	Received: Added at production
	Revised: Added at production
	Accepted: Added at production
	

	DOI: xxx/xxxx
	
	
	

	RESEARCH ARTICLE
	[image:]

Dynamic Fine-tuning Layer Selection Using Kullback-Leibler Divergence
Raphael Wanjiku*1 | Lawrence Nderu1 | Michael Kimwele1

	1School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

Correspondence
*Raphael Wanjiku, School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology.
Email: phaelgi@gmail.com

	
Abstract

The selection of layers in the transfer learning fine-tuning process ensures a pre-trained model's accuracy and adaptation in a new target domain. However, the selection process is still manual and without clearly defined criteria. If the wrong layers in a neural network are selected and used, it could lead to poor accuracy and model generalisation in the target domain. This paper introduces the use of Kullback-Leibler divergence on the weight correlations of the model's convolutional neural network layers. The approach identifies the positive and negative weights in the ImageNet initial weights selecting the best-suited layers of the network depending on the correlation divergence. We experiment on four publicly available datasets and four ImageNet pre-trained models that have been used in past studies for results comparisons. This proposed approach method yields better accuracies than the standard fine-tuning baselines with a margin accuracy rate of 10.8% to 24%, thereby leading to better model adaptation for target transfer learning tasks.

KEYWORDS

layer selection, Kullback-Leibler Divergence, weight-correlation

Introduction
Deep learning involves using layers in artificial neural networks as outlined by Cai et al . A deep learning model can describe higher and lower-level concepts at different layers of its structure during the learning process. Over the last decade, deep learning has had a tremendous impact in many industries . As noted by Long et al, convolutional neural networks (CNN) have been at the forefront of these profound learning advancements . Zhuang et al and Yang et al describe deep learning as a process that requires the use of large amounts of data, and the acquisition of labelled data is often costly, time-consuming and sometimes infeasible to obtain (unrealistic in many scenarios).These issues are evident with large datasets ImageNet and MSCOCO in computer vision.
Ge and Yu outline that using deep convolutional neural networks, insufficient training data results in inferior model performance to traditional classifiers that use handcraft features and results in model overfitting (like the case of Oxford Flowers 102, Stanford Dogs 120) . One of the ways to bridge the training data insufficiency, reduce dataset bias and the lengthy model training process in deep learning is the use of transfer learning . The process aims to transfer knowledge from an already trained model for a specific task to a closely related inequivalent task with insufficient data.
Transfer learning is also known as domain adaptation; this process involves the recognition and reuse of knowledge learnt in one knowledge domain task in a related task as described by Christodoulidis et al and Chopra et al . It is one of the domain generalisation techniques alongside domain adaptation, multi-task learning, multiple domain learning, meta-learning, lifelong learning, and zero-shot learning . It can also improve learning a new task through knowledge transfer from a closely related task . The process has its roots in the generalisation theory of transfer as proposed by psychologist C.H. Judd who stated that knowledge transfer results from generalising experience. For the transfer to be effective, the source of the experience and the usage activity needs a connection.
A good example of transfer learning is a piano and violin since they share some common knowledge as illustrated by Zhuang et al . The learnt knowledge domain is known as the source domain(Ds), while its reuse domain is known as the target domain(Dt). The task in the source domain is referred to as the source task(Ts) and the target domain task as the target task(Tt) .
The process is formally defined as follows: a classification task {X, p(X), Y, p(Y |X)} composes a feature space X, a probability distribution p(X) with X ∈ X of feature space, an outcome space Y, an objective function p(Y |X) where Y ∈ Y. We generally assume that the source and the target tasks share the same feature space X. The outcome spaces Y are usually different but related as pointed out by Zhang et al .
Grega and Vili describe the transfer learning process as one that involves reusing weights used in a specific task in solving a different, closely related task. Some or all the weights are used to initialise the model in the new task as explained by Bhatia, Arumae and Celikkaya . This may also include sampling distribution of the data points, defining features of the data points, the data point labels, or even the functional dependencies between the features and the labels . Apart from the reduced training time, data bias or cost reduction, the transfer process also reduces the pre-trained model complexity model. This transfer process is evident in recent studies, especially with deep learning convolutional neural networks .
One of the most widely used transfer learning methods in deep learning models is fine-tuning. In convolutional neural networks, the method involves using a pre-trained model and training it further on some target task. ImageNet is the most common pre-trained model in convolutional neural networks as pointed out by Guo et al and Kornblith etal . It is uncommon to train computer vision models from scratch, and fine-tuning is becoming a standard in solving many computer vision problems. The transferability of different convolutional layers in The number of pre-trained models in CNNs continues to increase with time, and it is expected that the pre-trained model parameters are close to the required optimal parameters of the target task. The standard fine-tuning process involves either optimising the pre-trained model parameters or freezing specific layers (freezing weights mostly the last few layers) of the pre-trained model. When adopting a pre-trained model, the feature layers are usually reused instead of replacing them and adding the target task classification layers as explained by Grega and Vili . Most computer vision tasks selected these initial layers due to their shareable feature characteristics (including colour blobs and Gabor filters) . The kernels in these layers extract characteristics that determine the features used in the higher layers. Using sufficient images that share these low-level characteristics strengthens these filters(kernels). Ge and Yu further state that these low-level characteristics have low restrictions if such is conducted, thereby returning much more training images than the high-level characteristics .
Apart from fine-tuning specific layers or using all the pre-trained model parameters, fine-tuning can also happen through the use of the pre-trained model as a feature extractor when the extracted features are fed into another classifier, such as the support vector machine (SVM) on top as indicated by Grega and Vili .
According to Li, Grandvalet and Davoine, the standard fine-tuning has been improved over the years, with two main approaches being adopted: selecting relevant data points or selecting layers, while the other approach adds regularisation to the loss function to achieve parameters closer to the source task .
This paper looks into the selection of layers; despite the excellent working of fine-tuning in transfer learning in convolutional neural networks, selecting the layers to fine-tune is still a manual process that involves lots of experimentation as discussed by Satsuki et al . Some studies prefer the bottom (initial layers, which are shown to provide generic abstract features) layers, while some recent studies did not favour either the initial or the middle layers. The top layers have more task-specific features and are favoured for selection. In the case of a large pretrained model, the manual selection of layers is a very inefficient design choice with the inability to adapt automatically . Therefore, there are no standard criteria for training layers and which to freeze. It is, therefore, an optimisation problem that also applies to the hyperparameters selection and the question of which layer or hyperparameter to select arises for optimal model performance .
Again since these pretrained models have been trained on large datasets and contain millions of parameters, using them in a standard fine-tuning scenario has a danger of overfitting due to the over parameterisation for the target dataset. Furthermore, the number of parameters and the source samples do not change, and the process is terminated earlier (early stopping) to avoid overfitting as noted by Ge and Yu .
Coming up with a global strategy that ensures dataset bias is also a big issue in determining the parameters to freeze or train since, in case of insufficient target dataset, some classes might have higher similarities with the data used in the pretrained model hence disadvantaging the rest of the classes.

