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Abstract
Flux balance analysis is currently the standard method to compute metabolic fluxes in genome-scale networks. Several variations employing diverse objective functions and/or constraints have been published. Here we propose a hybrid semi-parametric version of flux balance analysis that combines mechanistic-level constraints (parametric) with empirical constraints (non-parametric), at the genome-scale. A CHO dataset with 27 measured exchange fluxes obtained from 21 reactor experiments served to evaluate the method. The reduced CHO genome-scale model comprehended 686 metabolites, 788 reactions and 210 degrees of freedom. The experimental flux dataset could be compressed to 6 principal components retaining 93.7% of explained variance. The conjugation of both types of constraints is coded as a linear program with comparable computational cost as standard flux balance analysis. The hybrid flux balance analysis showed a significant reduction in the specific growth rate prediction error in comparison to the non-hybrid version. The hybrid method was eventually used to design a metabolically efficient feed to extend cell expansion from 9.87 Mcell/ml to 22.48 Mcell/ml at the point of induction with minimal accumulation of byproducts. It is concluded that the predictive advantage of the hybrid method resulted from the statistical abstraction of regulatory mechanisms, which were absent in the standard flux balance analysis.
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Introduction
Genome-scale models (GEMs) are systems-level representations of the entirety of metabolic functions of a cell (Baart et al., 2012). They are reconstructed from the full set of annotated gene-to-protein relationships. All reactions are mass- and energy-balanced, thus ensuring stoichiometric balancing.  GEMs are mathematically stated as systems of linear algebraic equations (under the steady state hypothesis), which can be solved in metabolic fluxes at relatively low computational cost. However, due to the size and redundancy of metabolic subsystems participating in GEMs, the resulting linear system is typically large, sparse and highly undetermined. Flux Balance Analysis (FBA), which presumes a metabolic objective, became the standard mathematical method to overcome this problem (Orth et al., 2010; Lee et al., 2006). The mathematical system underlying FBA is still undetermined, but optimal flux solutions can nonetheless be obtained under pre-defined metabolic objectives.
[bookmark: _Hlk79924518][bookmark: _Hlk92450457]The first published consensus GEM of CHO is relatively recent (Hefzi et al., 2016). It comprehends 4723 reactions and 2773 metabolites, particularized in 3 cell line variants (CHO-K1, CHO-DG44 and CHO-S). Since the publication of this novel resource, a few studies have attempted to use GEMs to optimize CHO cell culture employing different FBA techniques.  Hong et al. applied a standard FBA for in silico study of the effects of sparging conditions on CHO-DG44. The FBA employed was based on metabolic connectivity constraints and measured flux constraints regarding amino acids, glucose, lactate, specific growth rate and specific antibody productivity. It was found that mild and harsh sparging conditions lead to decreased cell growth, viability and productivity (Hong et al., 2020). The authors concluded that sparging stress rewires amino acid metabolism towards H2O2 turnover, thus they hypothesized that increased amino acid uptake caused by sparging stress contributes to restoring the redox homeostasis against oxidative stress.
Yeo et al. expanded the previously published CHO GEM (changes in pathways such as cholesterol metabolism, fatty acid activation, elongation and desaturation, glycerophospholipid metabolism, and N- and O-glycan biosynthesis) and added enzyme capacity constraints within the flux balance analysis framework (ecFBA) to significantly reduce the flux variability in a biologically meaningful manner (Yeo et al., 2020). This allowed for good prediction of lactate metabolism for different CHO clones grown on different media. They concluded that the lactate-pyruvate cycling could be beneficial for CHO cells to efficiently utilize the mitochondrial redox capacity and that ecFBA could be used to identify key engineering targets.
Calmels and co-authors (Calmels et al., 2019) manually curated and reduced the CHO-DG44 GEM variant by modifying 601 reactions. These modifications were intended to simplify the model and to cope with missing constraints related to regulatory effects as well as thermodynamic and osmotic forces.  The parsimonious enzyme usage FBA (pFBA) method was employed constrained by the uptake and secretion of 24 metabolites. The objective function chosen was the maximization of cell growth.  They showed that the reduced GEM allowed good predictions of extracellular metabolites rates (r2≥0.8) and good prediction of cell growth rate (r2=0.91). This study highlights the adaption of a CHO GEM to an industrial process. 
