References
  1. ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet Gynecol.2018 Feb;131(2): e49-e64.
  2. Pantham P, Aye IL, Powell TL Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015 Jul;36(7):709-15. doi: 10.1016/j.placenta.2015.04.006. Epub 2015 Apr 28.
  3. Kelstrup, L. Damm P, Mathiesen ER, Hansen T, Vaag AA, Pedersen O et al. (2013) Insulin resistance and impaired pancreatic b-cell function in adult offspring of women with diabetes in pregnancy. J. Clin. Endocrinol. Metab. 98, 3793–3801
  4. Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The Pathophysiology of Gestational Diabetes Mellitus. Int J Mol Sci. 2018 Oct 26;19(11):3342. doi: 10.3390/ijms19113342.
  5. Mallardo M, Ferraro S, Daniele A, Nigro E. GDM-complicated pregnancies: focus on adipokines. Mol Biol Rep. 2021 Dec;48(12):8171-8180.
  6. 6-Guillén-Sacoto MA, Barquiel B, Hillman N, Burgos MÁ, Herranz L. Gestational diabetes mellitus: glycemic control during pregnancy and neonatal outcomes of twin and singleton pregnancies. Endocrinol Diabetes Nutr (Engl Ed). 2018 Jun-Jul;65(6):319-327.
7-Franzago M, Fraticelli F, Stuppia L, Vitacolonna E.Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics. 2019 Mar;14(3):215-235.
8- Bianco ME, Josefson JL. Hyperglycemia During Pregnancy and Long-Term Offspring Outcomes.Curr Diab Rep. 2019 Nov 21;19(12):143.
9- Damm P, Houshmand-Oeregaard  A,  Kelstrup L , Lauenborg  J,  Mathiesen ER ,  Clausen TD  Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia 2016 Jul;59(7):1396-1399.
10- Nelson AJ, Worthley MI, Psaltis PJ, Carbone A, Dundon BK, Duncan RF, et al. Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. J Cardiovasc Magn Reson. 2009;11(1):15.
11-Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153(6):907.
12-Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr. 200 0; 22:1311–1319.
13-Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT. et al. Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther. 2014;4(6):416–429.
14-Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–2466.
15-Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res. 2008;40(7):442–445.
16-Iacobellis G, Malavazos AE, Corsi MM. Epicardial fat: from the biomolecular aspects to the clinical practice. Int J Biochem Cell Biol. 2011;43(12):1651–4.
17-Groves EM, Erande AS, Le C, Salcedo J, Hoang KC, Kumar S, et al. Comparison of epicardial adipose tissue volume and coronary artery disease severity in asymptomatic adults with versus without diabetes mellitus. Am J Cardiol. 2014;114(5):686–91.
18-Song DK, Hong YS, Lee H, Oh JY, Sung YA, Kim Y. Increased epicardial adipose tissue thickness in type 2 diabetes mellitus and obesity. Diabetes Metab J. 2015;39(5):405–13.
19-Iacobellis G, Diaz S, Mendez A, Goldberg R. Increased epicardial fat and plasma leptin in type 1 diabetes independently of obesity. Nutr Metab Cardiovasc Dis NMCD
20-Villasante Fricke AC, Iacobellis G. Epicardial adipose tissue: clinical biomarker of cardio-metabolic risk. Int J Mol Sci. 2019;20(23):5989.
21-Kroll L, Nassenstein K, Jochims M, Koitka S ,  Nensa F et al. Assessing the role of pericardial fat as a biomarker connected to coronary calcification-A deep learning based approach using fully automated body composition analysis. J Clin Med. 2021;10(2):356.
22-Jackson D, Deschamps D, Myers D, Fields D, Knudtson E, Gunatilake R. Fetal epicardial fat thickness in diabetic and non-diabetic pregnancies: a retrospective cross-sectional study. Obesity. 2016;24(1):167–171.
23- Akkurt MO, Turan OM, Crimmins S, Harman CR, Turan S. Increased fetal epicardial fat thickness: a novel ultrasound marker for altered fetal metabolism in diabetic pregnancies. J Clin Ultrasound. 2018;46(6):397–402.
24- Yavuz A, Akkurt MO, Yalcin S, Karakoc G, Varol E, Sezik M. Second trimester fetal and maternal epicardial fat thickness in gestational diabetic pregnancies. Horm Metab Res. 2016; 48(09):595–600.
25- Aydin S, Fatihoglu E. Fetal Epicardial Fat Thickness: Can It Serve as a Sonographic Screening Marker for Gestational Diabetes Mellitus? J Med Ultrasound. 2020 Jun 4;28(4):239-244
26-Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin Endocrinol Metab. 2003;88(11):5163–5168.
27- Zhou L, Gong J, Li D, Lu G, Chen D, Wang J. Association of human epicardial adipose tissue volume and inflammatory mediators with atherosclerosis and vulnerable coronary atherosclerotic plaque. Zhonghua Xin Xue Guan Bing Za Zhi. 2015;43(2):134–140.
28- Depla AL, De Wit L, Steenhuis TJ, Slieker MG, Voormolen DN, Scheffer PG, et.al. Effect of maternal diabetes on fetal heart function on echocardiography: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2021 Apr;57(4):539-550.