LITERATURE REVIEW
This study seeks to overcome the manual selection of fine-tuning layers. This selection is addressed by analysing weights in the feature maps using DKL of weights cosine similarity in the layers. The following literature looks into previous research on these issues in fine-tuning.
Adaptive Fine-tuning
In a study by Guo et al , the researchers introduce the SpotTune approach to overcome the manual layers' selection (introducing a dynamic conditional computational method) and attain a global fine-tuning strategy. The approach uses a decision policy sampled from a discrete distribution with a lightweight neural network that decides the layers to be fine-tuned on a per-instance basis. It also uses a Gumbel softmax sampling approach introduced by Maddison, Daniel and Minka. This approach uses ten datasets and is implemented on the ResNet-50 and ResNet-26 architectures. It uses standard fine-tuning, feature extractor, stochastic fine-tuning, fine-tuning last-fine-tuning ResNet101, L2SP as the experimental baselines. In this study, the authors noted that the number of parameters reduced when using the global strategy.
In this approach, the researchers used one architecture(ResNet), and therefore the applicability cannot be extended to other models unless extensive experiments are used. Again, even other architectures may not apply since the policies are based on the residual blocks. The proposed approach seeks to identify a general formulation that cuts across the board.
AdaFilter: Adaptive Filter Fine-tuning for Deep Transfer Learning
Guo et al address the selection of reusable filters in a pretrained model by proposing the AdaFilter that reduces the number of trainable parameters for each example in the target dataset to reduce overfitting . In this approach, the research uses a recurrent neural network gate (with Gated Batch Normalization), wisely deciding which filters to reuse. In this approach, examples in the target task related to the source domain reuse the filters more, ensuring a better knowledge transfer. This concept of selecting filters mirror the selection of layers which the filters are the ones that still define which layer to select based on low-level characteristics [30]. So this concept still builds upon the previous studies of dynamic layers' selection. The study utilised seven public studies; Stanford dogs, Aircraft , MIT Indoors, UCF-101 , Omniglot , Caltech 256 - 30 and Caltech 256 – 60. It experimented on ResNet-50 pretrained model. Its baselines were: standard fine-tuning, fine-tuning half, random policy and L2-SP .
This research fails to address other layers within the network as it has been empirically proved; other layers may also give better target adaptation. The implementation of the approach is also considered one approach(ResNet-50), which utilises residual blocks. The proposed approach seeks to address other architectures and look into other layers' adoption.
Flex-Tuning
In a similar study addressing the dynamic selection of fine-tuning layers, Royer and Lampert introduce the flex-tuning approach . In the approach, analysis of fine-tuning each unit(layer) in the architecture is prominent. In the multi-layered convolutional architecture, a network is constructed to see the effects of a given unit when fine-tuned while keeping the rest of the layers frozen. An early stopping criterion is applied to monitor the performance on the validation dataset to prevent overfitting. These tested units ' iterations adopt the best architecture in the selected target fine-tuned model. This approach is experimented with on small CNN architectures (5 and 2 layer convolutions) and large Inception 2 architecture. It uses the CIFAR, MNIST, PACS and ILSVRC2012 datasets. Its baselines are all fine-tuning layers, last fine-tuning layers, and scaling and shifting operations as further explained by Sun et al . The study reported that the use of early or intermediate layers gave better target domain adaptation of the pretrained models.
This study addressed using various layers' sections empirically, proving that other layers can be fine-tuned. It also addressed layer-by-layer, but it was only implemented on a single architecture. A variety of other architectures would have strengthened its validity.

Transfer Learning Layer Selection using Genetic Algorithm
In this study, Nagae, Kawai and Nobuhara addressed the issue of manual layers' selection since the release and adoption of complex pretrained models in transfer learning is becoming difficult. The authors propose a PathNet approach that utilises genetic algorithms. In this approach, a genotype is used to represent the pretrained model layer weights, and then the layer with the highest validation accuracy is used for the fine-tuning process. There can be numerous selected genotypes in the architecture. These layers are represented using binary numbers where a one means selected genotype and 0 for a layer to be frozen. This approach experiments on the InceptionV3.It utilises the CIFAR-100 dataset. Its baseline includes; training the model from scratch (no fine-tuning) and the standard fine-tuning.
Stepwise PathNet: A Layer-By-Layer Knowledge-Selection-Based Transfer Learning Algorithm
This approach is based on the PathNet layer selection method. Imai, Kawai and Nobuhara extend the PathNet study by utilising the tournament selection algorithm(TSA). The algorithm defines which layers need to be selected from the pre-trained model to construct the same architecture of the pre-trained neural network. This approach uses the PathNet layer characteristics, facilitating layer-by-layer selection. The experiments use the InceptionV3 pretrained model adopting the CIFAR-100, SVHN21 and Food-101 datasets.
Selective Fine-Tuning (Borrowing Treasures from the Wealthy)
In this study, Ge and Yu address the issues of insufficient data in the target domain by using images with similar low-level characteristics in the source domain . This is because ImageNet and Places datasets are used in simple transfer learning. However, the ratio of parameters of the model remains, forcing the model to overfit the proposed approach. A source domain with sufficient data is used simultaneously with a target learning task to identify that subset of closely related images in the target domain. This process utilises two filters (Gabor filters) that return histograms of filter bank responses and kernels in convolutional layers of AlexNet pretrained on ImageNet. The approach utilises Stanford dogs 120, oxford flowers 102, Caltech 256, MIT indoor 67 as the datasets. It is experimented on standard fine-tuning, selective method, training from scratch with source images, Gabor filters, and random source samples as the baselines. The ResNet-152 is used as the pretrained model.
Transfer Learning with Adaptive Fine-Tuning
In this study, Grega and Vili introduce another method for selecting dynamic fine-tuning layers: differential evolution based fine-tuning(DEFT) . The approach is rooted in the differential evolution algorithm by Storn and Price, which defines the layer selection mechanism and the evaluation of the selected layers. The layer selection gives the binary array values for each layer which the evaluation gives the layer's predictive performance in the convolutional neural network. The process is iterated for the layers until a maximum desirable performance is reached. The layers selected are the ones with the least cross-entropy loss values. The approach utilises Osteosarcoma data, and it has experimented on the VGG16 architecture.

METHODOLOGY
To adequately introduce the proposed approach, we look at how a convolutional neural network works.

Convolutional Process
Convolutional neural network architecture comprises a convolutional layer which is the primary building block of the network as explained by Gopika et al , activation function, for example, the rectified linear activation function(ReLU), a pooling layer and a fully connected layer, as shown in Figure 1. In the convolutional layer, an input image is convolved using a filter (kernel matrix) on a receptive field to identify the low-level features of the image in that layer. The output of the convolution process is a stack of filters which are then passed through an activation layer and a pooling layer reducing the feature maps' dimensionalities. This process is repeated depending on the depth of the network. This work introduces the layer selection method tracing the process in the convolutional layer, feature map values activation and the pooling layer.
[image:]
FIGURE 1 A convolutional neural network