Recently, Schinn and co-authors combined a modified CHO GEM with a statistical learning method for time-course prediction of individual amino acid concentrations in fed-batch cultivations of 10 CHO clones with different growth and productivity profiles (Schinn et al., 2021). The statistical learning feature of the model consisted in two empirically derived equations that ‘offsets’ flux predictions by FBA. Overall, this approach allowed for good approximation of most amino acid consumptions (excluding alanine and glycine), when the steady-state assumption holds true. They suggested the use of this approach to control nutrients feeding in order to avoid premature nutrient depletion or to provide early predictions of failed bioreactor runs. 
Huang and co-authors performed the first in silico culture medium optimization study using the genome-scale CHO-K1 full model with the objective of IgG production improvement (Huang et al., 2020). Standard FBA, based on metabolic connectivity constraints only, was applied to calculate optimal flux scenarios in the pre-induction phase (maximization of the specific growth rate) and in the post-induction phase (maximization IgG specific productivity) for two different media and the same cell line (CHO-K1 GS knockout). They analyzed the metabolic differences between these two cell culture conditions by metabolic pathway analysis. Through the comparison of pathway fold-change between high and low production cases, they have hypothesized culture medium enrichment scenarios. They successfully increased IgG productivity by 33% by enriching the feed with 3 amino acids (i.e., Leu, Ile and Val). It should be noted that the CHO-K1 GEM was not used as a predictive tool in this study. It was rather used as a tool to generate rational hypothesis for culture media improvement.
As shown in the literature review, different FBA techniques with diverse constraints were applied to CHO GEMs. In this study we propose for the first time a hybrid semi-parametric FBA approach. Hybrid semi-parametric systems are a family of methods that combine parametric functions (derived from knowledge) and nonparametric functions (derived from data) in the same model structure (von Stosch et al. 2014). Hybrid semi-parametric methods have high potential to combine GEMs with machine learning methods (Antonakoudis et al., 2020). In previous studies, we have addressed the problems of hybrid metabolic flux analysis (Carinhas et al. 2011, Isidro et al., 2016) and hybrid elementary modes analysis (Ferreira et al. 2011, Teixeira et al., 2011). In this study we propose for the first time hybrid semi-parametric flux balance analysis (HybridFBA) at the genome-scale.
Materials and methods
Cell culture and Analytics 
A GSK proprietary CHO-K1 cell line coding for the target antigen was grown in a GSK proprietary chemically defined medium. Cell amplification was performed in shake-flasks (Corning, NY, USA) whereas production of the antigen was carried out in 5L or 10L glass vessels (Sartorius, Göttingen, Germany) fed with chemically defined feeding solutions. Whereas the base medium never changed, feeding solutions did change in composition, in amount and time of feeding from one culture to another. Feeding solutions consisted in mixtures of amino acids, glucose and pyruvate. In the reactor devoted to the production of the antigen, cells were seeded at a density ranging from 0.4 to 1.0 106 cell/mL; they first grew at 37°C and the antigen production was negligible then; once a high enough viable cell density was reached, the temperature was decreased, causing growth to gradually stop and antigen production to rise. The pH was controlled at 7.0 with 0.5M NaOH and sparged CO2 together with overlay aeration. DO was controlled at 30% by sparging pure oxygen.  Stirring was adjusted to around 20 W/m³ whatever the scale of the culture vessel. Feeding happened once a day and consisted in the quasi-simultaneous addition of a bolus of all the feeding solutions involved. It usually started after the temperature was shifted unless a high cell density was targeted as part of the experimental setup. Sampling was achieved daily (with some exceptions). Viable cell density and viability were measured using a ViCell cell counter (Beckman, Indianapolis, USA). Samples were also assayed for glucose, lactate, pyruvate, glutamine, ammonium, glycerol and lactate dehydrogenase with a CedexBio-HT metabolite analyzer (Roche, Penzberg, Germany); for all amino acids by RMN at Eurofins Spinnovation (Oss, The Netherlands); for antigen with an Octet HTX (Pall, NY, USA). Depending on the seeding density and on the target biomass at temperature shift, the whole cell culture lasted for 12 to 17 days.
Extracellular reaction rates estimation and analysis 
