - - - 0,001 0,006
300 - - - - 0,019 0,000
350 - - - - 0,026 0,006
400 - - - - 0,017 0,023
450 - - - - 0,001 0,041
500 - - - - 0,053 0,000

Table 15. Genetic Algorithms Relative Error

n \ d 60 70 80 90 95
50 0,000 0,000 0,000 0,000 0,000
100 0,000 0,000 0,000 0,000 0,000
150 0,000 0,000 0,000 0,000 0,000
200 0,000 0,000 0,000 0,000 0,000
250 0,000 0,000 0,000 0,000 0,000
300 0,002 0,000 0,000 0,000 0,000
350 0,000 0,000 0,000 0,000 0,000
400 0,000 0,000 0,000 0,000 0,000
450 0,005 0,000 0,000 0,000 0,000
500 0,000 0,002 0,000 0,000 0,000

Then, in order to obtain this number of edge in total, the vertex number of the
exact graphs which are known to be the maximum independent number and which
are the highest number of edges are isolated from each other is calculated. The
matrix of the problem is filled with isolated whole graphs (for example k pcs) based
on the calculated number of vertices. After this process, if there is an idle vertex
(for example m pcs), the sample problem is obtained with a road graph contain-
ing the remaining vertices. The exact solution of the sample problem is that the
maximum independence of the complete line and the path line is 1 and dm/2e,
respectively, so that k + dm/2e. In addition, the best solution of the relevant
sample problem is written on the last line of the text file of the problem. Genetic
algorithm was run 100 times on the generated problems and average run times in
Table 16 were obtained. Optimum values have been solved 100 times with genetic
algorithms with problems given in Table 17 and it has been seen that genetic al-
gorithms can reach these values. The heuristic approach in the algorithm showed
good success on these problems and the optimum values could be calculated after
the genetic algorithm processes.
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Table 16. Low Density Additional Problems GA Average Times

n \ d 5 10 20 30
50 0,004 0,003 0,004 0,003
100 0,026 0,023 0,021 0,025
150 0,080 0,081 0,085 0,095
200 0,191 0,183 0,172 0,232
250 0,356 0,442 0,326 0,295
300 0,713 0,619 0,735 0,554
350 1,704 1,680 1,496 1,256
400 2,212 2,329 2,750 1,704
450 3,364 3,156 2,789 2,094
500 4,594 3,625 5,857 2,734

Table 17. Low Density Additional Problems GA Optimum Values

n \ d 5 10 20 30
50 15 9 7 6
100 18 10 8 11
150 23 12 10 15
200 19 15 13 19
250 21 17 13 5
300 24 20 15 6
350 23 15 18 5
400 20 15 20 6
450 26 15 23 7
500 22 15 25 8

7. Conclusions

In this study, GAMS-CPLEX solver, which is one of the low runtime ready-made
software and which guarantees the optimum solution based on the mathematical
model of the problem, is used in the solution of the maximum independent set
problem from NP-Hard class problems. Since this solver solves the problem with
the branch-bound method, it is possible to reach the optimum result by exper-
imenting faster on the possible solutions. The GAMS-CPLEX solver achieved
optimum results in a very short time without any problems in randomly gener-
ated problems in the first part of the study. However, we faced different problems
while solving the real problems of the thesis. The first of these problems is that
the length of the solution is taking too long for problems with an edge density
of 40 % or less, which is more likely to be tried. The second problem was that
CPLEX’s solution was based on the RAM of the computer and on the hard disk
when RAM was not enough. As the number of cases to be tried increases, the
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solution tree used by the program reaches a very large size, restricting the oper-
ation of the computer and giving the GAMS-CPLEX solver memory error before
the problem is solved. For these reasons, in order to reach optimum solutions,
full solution program is used for dense graphs written in C language. Due to the
structure of the MIS problem, this program easily found the optimum values for
the problems of dense graphs, but had problems in reaching the optimum values
even for the second smallest problem size n = 100 in the sparse graphs. In the next
step, genetic algorithms were used with meta-heuristic approach, which gave close
to optimum results in short periods of time. In order to test genetic algorithms
that do not guarantee optimum discovery, problems with known optimal values
are needed. The optimum value could not be calculated for the low density of
the 110 problems. For this reason, in order to test genetic algorithms on sparse
problems, a group of problems whose predetermined values have been determined
has been formed. For sparse graphs, a complete solution algorithm is proposed
in the following studies. In the main focus of the study, the initial population
of the genetic algorithm was created by using the heuristic solution approaches
in literature and the shifting technique which can produce different results using
the results obtained from these approaches. In order to make the comparison
clearly, the relative errors of the results obtained by the genetic algorithm in the
problems were calculated using the optimum results of the problems. 110 first
group, 40 additional problem sets, 150 problems and working time of algorithms
are reported with tables. Genetic algorithm was run 100 times for each problem
and minimum, maximum and average tables of values were created accordingly.
Genetic algorithm with heuristic approach was found to be successful in finding
optimum results and approaching optimum values.
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