In the convolution process, a kernel matrix (weight filter) is moved through the image in the set expressed as shown in Figure 2.
[image:]
FIGURE 2 Convolution process elements
Given a 3*3 input image G, the filter (H) performs a spatial mapping on G extracting features reducing the parameters due to the weight sharing through the convolving. In this case, a 2*2 filter is used. The output of each filter is a filter map with a group of pixels represented by a lower dimension. The convolved value of each input array position is represented by Equation 1.
 	 (1)
O (1,1) value is the weighted average over the local receptive field in the G matrix. The convolution operation is summarised as a multiplicative factor of the input image matrix (G) and the kernel matrix H, as shown in Equation 2, given that H m*m and G l*l 	
				 (2)
Where O (i, j) contains information of the receptive field of the input array given that m < l.
The output of the convolution operation is a feature map c whose elements go through an activation function, adding non-linearity a = f(c) outputting an activated value a. ReLU is one of the activation functions used in the convolutional neural network. The ReLU zeros all the elements whose value is less than 0 as expressed in Equation 3, resulting in a matrix of activations with values equal or greater than zero.
	 (3)
If we get a feature map from different factors shown in Figure 2 with activated values as shown in Figure 3(a), pooling can then be applied as shown in (b), resulting in (c) and (d).
[image:]
FIGURE 3 Pooling activated feature map values. (A) Activated feature map, stride of 2, (B) Activated feature map, stride of 2 on max and average pooling, (C) Max pooled feature map and (D) Average pooled feature map
The pooling in Figure 3 applies a stride of size 2. The stride is moved across the image, taking the maximum value in the m*m pooling region and the average-pooling mean. The pooling layer provides translational invariance as pointed out by Bera and Shrivastava , allowing the stride factor to downsample the spatial dimensions of the feature maps. This downsampling also reduces the computational complexity .
The pooling of activations is made possible since they are less sensitive to specific locations in the image structure than the original input image. This property enables multi-layering in deep neural networks(CNN) since the activations can scale invariantly, allowing more features to be extracted down the layers [30].
Consider the case of the two pooling methods with the activation values in Figure 3; the average pooling uses all the elements in the stride to generate the pooled feature map. If the activation values have low magnitudes, they weigh the other substantial magnitudes. This downweighing is higher if their values are zeros. If the hyperbolic tangent function (tanh) activation is used, the positives and negatives cancel, resulting in smaller pooled values. In the case of max pooling and the activation, values have low magnitudes, the chances of selecting a high value are reduced, resulting in smaller pooled responses as explained by Zeiler and Fergus .
The correlation of the weight matrices can give the differences between the layers' filters, and even the gain of one layer over another can be expressed using the Kullback-Leibler divergence (DKL). This formulation can better select the optimal layers in the target domain. The cosine similarity is a better correlation metric since it has lower complexity than other metrics like subspace collinearity as noted by Vermaas, Vandic, and Frasincar .

Cosine Similarity
 (4)
Cosine similarity measures the similarity between two vectors. The lower the value, the higher the similarity. Given two vectors, m and n, their cosine similarity is cos (m, n) defined in Equation 4.
Cosine similarity has been used in various ways in artificial neural networks. Chen et al used a study to calculate the difference of picture vector features in a transfer learning network for footprint image retrieval . Cosine similarity is used in the network as a search tool for closely similar footprint images, as expressed in Equation 5.
 	(5)
Where q represents the feature vector of an image being searched, and Ti represents the feature vector of the ith footprint in the picture library for N features. Jin et al uses cosine similarity to show how weight correlation in neural networks affects the generalisation ability of a neural network on the probably approximately correct (PAC) Bayesian framework . For CNN, the weight correlation is expressed as an average layer correlation defined in Equation 6.
 		(6)
Where is the cosine similarities between the filters, N is the number of neurons and and is the zth columns of the i and j filter matrices.
In a further study by Pieterse and Mocanu, cosine similarity is used in two neurons activations with a cosine similarity close to zero, indicating no meaningful relationship between them . If two neurons exhibit similar behaviour, this indicates that the value of one neuron can help predict the value of the other neuron and can therefore aid in propagating patterns present in the data.
Luo et al further uses cosine similarity to express weight and the previous layer output. In the authors' case, the use of the dot product is unbounded, which increases the risk of neuron large variance, making the model sensitive to the change of input distribution, resulting in poor generalisation, and aggravating the internal covariate shift slows down the training.
In this study, the pretrained initial network's weights are represented as w and the number of filters as M in defining the network's weight correlation (definition 1).
Kullback-Leibler Divergence
This is a quantity for measuring the similarity between two probability distributions as defined by Theodoridis . Given two distributions, p and q. The Kullback-Leibler divergence (DKL) is defined in Equation 7 as:
 	(7)
Where DKL(p||q) = 0 if and only if p=q.
DKL has been employed in convolutional neural networks classification. In a study by Yuhong et al , a DKL scale filter bank is used to obtain a down-sampled spectrum on two datasets using a frequency warping scale for the acoustic scene classification.
In a study by Togami et al , DKL is used to evaluate the probabilistic output signal in their model to separate multi-channel speech sources using a deep neural network. The probability distributions are from the unsupervised method and the supervised signal of the deep neural network. The proposed model works on the microphone input signal in teleconferencing systems.
Definition 1(Convolutional layers Weight correlation) Given a weight matrix(filter) wfi ∈ ℝn*n of the lth layer, where n*n is the size of the kernel. wfx ∈ ℝn*n and wfy ∈ ℝn*n are the xth and yth filters, respectively, in the tensor. Reshaping the wfx ∈ ℝn*n and wfy ∈ ℝn*n as wf’x and wf’y, respectively. The weight correlation of the layer filters is defined in Equation 8 by:
 	 (8)
Where Ml is the number of filters in the network on the kth column, and cos (wfi) is the cosine similarity between the layer filter matrices.
Definition 2 (Signed convolutional layers’ weight correlation) Given the lth layer with reshaped filters wf’1 ∈ ℝn*n, wf’2 ∈ ℝn*n, wf’3 ∈ ℝn*n, …, wf’n ∈ ℝn*n with wf’+vex ∈ ℝn*n and wf’-vey ∈ ℝn*n as the positive weights and negative elements respectively in the layer tensor filters; the weight values cosine correlation can be defined by;
	 (9)
Where cos (wf+-i) is the cosine similarity of the positive and negative weights between the filter matrices.
Definition 3 (Cosine Similarity DKL) Given the lth layer with reshaped filters wf’1 ∈ ℝn*n, wf’2 ∈ ℝn*n, wf’3 ∈ ℝn*n, …, wf’n ∈ ℝn*n , whose weight cosine similarities are represented as Cos(wf’1), Cos(wf’2), Cos(wf’3),…,Cos(wf’n), the DKL of the filters can be defined in terms of filters cosine similarities as:
 		(10)
) is the DKL of the network's convolutional layer; this definition also applies to the positive and negative elements of the filters matrices. Since DKL uses probability distributions, we use the softmax function to transform the cosine similarity values for the outcomes into probability distributions. The softmax function works on the assumptions that:
i) An element wi is in the range of 0 and 1
ii) The summation of ,…, is 1
Using the cosine similarities in the range of -1 and 1, the values should be transformed to fit the two outlined assumptions.
Given a cosine similarity distribution k where , the softmax value) for element wi is defined in Equation 11.
 (11)
We can then express equation 10 using equation 11 in Equation 12 as;
 		(12)
The exponential used in the softmax takes the positives and the negatives. The positive exponentials give a higher value, and the negative exponential approaches zero due to exponential decay. We can then rank the layers with the DKL. The role of the DKL is to show the differences in the weight filters and signed weight filters distribution of the layers.
In this proposed approach, the first step involves identifying convolutional layers of the pretrained model and identifying the ImageNet weight values. This step identifies convolutional layers where , with representing the shape of the weights of a Layer L. The weights shape refers to the individual kernel weight array dimensions. For example, the array with the activation values in Figure 3 has a tensor shape of (6,6) with two dimensions. For ResNet50 and VGG16 pretrained models, given a convolutional layer as , the shape of the weights (dimensions) of the layer as , and as the size(number of array elements); is identified when and , otherwise the represents a convolutional layer for other pre-trained CNN models(DenseNet169, InceptionV3). is defined in Equation 13:
 		 (13)
Where and represent Resnet50 and VGG16, respectively, while DenseNet169 and InceptionV3 models are represented as . These other pretrained have more than one weights dimensions.
Once the convolutional layers have been identified, the second step involves the identification of specific(positive or negative) weights as expressed in Equation 14.
 	(14)
The weight correlation is then calculated and expressed in DKL for the various layers in Equations 9,10,11and 12. The layers with the lowest DKL terms are finally selected as candidates for fine-tuning.
The contributions of this paper can be outlined as follows:
· We propose using DKL on the model weights cosine similarity, which gives a better dynamic selection of fine-tuning layers. This selection improves model accuracy based on three methods: positive weights cosine similarity DKL, positive weights cosine similarity KL divergence and positive-negative weights cosine similarity DKL. These methods show how the weights affect the fine-tuning process and performance accuracy.
· We conduct the fine-tuning processes on four publicly available datasets on four ImageNet pretrained models, and the proposed methods give a performance accuracy of between 10.8% to 24% over three standard transfer learning baselines.
· We analyse the impact of positive and negative weights on the fine-tuning process and dynamically select the fine-tunable layers.