Steady-state reaction rates of 27 extracellular species were estimated for the exponential growth phase (approximately 0-70 cultivation hours) of 21 independent reactor experiments. The reaction rates, with units mmol/(g-DWh), were obtained by robust linear regression of reacted amount (units of mmol) against the integral of viable cell mass (units of g-DWh). Glutamine (Gln) is chemically unstable decomposing with first-order kinetics into equimolar quantities of pyrrolidone carboxylic acid and ammonium (NH4) (Ozturk et al., 1990; Széliová et al., 2020). The total amounts of Gln and NH4 that resulted from extracellular decomposition were subtracted to the total reacted amounts before the respective rates were estimated. The flux data comprising 21 data points (rows) and 27 measured fluxes (columns) were auto-scaled row wise to zero mean and unit variance. The normalized data were subject to principal component analysis (PCA), resulting in the following space transformation
								(1)
with  the normalized rate data,  the matrix of loadings (e.g., contribution of measured variables to principal components) and   (the values of principal components in the transformed data space). The singular value decomposition algorithm was employed.
CHO genome-scale model (GEM) 
The consensus CHO-K1 GEM (Hefzi et al., 2016), accessible in www.chogenome.org, was adopted in this study. This model contains 2773 metabolites, 4723 reactions and 2603 degrees of freedom. A reduction was performed based on previously published methodologies (Quek et al., 2014; Schellenberger et al., 2011). Particularly, the CHO-K1 model transport reactions were reduced to match GSK proprietary medium composition. This implied the automatic elimination of 3935 intracellular reactions to maintain consistency. This process resulted in a reduced GEM, which is medium specific, containing 627 intracellular metabolites, 788 reactions and all the required extracellular species to match GSK proprietary medium composition.  This translated into the following system of linear algebraic equations:
									 (2a)
									 (2b)
 0										 (2c)
with  the (627788) intracellular stoichiometric matrix,  is the (nrexch788) extracellular stoichiometric matrix,  the (7881) flux vector,  the net exchange flux vector with dimension (nrexch1),  is the (7881) vector of irreversible reactions. This system is highly undetermined with 210 degrees of freedom. The validity of model was confirmed by linear least squares regression of modeled against measured extracellular fluxes for the e 21 reactor experiments, showing negligible sum of squared residuals.
Hybrid Flux Balance Analysis (HybridFBA)
HybridFBA is an extension of FBA by the inclusion of empirical constraints derived from PCA. The degrees of freedom are the metabolic fluxes,  (as in standard FBA) and additionally the scores of the principal components obtained by PCA. For the case of specific growth rate,  minimization or maximization, the problem is posed as follows:
								 	(3a)
Subject to:
	Reduced GEM equations							(2a-c)
				(3b)
					             (3c)
HybridFBA is constrained by the reduced GEM equality/inequality constraints (Eqs. 2a-c). Additionally, a set of inequality constraints derived from PCA Eq. (1) are added (Eq. 3b). The PCA Eq (1) is transformed in a set of inequality constraints under the control of the Relaxation Factor (RF) parameter. When RF=0, Eq. (3b) reduces to Eq. (1). When RF = , Eq. (3b) has no effect in the optimization and HybridFBA becomes analogous to standard FBA. The optimization is also constrained to a pre-defined design space defined by Eq. (3e), with  the mean measured experimental flux,  the standard deviation of measured flux, and  a design parameter used to enlarge or reduce the design space. This problem was solved by constrained linear programming (LP) using the dual-simplex algorithm with arbitrarily large number of iterations (MATLAB toolbox). The algorithm terminates when the optimal solution is reached.
Results and discussion
Experimental flux data set 
Experimental flux values of 27 extracellular species were estimated from time series data of 21 reactor experiments. Figure 1 shows the flux data dispersion during exponential growth corresponding to the initial 70 hours of cultivation (approximately). The mean flux values and respective standard deviations are compared with literature data in Table 1. The literature data (Carinhas et al, 2013; Selvarasu et al, 2012) refer to the exponential growth of CHO-K1SV and CHO-K1 cell lines respectively. The experimental fluxes obtained in this study are in range of literature data despite the different cell lines and cultivation protocols. The analysis of the mean rate values reveals however a characteristic phenotype. 
The maximum specific growth rate attained in this study was 0.0282 h-1 with a standard deviation of 0.0034 h-1 (11.9% of the mean), on par with literature data (Tale 1). The measured fluxes reveal signs of a “healthy” cell growth, as there is accumulation of Glycine (Gly), from the serine metabolism, and Glycerol (Glyc), which is an indication of high (NADH/NAD+) redox state (Pereira et al., 2018). All amino acids but Alanine (Ala), Aspartate (Asp) and Glycine (Gly) were consumed during exponential growth. The amino acids with highest consumption rates were Gln, Ser and Leu, with rate values comparable to literature data (Table 1).