EXPERIMENTS
Datasets
The experiments used the Cifar10, Cifar100, MNIST and fashion-MNIST datasets [60]. These are outlined in Table 1.
TABLE 1. Distribution of samples for the experimental datasets
	Dataset
	Training
	Validation
	Classes

	Cifar 10
	50000
	10000
	10

	Cifar100
	50000
	10000
	100

	MNIST
	60000
	10000
	10

	Fashion-MNIST
	60000
	10000
	10

All the input images are scaled to a resolution size of 224*224 pixels. This normalisation of images ensures that all the features fall within a similar range of features and do not activate particular layers. Furthermore, if left unnormalised, the calculated gradients in the backpropagation would be too large, causing a divergence instead of the expected convergence to the global minima. This scaling also gave an equal resolution to those of the ImageNet network. The datasets are divided into batches of 64 images. There was no image augmentation in these experiments.
Pre-Trained Model Architectures
The experiments are performed on four pretrained models: DenseNet169, VGG16, InceptionV3 and ResNet50.
Densenet169: The DenseNet169 model performs image classification with input sizes of 224*224-pixel images. It has 1000 classes matching those of the ImageNet model. It has 14 million parameters, and just like the other DenseNets, it uses dense connections between layers through the dense blocks. The features are concatenated before being passed into the layers [53].
VGG16: The VGG16 belongs to the family of VGG models. These VGGs are built on an analysis that increases the depth of the network with filters of 3*3. The image input sizes are 224*224 pixels and passed through a stack of convolutional layers .
InceptionV3: This pretrained model is a convolutional network that uses label smoothing and 7*7 convolutions. It uses input images with minimum receptive field resolutions of 79*79 . It was also trained on the ImageNet dataset with 1000 output classes.
ResNet50: This is a pretrained model using ImageNet inputs. It takes input sizes of 224*224 pixels. It also has 1000 output classes .
All the pretrained models used in this work were trained on the ImageNet dataset. In this regard, therefore, the weights are evaluated as pretrained weights in the ImageNet network.
Experimental Setup
The experiments are implemented using Tensor Flow 2.4.1 and trained on Google Cloud Platform Virtual Machine (16vCPUs,40.5GB memory) and PaperSpace cloud platform (Quadro P4000 8CPU 30GB RAM GPU). The training utilises ImageNet weights and SGD optimiser with a momentum of 0.9. It also uses a learning rate of 1e-4 with a batch size of 64.
1 |
2 |
3 |
4 |
4.1 |
4.2 |
4.3 |
Experimental Parameter Settings
The experiment parameters involved training the model for 50 epochs with mini-batches of 64 images. The SGD optimiser was used with a learning rate of 0.00001 and a momentum of 0.9. It also used the categorical cross-entropy loss function. Other parameters added on top of the network layers are an upsampling layer for the InceptionV3 pretrained model, a flattening layer and a dropout layer with a probability of 0.5. The use of dropout as a regularisation element ensures that all the nodes in the layers have an equal chance of training the model and is not left to a few heavily-weighted nodes that could dominate the training process. The classification layer in each of the modified pretraining models in all the methods uses a softmax function.
Experimental Methods
In this study, positive and negative weights methods based on cosine similarity and DKL are explored as new alternatives to layer selection. These methods include positive weights cosine similarity, negative weights cosine similarity, positive-negative weights cosine similarity, positive weights cosine similarity DKL, negative weights cosine similarity DKL and positive-negative weights cosine DKL.
Positive weights cosine similarity: This evaluates the effects of positive weights cosine similarity. Positive weights are the positively signed weight elements in a convolutional kernel. The cosine similarity is evaluated between the filters of a layer giving the mean cosine similarity value. This is iterated in all the convolutional layers of the network.
Negative weights cosine similarity: This evaluates the effects of the negatively signed weight elements in a convolutional kernel. The cosine similarity between the kernels of a layer is evaluated, resulting in a mean cosine similarity value. This value is the one that is compared against the values of the other layers.
Positive-Negative weights cosine similarity: This measures the cosine similarity between the positively signed weights and the negatively signed weights of a given kernel of a convolutional layer. The result is the mean cosine value of an entire layer. The resultant value is then compared to the values generated by the other layers.
Positive weights cosine similarity DKL: This determines the effect of DKL between two positive weighted cosine similarity distributions.
Negative weights cosine similarity DKL: This determines the DKL between two negative weight cosine similarities distributions. Each distribution comes from a convolution layer of a pretrained model.
Positive-Negative Weights cosine similarity DKL: determines the DKL between two distributions of positive-negative cosine similarities. Each distribution comes from a convolutional layer of a pretrained model.
The first results comparison uses all the methods, while the second looks at the DKL methods.
Conventional Baselines
The experiments performed in this paper are compared to three transfer learning baselines. These include:
· Feature extraction involves adding a classification layer to the pretrained model repurposing the previous feature maps to the target datasets.
· Fine-tuning last-k layers involves unfreezing the top layers where k can be 1,2 or 3. We then add a classifier on top of the network. We then train the unfrozen layers and the added classification layers.
· Standard fine-tuning: this involves fine-tuning all the parameters of the pre-trained model.
RESULTS AND DISCUSSIONS
This section presents and discusses the results of the performed experiments. The results are presented in two sections: section one compares the accuracy of all weights methods; cosine similarity of positive weights, cosine similarity of negative weights, cosine similarity of positive-negative weights, DKL of positive cosine similarity, DKL of negative cosine similarity, DKL of positive-negative cosine similarity. The other section compares the performance of the three DKL methods against the conventional baselines of the k-layers fine-tuning, standard fine-tuning and feature extraction.
Comparison Between the Selection Methods
The study compares the six methods, as shown in Tables 1-4. The comparison involves using each method on the pretrained models on each of the four datasets. The reported accuracy is the validation accuracy. The validation accuracy was used in these experiments since it gives a better model performance analysis than the training accuracy. Furthermore, the experiments used did not overfit to warrant training accuracy.

TABLE 2. Comparison of Fashion-MNIST dataset performance of selected models
	
Network
	Fashion-MNIST

	
	Cosine similarity
	Kullback-Leibler divergence

	
	Positive
	Negative
	Positive-negative
	Positive
	Negative
	Positive-negative

	
	High
	Low
	High
	Low
	High
	Low
	High
	Low
	High
	Low
	High
	Low

	ResNet50
	90.15
	90.30
	89.87
	89.92
	90.02
	90.21
	90.07
	90.08
	89.97
	89.91
	91.89
	91.35

	VGG16
	90.88
	90.21
	90.75
	90.77
	90.20
	90.46
	90.62
	90.19
	90.34
	90.55
	91.58
	90.78

	InceptionV3
	91.46
	90.78
	90.59
	90.65
	90.45
	90.31
	90.60
	90.29
	90.42
	90.16
	91.03
	90.40

	DenseNet169
	90.56
	90.28
	90.13
	90.63
	90.55
	90.70
	90.52
	90.46
	90.25
	90.03
	92.19
	91.36

TABLE 3. Comparison of MNIST dataset performance of selected models
	
Network
	MNIST

	
	Cosine similarity
	Kullback-Leibler divergence

	
	Positive
	Negative
	Positive-negative
	Positive
	Negative
	Positive-negative

	
	High
	Low
	High
	Low
	High
	Low
	High
	Low
	High
	Low
	 High
	Low

	ResNet50
	98.98
	99.01
	98.76
	98.90
	98.85
	98.83
	98.72
	99.03
	98.96
	98.99
	99.45
	99.25

	VGG16
	99.34
	98.29
	99.28
	99.27
	99.25
	99.24
	99.26
	99.28
	99.20
	99.28
	99.31
	99.18

	InceptionV3
	98.80
	98.78
	99.28
	99.27
	99.63
	99.35
	98.10
	98.06
	98.04
	98.03
	93.68
	91.70

	DenseNet169
	89.45
	89.20
	88.56
	89.69
	99.14
	99.04
	91.09
	90.29
	90.24
	90.15
	90.40
	89.70

TABLE 4. Comparison of CIFAR10 dataset performance of selected models
	
Network
	CIFAR10

	
	Cosine similarity
	Kullback-Leibler divergence

	
	Positive
	Negative
	Positive-negative
	Positive
	Negative
	Positive-negative

	
	High
	Low
	High
	Low
	High
	Low
	High
	Low
	High
	Low
	High
	Low

	ResNet50
	68.08
	67.25
	67.68
	66.94
	67.98
	67.30
	67.72
	67.65
	67.50
	67.04
	68.58
	68.21

	VGG16
	80.13
	80.01
	79.73
	80.00
	80.35
	80.15
	80.46
	80.18
	80.50
	79.88
	82.45
	80.12

	InceptionV3
	86.31
	84.23
	85.76
	85.70
	85.43
	86.01
	81.98
	80.19
	82.27
	81.65
	73.56
	69.55

	DenseNet169
	77.23
	75.36
	76.78
	76.44
	76.90
	76.84
	77.46
	77.32
	76.88
	77.37
	78.13
	77.10

TABLE 5. Comparison of CIFAR100 dataset performance of selected models
	
Network
	CIFAR100

	
	Cosine similarity
	Kullback-Leibler divergence

	
	Positive
	Negative
	Positive-negative
	Positive
	Negative
	Positive-negative

	
	High
	Low
	High
	Low
	High
	Low
	High
	Low
	High
	Low
	High
	Low

	ResNet50
	18.92
	16.89
	18.82
	17.91
	18.08
	18.00
	19.03
	18.61
	18.68
	18.73
	19.52
	19.98

	VGG16
	38.49
	36.24
	36.56
	38.11
	38.64
	36.28
	37.21
	37.13
	37.49
	36.58
	20.77
	13.53

	InceptionV3
	57.16
	54.56
	54.01
	54.16
	58.23
	57.25
	30.24
	29.45
	29.36
	26.47
	35.22
	30.55

	DenseNet169
	34.31
	33.08
	35.00
	34.15
	34.25
	34.17
	34.68
	34.32
	35.25
	35.02
	57.16
	54.56

Comparing the positive method to the negative cosine similarity method; gave the best accuracy for the cosine similarity methods, giving 14 out of 16 best accuracies. The positive cosine similarity method is followed by the positive-negative cosine similarity method to the negative cosine similarity method, with 10 out of 16 overall accuracies. The negative cosine similarity was the least accurate method with two best accuracies to the overall 16.
The positive-negative DKL divergence method is the best performing method involving divergence with 12 out of 16 divergence methods. In the DKL methods, the negative KL divergence method performed the least.
In comparing the accuracy margins, the positive cosine similarity methods had 1.01% to 3.15% accuracy improvements compared to the negative and the positive-negative cosine similarity method. The positive-negative cosine similarity method improved 9.69% to 10.58% over the negative cosine similarity methods.
In the DKL methods, the positive-negative gave the highest margin of 16.44% to 16.72% accuracy improvements compared to the other DKL methods. Additionally, it is noted that the DKL methods give better accuracies than the cosine similarity methods.
The cosine similarity methods used the higher layers in the network. This was not the case for the DKL positive cosine similarity and the DKL negative cosine similarity; they utilised the lower and middle layers of the network. However, the higher layers were used for the DKL positive-negative cosine similarity, explaining the higher accuracies over the other DKL methods. In previous studies, these layers have been shown to give better accuracies due to their task-specific training, unlike the lower and middle layers that process the low-level features of the images [12].
[image:]
FIGURE 4 VGG16 accuracy plot on CIFAR100.The word "Hcos" refers to higher positive-negative cosine similarity, and "Lcos" refers to lower positive-negative cosine similarity.
The MNIST datasets gave better accuracies than the CIFAR datasets. It is noted that the CIFAR 100 dataset gave the least accuracies among the four datasets, a similar trend noted by [57]. They noted that CIFAR 10 performed better in the VGG and ResNet architectures with a standard deviation of 0.306 on ResNet50 and 9.95 for InceptionV3. The same trend of the dataset is observed by Nagae, Kawai and Nobuhara . The CIFAR 100, however, did not overfit as the researcher reported in their experiments. The poor performance of a large dataset like CIFAR100 was also observed in the WikiArt dataset in SpotTune experiments by Guo et al , owing to the many training samples.
Comparison Between the Selection and Baseline Methods
This section reports and discusses the accuracy of various methods in the selected pre-trained models. The DKL methods are used in the comparisons.
The DKL positive-negative similarity method performed better than other methods. As noted in Tables 5 to 9 (and Figures 5,6 and 7), the baseline methods performed marginally lower than the three strategies, in instances where the negative gives better accuracy than the positive DKL, the positive still exhibit lower loss value and an indication of better learning by the model like in the case of InceptionV3 model in Table 5.