The CHO cells used in this study consumed more Glc compared to the literature and, consequently, more Lac was produced (Table 1). Nevertheless, the ratio of Lac to Glc was significantly lower than 1, similar to other studies (Carinhas et al., 2013; Selavarasu et al., 2012, Table 1). Alternative fates of Glc are the pentose phosphate pathway or simply intracellular Pyr accumulation. The latter can be secreted or used to produce Ala, or proceed to the TCA cycle.  High glycolytic activity with low Lac to Glc ratio is coherent with Pyr release to the medium (observed in this study in opposition to literature data) and also with a higher Ala release rate to the medium (Table 1). 
Glutamine (Gln) was consumed concomitantly with glutamate (Glu), ammonium (NH4), aspartate (Asp) accumulation.  Glu is typically found in excess intracellularly due to its numerous sources, namely Ala, Gln, Lysine (Lys) and proline (Pro) (Sonnewald et al, 2014). The NH4 accumulation flux is comparable to other studies (Carinhas et al., 2013; Selavarasu et al., 2012, Table 1), linked to amino acids catabolism and to direct degradation of Gln in the medium. Asp may accumulate from asparagine (Asn) via L-asparaginase (Warangkar et al., 2009) or via aspartate transaminase (AspTA), a reversible reaction that produces Asp and α-ketoglutarate (Keto) from Glu and OAA (Son et al., 2016). 
Principal Component Analysis
The estimated maximum specific growth rate has a standard deviation of 0.0034 h-1 (11.9% of the mean). The other fluxes show, however, a higher dispersion. The glucose (Glc) uptake has a standard deviation of 27,3% of the mean. Lactate (Lac), glutamine (Gln), glutamate and ammonium (NH4) have standard deviations close to 50% of the mean. The observed dispersion may be caused by experimental error or by multiple physical processes. Metabolic switches between by-product release or uptake may occur in CHO cells, for example for lactate (Hartley et al, 2018), which may lead to large variations especially in cultivations with different cell growth conditions. The flux data set was subject to principal component analysis (PCA) for a better understanding of potential variation causes (Figure 2). The 27 process descriptors (the measured rates) could be compressed to 6 orthogonal principal components (PC) with explained variance higher than 90%. The explained variance by PC 1-to-6 was 45.5%, 64.0%, 74.3%, 82.6%, 88.7% and 93.7%. A significant part of fluxes variances is therefore dictated by metabolic mechanisms rather than by random error.
The biplot of principal component 2 over principal component 1 (Figure 2B) evidences strong correlations between groups of fluxes. It stands out that the PCA coefficients of the cell growth rate are low in comparison to the other process descriptors, indicating that the cell growth rate is less sensitive to process variation. Also, Gln and Glu have moderate contributions to data variance (low PCA coefficients). On the contrary, the Glc flux appears strongly correlated with Lac and NH4 along the direction of principal component 2. The consumption of most amino acids appears highly correlated with each other (along the direction of principal component 1). Some amino acids fluxes are positively correlated with Lac and NH4 fluxes, while others are negatively correlated. These observations are compatible with high and variable glycolytic activity with minor impact on the cell growth rate. It seems to be theoretically possible to modulate metabolism in order to minimize the accumulation of byproducts while maintaining exponential growth. 
Flux Balance Analysis
[bookmark: _Hlk96855466]The PCA results evidence strong correlations between measured fluxes. Different groups of reactions change in the same direction, most likely due to metabolic regulation mechanisms. It is however difficult to infer mechanisms as some principal components have opposed interpretation. For a better understanding, FBA was performed assuming metabolic optimality towards the production of biomass during exponential growth (Huang et al., 2020, Calmels et al., 2019, Feist et al., 2010, Ibarra et al., 2002). More specifically, the HybridFBA method was applied to maximize the specific growth rate under different test case scenarios with null principal components (NPC = 0). This removes the inequality constraints Eq. (3b) and makes HybridFBA analogous to FBA.  In each test case scenario, the specific cell growth rate was both maximized and minimized to obtain a minmax solution interval, to better display the sensitivity of the FBA solution within the constraints domain. The overall results are shown in Figure 3.
In test case 1, FBA was applied with all the exchange fluxes but the specific growth rate constrained to the  domain ( . In other words, no boundaries were set for the specific growth rate. All other fluxes were free to move within the mean±1 flux space. This amounts to 26 inequality constraints defined by exchange flux measurements (Eq. (3e)). This analysis resulted in the specific growth rate interval of [0, 0.0393] h-1 with mean value of 0.0196 h-1. This interval comprehends the measured value but the predicted mean is 70% lower than the measured mean (0.0282±0.0034 h-1).