[image:]
FIGURE 5 Loss on ResNet50 on CIFAR10 dataset. The word “PDKL” refers to positive DKL, “NDKL” refers to negative DKL and “PNDKL” refers to positive-negative DKL
[image:]
FIGURE 6 Loss on ResNet50 on Fashion-MNIST dataset
[image:]
FIGURE 7 Loss on ResNet50 on MNIST dataset
TABLE 6. Comparison of DKL using selected Fine-tuning methods on Inceptionv3 model
	
	Datasets

	Method
	Cifar10
	Cifar100
	MNIST
	Fashion-MNIST

	
	Accuracy
	Loss
	Accuracy
	Loss
	Accuracy
	Loss
	Accuracy
	Loss

	DKL Positive similarity
	77.78
	0.6584
	22.68
	3.4822
	98.18
	0.0644
	87.90
	0.3337

	DKL Negative similarity
	78.67
	0.6294
	23.17
	3.5288
	98.16
	0.0657
	87.95
	0.3362

	DKL Positive-Negative similarity
	77.73
	0.6486
	23.16
	3.4755
	98.10
	0.0686
	87.81
	0.3387

	1st layer Fine-tuning
	66.26
	0.9999
	12.06
	4.0132
	91.66
	0.2914
	80.71
	0.5478

	2nd layer fine-tuning
	67.22
	0.9913
	11.95
	4.0776
	91.78
	0.2855
	80.87
	0.5508

	3rd layer fine-tuning
	66.62
	0.9941
	10.85
	4.1405
	92.12
	0.2763
	79.94
	0.5703

	Feature extraction
	66.93
	0.9870
	13.12
	3.9801
	91.97
	0.283
	80.67
	0.5524

TABLE 7. Comparison of DKL using selected fine-tuning methods on ResNet50 model
	
	Datasets

	Method
	Cifar10
	Cifar100
	MNIST
	Fashion-MNIST

	
	Accuracy
	Loss
	Accuracy
	Loss
	Accuracy
	Loss
	Accuracy
	Loss

	DKL Positive similarity
	55.16
	1.3773
	8.25
	4.3252
	98.30
	0.0584
	88.25
	0.3320

	DKL Negative similarity
	55.10
	1.3643
	7.52
	4.3458
	98.90
	0.0407
	88.45
	0.3339

	DKL Positive-Negative similarity
	56.47
	1.3657
	8.15
	4.3142
	98.50
	0.0516
	88.15
	0.3296

	1st layer Fine-tuning
	35.63
	1.8404
	3.76
	4.4939
	79.65
	0.8423
	63.60
	1.1461

	2nd layer fine-tuning
	28.77
	2.0564
	1.86
	4.6390
	87.20
	0.4795
	73.25
	0.7742

	3rd layer fine-tuning
	38.65
	1.7911
	6.48
	4.3937
	91.80
	0.2872
	76.50
	0.6440

	Feature extraction
	39.58
	1.7680
	3.85
	4.5271
	79.40
	0.8478
	63.00
	1.1531

TABLE 8. Comparison of DKL using selected fine-tuning methods on VGG16 model
	
	Datasets

	Method
	Cifar10
	Cifar100
	MNIST
	Fashion-MNIST

	
	Accuracy
	Loss
	Accuracy
	Loss
	Accuracy
	Loss
	Accuracy
	Loss

	DKL Positive similarity
	73.65
	1.5237
	74.66
	0.7655
	99.55
	0.0219
	88.25
	0.3194

	DKL Negative similarity
	73.94
	1.5524
	74.96
	0.7710
	99.30
	0.0293
	88.10
	0.3261

	DKL Positive-Negative similarity
	72.45
	1.6521
	75.42
	0.7635
	99.70
	0.0191
	87.65
	0.3157

	1st layer Fine-tuning
	53.31
	2.5821
	57.45
	1.2703
	82.70
	0.6409
	75.45
	0.6972

	2nd layer fine-tuning
	58.04
	2.3470
	61.35
	1.1603
	89.75
	0.3694
	77.60
	0.5891

	3rd layer fine-tuning
	61.44
	2.1801
	64.63
	1.0682
	95.65
	0.1503
	81.40
	0.4873

	Feature extraction
	24.76
	3.8430
	66.97
	0.9937
	68.70
	1.3236
	69.55
	1.0733

TABLE 9. Comparison of Kullback-Leibler divergence using selected fine-tuning methods on DenseNet169 model
	
	Datasets

	Method
	Cifar10
	Cifar100
	MNIST
	Fashion-MNIST

	
	Accuracy
	Loss
	Accuracy
	Loss
	Accuracy
	Loss
	Accuracy
	Loss

	DKL Positive similarity
	69.19
	1.8130
	21.60
	3.8272
	99.05
	0.0245
	87.75
	0.3289

	DKL Negative similarity
	69.02
	1.8448
	22.17
	4.0282
	99.01
	0.0235
	88.20
	0.3252

	DKL Positive-Negative similarity
	69.20
	1.8707
	5.86
	4.6182
	98.78
	0.0412
	87.50
	0.3357

	1st layer Fine-tuning
	39.61
	3.3631
	5.82
	4.6236
	98.65
	0.0506
	79.30
	0.5858

	2nd layer fine-tuning
	40.74
	3.1759
	6.60
	4.5998
	98.60
	0.0566
	79.20
	0.5830

	3rd layer fine-tuning
	45.20
	3.0753
	3.95
	4.7043
	98.65
	0.0568
	79.45
	0.5631

	Feature extraction
	35.55
	3.4177
	5.96
	4.3568
	91.85
	0.3036
	75.30
	0.7101

[bookmark: _GoBack]The three conventional baselines used in these experiments give lower results than those introduced. These methods allow the algorithms to pick the best-suited layers for fine-tuning. The poor results given by the baselines have also been cited in the other experiments in the Flex tuning by Royer and Lampert that fine-tunes all layers and fine-tune the last fully connected units of the network. In the DEFT algorithm by Grega and Vili , layers are handpicked for fine-tuning similar to the last-k layers method. This selection is also the case as shown by Guo et al in the AdaFilter, which uses the standard fine-tuning, fine-tuning half, random policy and L2-SP conventional methods. The three methods perform better by a margin of 10.8%-11.74% in the InceptionV3 model, 15.52%-16.89% in ResNet50, 11.01%-12.5% in VGG16 and 23.82%-24% in DenseNet169.
Among the baselines, the feature extractor gives the least accuracy in many cases, as evident in the ResNet50, VGG16 and DenseNet169.This case is also noted in the SpotTune experiments by Guo et al . In Feature extractor, all the parameters are frozen but applying it to a new domain (domain shift) could lead to poor performance. The introduced methods give better stability and model generalisation, thereby adapting better in the new domain. As seen in Figures 6 and 7, the loss gradually decreases without overfitting.
Furthermore, the regularisation introduced by the dropout layers did not give an edge to the conventional methods, thereby underlining that the introduced methods performed much better. The regularisation used in these experiments prevented overfitting the model, which is common when using pretrained models in fine-tuning due to poor domain adaptation. The use of regularisation also gave stable model training, as reported by Grega and Vili .
It is worth noting that despite the improvements inaccuracies by the three introduced methods, they had higher computational complexity. Training on the DenseNet169 took 143s in CIFAR100 on the positive KL cosine similarity while the VGG16 took the least time on the CIFAR10 dataset taking 34s for the first 20 epochs. The Feature extraction baseline took the least time in almost all cases, with the least time being 11s in the VGG16 CIFAR10 dataset. These results can be attributed to the complexity of the pre-trained model (DenseNet169 has 169 layers to VGG16’s 16 layers). The time taken was also relative to the number of epochs used. In the case of CIFAR100 datasets, the accuracies were lower for the 50 epochs used, and this means that for higher accuracies, more epochs were needed, which would have given higher time complexity. These accuracies are also noted in the DEFT method .
CONCLUSION AND FUTURE DIRECTION
In this paper, the proposed new methods have demonstrated that selecting layers based on the cosine similarity of the weights can give better model accuracies and better domain adaptation. This is based on the experiments done on the VGG16, ResNet50, InceptionV3 and DenseNet169 pretrained ImageNet models on the CIFAR10, CIFAR100, MNIST and Fashion-MNIST datasets. The methods give an improvement rate of 10.8% to 24%. The methods address the dynamic selection of fine-tuning layers helping in deciding the ones to fine-tune and those to freeze, avoiding the manual selection of layers in the pretrained model while still giving the best performance for the network. These improvements show superiority or weights have some influence. The significant improvement is when using both positive and negative weights. Since the pretrained models have been trained on the ImageNet dataset, it is a good technique that enables better domain adaptation to the target dataset. Furthermore, the use of the proposed method further shows that other layers apart from the last-k layers can be used in transfer learning and still give good accuracies and adaptation. However, this seems to come at a computational cost of higher time complexity.
Future studies can be explored on other models and datasets to understand the extent of this methodology fully and even enhance the computational efficiency to be closer or better to the baseline methods.
AUTHOR CONTRIBUTION
Raphael Wanjiku: conceptualisation, methodology, software, validation, investigation, writing – original draft, writing – review & editing, visualisation.
Lawrence Nderu: conceptualisation, methodology, investigation, supervision, writing – review & editing.
Michael Kimwele: methodology, investigation, supervision, conceptualisation, methodology, investigation, writing – review & editing.
DATA AVAILABILITY STATEMENT
All the datasets are available via Keras, and the source code can be found in https://github.com/geekhack/Transfer-Learning-DKL_Layer-Selection.git
CONFLICT OF INTEREST
The authors have no conflict of interest relevant to this article.
REFERENCES
x
	1.
	Chenjing C, Shiwei W, Youjun X, et al. Transfer Learning for Drug Discovery. Journal of Medicinal Chemistry. 2020;63(16):8683-8694.

	2.
	Travers C, Daniel SH, Brett KBJ, et al. Opportunities and obstacles for deep learning in biology and medicine. Royal Society. 2018;15(141).

	3.
	J L, E S, T D. Fully convolutional networks for semantic segmentation. Paper presented at: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015; Boston.

	4.
	Tsung-Yu L, Aruni R, Subhransu M. Bilinear CNNs for Fine-grained Visual Recognition. Paper presented at: 2015 IEEE International Conference on Computer Vision (ICCV), 2015; Boston.

	5.
	Ross G, Jeff D, Trevor D, Jitendra M. Rich feature hierarchies for accurate object detection and semantic segmentation. Paper presented at: 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014; Ohio.

	6.
	Fuzhen Z, Zhiyuan Q, Keyu D, et al. A Comprehensive Survey on Transfer Learning. IEEE. 2021;109(1):43-76.

	7.
	Hongxia Y, Quan L, Angus Q, Chun H. Large Scale CVR Prediction through Dynamic Transfer Learning of Global and Local Features. Paper presented at: Proceedings of the 5th International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications at KDD 2016, 2016; San Francisco, California.

	8.
	Tsung-Yi L, Michael M, Serge B, et al. Microsoft COCO: Common Objects in Context. Paper presented at: European Conference on Computer Vision, 2014; Zurich.

	9.
	Weifeng G, Yizhou Y. Borrowing Treasures from the Wealthy: Deep Transfer Learning through Selective Joint Fine-tuning. Paper presented at: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017; Honolulu.

	10.
	Yunhui G, Yandong L, Liqiang W, Tajana R. AdaFilter: Adaptive Filter Fine-Tuning for Deep Transfer Learning. Paper presented at: AAAI 2020, 2020; New York.

	11.
	Qian Z, Haigang L, Yong Z, Ming L. Instance transfer learning with multisource dynamic TrAdaBoost. Scientific World Journal. 2014:1-8.

	12.
	Stergios C, Lukas E, Andreas C, Stavroula M. Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis. IEEE Journal of Biomedical and Health Informatics. 2017:76-84.

	13.
	S C, Suhrid B, Raghuraman G. DLID: Deep Learning for Domain Adaptation by Interpolating between Domains. Paper presented at: ICML workshop on challenges in representation learning, 2013; Atlanta.

	14.
	Jindong W, Cuiling L, Chang L, Yidong O, Tao Q. Generalizing to Unseen Domains: A Survey on Domain Generalization. Paper presented at: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021; Montreal.

	15.
	Zhilin Y, Ruslan S, William WC. Transfer Learning for Sequence Tagging with Hierarchical Recurrent Networks. Paper presented at: 5th International Conference on Learning Representations, ICLR 2017, 2017; Toulan.

	16.
	Jing Z, Wanqing , Philip O, Dong X. Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective. ACM Computing Surveys. 2019;52(1):1-38.

	17.
	GREGA V, VILI P. Transfer Learning With Adaptive Fine-Tuning. IEEE Access. 2020:196197-196211.

	18.
	Parminder B, Kristjan A, B C. Dynamic Transfer Learning for Named Entity Recognition. Precision Health and Medicine. 2018:78-86.

	19.
	Simon , Jonathon S, Quoc VL. Do Better ImageNet Models Transfer Better? Paper presented at: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019; Long Beach, California.

	20.
	Musab C, Ozal Y, A U, Y D. AN OVERVIEW OF POPULAR DEEP LEARNING METHODS. European Journal of Technic. 2017;7(2):165-176.

	21.
	Xuhong L, Yves G, Franck D. Explicit Inductive Bias for Transfer Learning with Convolutional Networks. Paper presented at: Proceedings of the 35 th International Conference on Machine Learning, 2018; Stockholm.

	22.
	Satsuki N, Daigo K, Shin K, Hajime N. Automatic layer selection for transfer learning and quantitative evaluation of layer effectiveness. Neurocomputing. 2022;469:151-162.

	23.
	Yang C, Jieming M, Cheng C, Xuefeng X, Run Z, Zhiming C. An Ensemble Deep Neural Network for Footprint Image Retrieval Based on Transfer Learning. Journal of Sensors. 2021:1-9.

	24.
	Jia Deng WDRSLJLKLaLFF. ImageNet: A large-scale hierarchical image database. Paper presented at: 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, 2009; Miami, FL.

	25.
	Sinno Jialin Pan QY. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering. 2009;22(10):1345-1359.

	26.
	Matthew E. Taylor PS. Transfer learning for reinforcement learning domains: a survey. JMLR. 2009;10:1633−1685.

	27.
	A. Khosla NJBYLFF. Combining randomization and discrimination for fine-grained image categorization. Paper presented at: CVPR Workshop 2011, 2011; Colorado.

	28.
	Ariadna Quattoni AT. Recognizing indoor scenes. Paper presented at: 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009; Miami, FL.

	29.
	Andreas V, Serge B. Convolutional networks with adaptive inference graphs. International Journal of Computer Vision. 2019:730-741.

	30.
	Brenden M. L, Ruslan S, Joahua B. T BT. Human-level concept learning through probabilistic program induction. Science. 2015:1332-1338.

	31.
	Christian S, Vincent V, Sergey I. Rethinking the Inception Architecture for Computer Vision. Paper presented at: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016; Las Vegas.