Test cases 2-5 are similar to test case 1, except the search interval was progressively enlarged from the  domain (in test case 1) up to the  (in test case 5). As a result, the specific growth rate minmax interval also increased to [0, 0.0649] h-1. In the test case 6, only the substrates were constrained to the  domain. All products including biomass were unbounded. The resulting specific growth rate interval was the same as in teste case 1 (where only biomass was unbounded). 
Finally, in test case 7 and 8, only Glc and Gln were bounded in the search intervals of   and  respectively. This very flexible scenario resulted in a substantial enlargement of the FBA minmax interval [0, 0.125] h-1 (8.6 fold increase in relation to the mean measured value). 
All in all, these results show that the FBA solution interval always contains the measured mean value. The minmax solution tends to be much wider than the measurement variance. In some cases (test case 7 and 8) there is a significant offset between the predicted and measured mean values. The sum of squared residuals was 1.68 for the 8 test cases. 
Hybrid Flux Balance Analysis 
The flux balance analysis was repeated with the inclusion of PCA constraints (HybridFBA method) for the same test case scenarios. HybridFBA uses the same GEM related constraints of FBA and additionally the space transformation inequality constraints derived from PCA (Eq. 3b). In the present problem, the PCA was applied to the measured extracellular rates, thus Eq. (3b) adds nrexch=27 inequality constraints. On the other hand, HybridFBA has more decision variables than FBA. It optimizes the flux values of all GEM reactions (as in FBA) and additionally the score values associated to NPC principal components. The number of additional constraints is however higher than the number of additional decision variables. As such, the number of degrees of freedom in the HybridFBA method is reduced by (nrexch – NPC) in relation to FBA.  This reduction is always effective as long the PCA compresses the measured rate data into a lower dimension space of principal components. 
We have firstly investigated the calibration of the number of scores in the HybridFBA method. The test case 5 was considered as a base scenario because it has the widest search domain, namely .  Figure 4A shows the predicted maximum specific growth rate as function of the number of scores for arbitrarily small relaxation factor RF=0.5. The first column (light blue column) is the reference (experimental) mean value. The second column is the previously discussed FBA solution, which predicted a 2.18fold increase in relation to the experimental mean value (it should be noted that the FBA solution is equivalent to the HybridFBA solution with null principal components). All other solutions were obtained by HybridFBA for an increasing number of principal components (NPC) between 1-10. Indeed, the predicted specific growth rate depends on the number of principal components chosen. The closest prediction to the measured specific growth rate was obtained with NPC=4.  Figure 4B shows the effect of the relaxation factor on the HybridFBA solution when fixing NPC=4. As expected, when the relaxation factor increases the PCA constraints (Eq. (3b)) are relaxed with the HybridFBA solution eventually converging to the FBA solution. 
Afterwards, the HybridFBA method with NPC=4 and relaxation factor RF = 1.0 was applied to minimize/maximize the specific growth rate under the same constraint scenarios previously adopted for FBA (It should be noted that RF=1.0 was the lowest value that complied with the constraints of all test cases 1-8). The overall results are shown in Figure 5. The specific growth rate interval contains the experimental mean value in every test case. Remarkably, the predicted specific growth rate half interval is within the ±2 experimental bounds in all cases.  The upgrade of FBA into HybridFBA showed a significant improvement particularly for the more flexible test case scenarios 7 and 8 (only Glc and Gln were constrained whereas all other compounds were unbounded). While HybridFBA slightly overpredicted the specific growth rate (1.05fold and 1.10fold of the mean) FBA showed a 4fold plus off-set in relation to the experimental mean. The HybridFBA sum of squared residuals (SSR) was 0.0016 for the 8 teste cases, which is 3 orders of magnitude lower than the SSR obtained by standard FBA (1.68). The HybridFBA solution interval is also much narrower when compared to the FBA solution interval. The FBA always found a feasible null growth solution in all test case scenarios when the objective function was set to minimize the specific growth rate. On the contrary, the HybridFBA always found a positive minimal growth solution with a minmax interval close to symmetry in relation to the mean experimental value.   
Figure 6 shows in more detail the specific growth rate maximization solution for test case 6 (this test case will the basis for the design of an optimal feed in the next section). In test case 6, only substrates were constrained to the mean±1 domain whereas the rates of products (Cho cells) and byproducts (Lac, NH4, Ala, Glu, Pyr, Glyc, Asp and Gly) were unbounded. The HybridFBA predicted a maximum specific growth rate, which is 1.12fold of the mean experimental value. The pink bars show the HybridFBA solutions for the constrained substrate fluxes. With few exceptions, the substrate fluxes converged very close to the lower bound (mean-1) (pink bars in Figure 6), which is consistent with the objective of biomass production maximization.  It is noteworthy that the fluxes of the unconstrained products (open blue bars in Figure 6) are all within the experimental error.  For example, the predicted Lac (0.234 mmol/gDW/h), NH4 (0.082 mmol/gDW/h) and Ala (0.105 mmol/gDW/h) accumulation rates are very close to the respective experimental values (0.208 mmol/gDW/h, 0.050 mmol/gDW/h and 0.094 mmol/gDW/h respectively). This is in deep contrast with the FBA solution which predicted unrealistic byproduct fluxes (for example, Lac, 2.167 mmol/gDW/h, NH4, 1.993 mmol/gDW/h, Ala, -1.883 mmol/gDW/h) far off the experimental bounds.             
[bookmark: _Hlk95305868]Design of a cell growth culture media feed (OptCHO)
[bookmark: _Hlk96856655]Given the relative success of HybridFBA to predict products and byproducts fluxes from substrates fluxes, a culture media feed was designed in silico to expand the viable cell count prior to induction targeting minimal byproducts accumulation. Firstly, the HybridFBA was employed to minimize the sum of byproducts secretion rates (Lac, NH4, Ala, Glu, Pyr and Asp; Gly and Glyc were excluded as they are associated with a healthy growth phenotype, Pereira et al., 2018) whereas the substrates fluxes were constrained to the mean±3 domain. Additionally, the specific growth was fixed to the target 0.0282 h-1 (mean experimental value ± 5% variation to introduce some flexibility in the optimization). Table 2 summarizes the design results obtained by HybridFBA. A generic decrease in substrates fluxes (with exception of Gln) is forecasted concomitantly with a generic decrease of byproducts accumulation. It should be noted that Lac, Pyr, Glu and Asp inverted their role as byproducts in the reference scenario to become substrates in OptCHO.  The scores of principal components 1 and 2 calculated by HybridFBA were -0.78 and -4.71 respectively, thus scoring OptCHO in the left/lower quadrant in the biplot of Fig 2B. This is coherent with the maximization of the growth rate simultaneously with the minimization of substrates and byproducts. 
[bookmark: _Hlk96954619]To gain a better understanding of the underlying metabolic patterns, the activity of GEM subsystems predicted by HybridFBA were analyzed comparatively to the reference condition (Fig 7). The TCA activity in OptCHO is significantly increased mainly fueled by the higher Gln and Asp consumption rates (e.g. Dean et al., 2013) and to a less extent by Pyr uptake (instead of secretion). Increased TCA activity indicates a more efficient metabolism (Dakubo 2006), which is consistent with the increase of oxidative phosphorylation, nucleotide interconversion, and fatty acid elongation subsystems. Lac consumption indicates that the Warburg effect is avoided (Glc mainly used for Lac production, Heiden et al., 2009), suggesting a more efficient metabolism. The OptCHO solution relatively increased glycolysis/gluconeogenesis activity despite the significant reduction in Lac secretion. Higher glycolytic rates with lower Glc consumption is explained by TCA intermediates recycling in the glycolysis. The increase of the mitochondrial transport activity further sustains the exchange of intermediates between glycolysis and other subsystems such as TCA. This exchange subsystem also contributes to the increase in pyruvate metabolism (transport to mitochondria and conversion of pyruvate to TCA intermediates). The increase in Pyr metabolism is also due to the Pyr and Lac uptake (flux inversions in relation to the reference).
A feed composition and feed rate controller were designed from the OptCHO fluxes (Table2 and Fig 7) and then validated in a reactor experiment. The guiding principle was to feed along time the computed amount of consumed substrates by the model. More specifically, the following steady-state material balance was applied:
						   			(6a)
with  the feed rate in mL/h,  a vector of concentrations in the feed (mmol/mL),   the consumption rates of substrates in mmol/(Mcellh) (computed by HybridFBA),  the viable cell count measured online in Mcell/mL and  the culture volume measured online in mL. The concentrations of substrates were computed in relation to glucose, .
									(6b)
The feeding rate controller is per mathematical equivalence given by the following Eq. 
								(6c)
A feed solution was formulated according to Eq. (6b). The reference Glc concentration was chosen such that all compounds are below 75% of the solubility limit. The feed controller (Eq. 6c) requires the on-line measurement of  (viable cell count in Mcell/mL) and  (culture volume, mL). It is a feedforward controller whereby the feed of nutrients reacts to the “perturbation” of higher/lower viable cells count inside the reactor. 