	32.
	Chunjie , Jianfeng Z, Xiaohe , Lei. Cosine Normalization: Using Cosine Similarity Instead of Dot Product in Neural Networks. Paper presented at: Artificial Neural Networks and Machine Learning – ICANN 2018, 2018; Rhodes, Greece.

	33.
	Clifford RJJ, Matt A, Nick CF, et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. Journal of magnetic resonance imaging. 2008;27(4):685-691.

	34.
	Gao H, Zhuang L, Laurens DM, Kilian QW. Densely Connected Convolutional Networks. Paper presented at: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017; Honolulu.

	35.
	Gaojie J, Xinping Y, Liang Z, Lijun Z, Sven S, Xiaowei H. How does Weight Correlation Affect Generalisation Ability of Deep Neural Networks? Paper presented at: NeurlPS 2020, 2020; Virtual.

	36.
	Hakan B, Basura F, Efstratios G, Andrea V, Stephen G. Dynamic Image Networks for Action Recognition. Paper presented at: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016; Las Vegas.

	37.
	Jindong W, Yiqiang C, Wenjie F, Han Y, Meiyu H, Qiang Y. Transfer Learning with Dynamic Distribution Adaptation. ACM Transactions on Intelligent Systems and Technology. 2020;11(1):1-25.

	38.
	Joost P, Constantin M. Evolving and Understanding Sparse Deep Neural Networks using Cosine Similarity. ArXIV. 2019:40-52.

	39.
	Kaiming H, Xiangyu Z, Shaoqing R, Jian S. Deep Residual Learning for Image Recognition. Paper presented at: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016; Las Vegas.

	40.
	Masahito T, Yoshiki M, Tatsuya K, Yu N. Unsupervised Training for Deep Speech Source Separation with Kullback-Leibler Divergence Based Probabilistic Loss Function. Paper presented at: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020; Barcelona.

	41.
	Mohsen G, Alireza M, Tina K, et al. Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation. Paper presented at: Medical Image Computing and Computer Assisted Intervention − MICCAI 2017, 2017; Quebec.

	42.
	Naimul K, Marcia H, Nabila A. Transfer Learning with Intelligent Training Data Selection for Prediction of Alzheimer’s Disease. IEEE Access. 2019:50-62.

	43.
	P G, C SK, M HC, et al. Chapter two - Single-layer convolution neural network for cardiac disease classification using electrocardiogram signals. Deep Learning for Data Analytics - Foundations, Biomedical Applications, and Challenges. Coimbatore, India: Academic Press; 2020.

	44.
	Pau R, Josep MG, Guillem C, F X, Jordi G. Attend and Rectify: a gated attention mechanism for fine-grained recovery. Paper presented at: Proceedings of the European Conference on Computer Vision (ECCV), 2018; Munich.

	45.
	Qianru S, Yaoyao L, Tat-Seng C, Bernt S. Meta-Transfer Learning for Few-Shot Learning. Paper presented at: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019; Long Beach, California.

	46.
	Raymond V, Damir V, Flavius F. Incremental Cosine Computations for Search and Exploration of Tag Spaces. Paper presented at: International Conference on Database and Expert Systems Applications, 2012; Bratislava.

	47.
	Royer A, Lampert C. A flexible selection scheme for minimum-effort transfer learning. Paper presented at: 2020 IEEE Winter Conference on Applications of Computer Vision, 2020; Colorado.

	48.
	Satsuki N, Shin K, Hajime N. Transfer Learning Layer Selection Using Genetic Algorithm. Paper presented at: 2020 IEEE Congress on Evolutionary Computation (CEC), 2020; Glasgow.

	49.
	Shuangfei Z, Hui W, Abhishek K, et al. S3Pool: Pooling with Stochastic Spatial Sampling. Paper presented at: 017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017; Honolulu.

	50.
	Shunsuke I, Shin K, Hajime N. Stepwise PathNet: a layer-by-layer knowledge-selection-based transfer learning algorithm. Scientific Reports. 2020:1-10.

	51.
	Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Paper presented at: The 3rd International Conference on Learning Representations (ICLR2015), 2015; San Diego.

	52.
	Sinno JP, Ivor WT, James TK. Domain Adaptation via Transfer Component Analysis. IEEE Transactions on Neural Networks. 2011:199-210.

	53.
	Somenath , Vimal KS. Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification. International Journal of Remote Sensing. 2020:2664-2683.

	54.
	Subhransu M, Esa R, Juho K, Matthew B, Andrea V. Fine-Grained Visual Classification of Aircraft. HAL. 2013:10-30.

	55.
	Theodoridis S. Probability and Stochastic Processes. In Probability and Stochastic Processes, Machine Learning. Cambridge: Academic Press; 2015.

	56.
	Yuhong Y, Huiyu Z, Weiping T, et al. Kullback–Leibler Divergence Frequency Warping Scale for Acoustic Scene Classification Using Convolutional Neural Network. Paper presented at: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019; Brighton.

	57.
	Yunhui G, Honghui S, Abhishek K, Kristen G, Tajana R, Rogerio F. SpotTune: Transfer Learning Through Adaptive Fine-Tuning. Paper presented at: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019; Long Beach, California.

	58.
	Zeiler MD, Fergus R. Visualizing and Understanding Convolutional Networks. Paper presented at: European Conference on Computer Vision, 2014; Zurich.

x

21

image2.wmf

image3.wmf

image4.wmf

image5.wmf
0

1

0

2

0

3

0

4

0

5

0

E

p

o

c

h

0

.

0

0

0

.

0

5

0

.

1

0

0

.

1

5

0

.

2

0

0

.

2

5

0

.

3

0

0

.

3

5

A

c

c

u

r

a

c

y

H

c

o

s

_

T

r

a

i

n

H

c

o

s

_

V

a

l

i

d

a

t

i

o

n

L

c

o

s

_

T

r

a

i

n

L

c

o

s

_

V

a

l

i

d

a

t

i

o

n

image6.wmf
0

1

0

2

0

3

0

4

0

5

0

E

p

o

c

h

1

.

0

1

.

5

2

.

0

2

.

5

3

.

0

L

o

s

s

P

D

K

L

N

D

K

L

P

N

D

K

L

1

s

t

_

L

a

y

e

r

2

n

d

_

L

a

y

e

r

3

r

d

_

L

a

y

e

r

F

e

a

t

u

r

e

_

E

x

t

r

a

c

t

i

o

n

image7.wmf
0

1

0

2

0

3

0

4

0

5

0

E

p

o

c

h

0

.

5

1

.

0

1

.

5

2

.

0

2

.

5

L

o

s

s

P

D

K

L

N

D

K

L

P

N

D

K

L

1

s

t

_

L

a

y

e

r

2

n

d

_

L

a

y

e

r

3

r

d

_

L

a

y

e

r

F

e

a

t

u

r

e

_

E

x

t

r

a

c

t

i

o

n

image8.wmf
0

1

0

2

0

3

0

4

0

5

0

E

p

o

c

h

0

.

0

0

.

5

1

.

0

1

.

5

2

.

0

2

.

5

3

.

0

L

o

s

s

P

D

K

L

N

D

K

L

P

N

D

K

L

1

s

t

_

L

a

y

e

r

2

n

d

_

L

a

y

e

r

3

r

d

_

L

a

y

e

r

F

e

a

t

u

r

e

_

E

x

t

r

a

c

t

i

o

n

image1.tif