Figure 8 shows the results of the OptCHO feed implementation in a reactor experiment (green line and symbols) compared to a control cultivation where no feed was applied (blue line and symbols). Both cultures followed a similar exponential growth profile up to ~9 Mcell/ml. At this point the OptCHO feed started (time = 0 h in Figure 8) whereas the control culture was induced (blue dashed line and symbols refer to the post-induction phase). More specifically, the OptCHO feed started when the VCC reached 9.87 Mcell/ml and was prolonged for 48 hours until VCC reached 22.48 Mcell/ml (grey shadow in Figure 8). At the end of OptCHO, the culture was also induced (results not shown). The first key observation is that the CHO culture tolerated well the in silico feed. During OptCHO operation, the average growth rate was 0.015 h-1 thus lower than the design. This may be explained by the feedforward control strategy, which does not necessarily enforce exponential growth. Moreover, OptCHO predicted Lac, Pyr, Glu and Asp as substrates instead of byproducts, but they were not included in the feed. The Glc concentration slightly decreased (in accordance with the design) and lied below the control profile. Lac decayed from 18.32 to 7.22 mM and is significantly lower than the control profile, as predicted by the design. The Gln concentration slightly accumulated during OptCHO feed, which is in accordance with the design (increase of Gln flux). There is an excessive buildup of Glu and NH4 suggesting Gln overfeed, in conflict with the design. In the case of NH4, there is a buildup followed by stabilization. The NH4/biomass yield was however lower during OptCHO operation (0,42 micromol/Mcell) than in the preceding exponential growth phase (0,56 micromol/Mcell). This is qualitatively in agreement with the design that predicted a reduction in the NH4 accumulation rate but not its inversion. Pyruvate (Pyr) buildup was significantly reduced in comparison to the control feed. The buildup of Glyc (and Gly) is associated with a healthy growth phenotype (Pereira et al., 2018) and was not part of the objective function. All in all, the byproducts (Lac+Glu+NH4+Pyr) yield was +2.54 micromol/Mcell prior to OptCHO and then inverted to -0,40 micomol/Mcell during OptCHO operation.
Conclusions
[bookmark: _Hlk95303953]This study developed the concept of hybrid semi-parametric modeling at the genome scale with proof-of-principle the modeling and optimization of a CHO cultivation. Firstly, experimental fluxes were collected from 21 reactor experiments. The experimental fluxes portrayed a healthy cell growth phenotype with marked glycolytic activity and significant byproducts build-up during exponential growth. The flux data were analyzed by PCA and it was concluded that more than 90% of data variance could be explained by 6 orthogonal principal components, evidencing strong correlations between measured fluxes. A hybrid flux balance analysis  method (HybridFBA) was then developed that combines GEM constraints with flux correlation constraints deduced from PCA. It was hypothesized that PCA derived correlations reflect the cellular regulatory mechanisms that control the uptake of nutrients and that the inclusion of this information in the GEM could significantly increase the predictive power of flux balance analysis. This was confirmed in several specific growth rate prediction scenarios, showing that HybridFBA always predicted much closer to the experimental value than standard FBA. These results do not disqualify FBA as valid a design method as FBA can be further improved through the inclusion of additional constraints regarding enzyme kinetics, thermodynamics and/or regulatory processes, if such knowledge is available.  The key message is that the inclusion of additional empirical constraints in a hybrid construct is likely to further improve the predictive power. Using this novel tool, a cell growth feed was designed in silico and tested in a lab experiment, showing that the viable cell count could be increase from 9.87 to 22.48 Mcell/ml with lower byproducts build-up. One key advantage of the HybridFBA is the ability to learn from experience. While the GEM is a fixed part of the model, the PCA (and the hybrid ensemble per inherency) will improve with each new cultivation performed. This is aligned with the machine learning philosophy with the advantage of better interpretability through the GEM component. Lastly, the HybridFBA could be extended to the post-induction phase of different molecules. Other PCA constraints could be added to the GEM representing the unknown regulatory processes that control the assembly of the target molecule.  In theory, after enough validation cycles with different molecules, the extended HybridFBA could be applied as a tool to design ab initio custom feeds for every new molecule. 
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Tables
[bookmark: _Hlk95304389]Table 1. Mean flux values and respective standard deviation during exponential growth aggregated from 21 independent cultivations. The literature flux values were obtained from (1) Carinhas et al. (2013) and (2) Selvarasu et al. (2012). The fluxes units are in mmol/gDW/h for all metabolites and h-1 for the cell growth rate.
	
	This study
	Literature data

	Name
	mean
	
	s.d.
	(1)
	
	(2)

	µ
	2,82E-02
	3,36E-03
	3.06E-02
	2.47E-02

	Glc
	-3,84E-01
	1,05E-01
	-2.71E-01
	-1.98E-01

	Lac
	2,56E-01
	1,41E-01
	1.36E-01
	1.21E-01

	Gln
	-7,37E-02
	3,31E-02
	2.77E-03
	-6.74E-02

	Glu
	8,90E-03
	4,84E-03
	-1.24E-02
	9.50E-03

	NH4
	5,92E-02
	2,82E-02
	4.38E-02
	8.33E-02

	Pyr
	2,04E-03
	2,00E-02
	-1.08E-02
	na

	Glyc
	5,63E-03
	1,57E-03
	1.51E-02
	na

	Cit
	-9,41E-04
	1,96E-03
	2.21E-03
	na

	Ala
	9,47E-02
	1,21E-02
	2.37E-02
	1.13E-02

	Arg
	-1,09E-02
	4,81E-03
	-1.10E-02
	-2.01E-02

	Asn
	-7,13E-02
	1,19E-02
	-7.47E-02
	-4.06E-02

	Asp
	3,11E-03
	5,30E-03
	-2.52E-02
	-9.76E-03

	Cys
	-2,74E-03
	2,64E-03
	-5.22E-03
	-5.39E-03

	Gly
	2,49E-02
	4,37E-03
	6.97E-03
	2.09E-02

	His
	-5,62E-03
	1,90E-03
	-6.46E-03
	-4.07E-03

	Ile
	-1,37E-02
	5,42E-03
	-1.18E-02
	-1.06E-02

	Leu
	-2,13E-02
	6,59E-03
	-2.02E-02
	-1.57E-02

	Lys
	-9,82E-03
	6,15E-03
	-1.26E-02
	-1.40E-02

	Met
	-4,77E-03
	4,28E-03
	-4.80E-03
	-6.32E-03

	Phe
	-6,41E-03
	3,13E-03
	-6.46E-03
	-5.92E-03

	Pro
	-5,00E-03
	6,36E-03
	-1.16E-02
	-8.47E-03

	Ser
	-3,69E-02
	9,66E-03
	-4.31E-02
	-4.81E-02

	Thr
	-1,03E-02
	5,76E-03
	-1.53E-02
	-1.06E-02

	Trp
	-3,68E-03
	4,96E-03
	-3.17E-03
	-3.20E-03

	Tyr
	-4,25E-03
	3,59E-03
	-5.28E-03
	-9.82E-03

	Val
	-1,45E-02
	6,64E-03
	-1.51E-02
	-1.25E-02

























Table 2. OptCHO fluxes designed by HybridFBA in comparison to the reference fluxes (experimental data and respective standard deviation). In blue the metabolites that are byproducts in the reference condition and substrates in the OptCHO design. The fluxes units are in mmol/gDW/h for all metabolites and h-1 for the cell growth rate. The percentual variation in parenthesis refers to the OptCHO compared to the reference fluxes.

	Substrates
	Products

	Names
	Reference
	OptCHO
	Names
	Reference
	OptCHO

	Glc
	-3,84E-01 ± 1,05E-01
	-3,30E-01
(-14,1%)
	µ
	2,82E-02 ± 3,36E-03
	2,95E-0
 (+4,6%)

	Gln
	-7,37E-02 ± 3,31E-02
	-1,02E-01 (+38,2%)
	Lac
	2,56E-01 ± 1,41E-01
	-5,19E-03
 (-102,0%)

	Arg
	-1,09E-02 ± 4,81E-03
	-7,28E-03
 (-33,3%)
	Pyr
	2,04E-03 ± 2,00E-02
	-5,29E-03
 (-359,7%)

	Asn
	-7,13E-02 ± 1,19E-02
	-5,50E-02 
(-22,8%)
	NH4
	5,92E-02 ± 2,82E-02
	6,83E-03 
(-88,5%)

	Lcys
	-2,74E-03 ± 2,64E-03
	-1,89E-03 
(-30,8%)
	Glu
	8,90E-03 ± 4,84E-03
	-3,98E-03
 (-144,8%)

	His
	-5,62E-03 ± 1,90E-03
	-3,48E-03
 (-38,1%)
	Ala
	9,47E-02 ± 1,21E-02
	8,60E-02 
(-9,2%)

	Ile
	-1,37E-02 ± 5,42E-03
	-1,22E-02 
(-10,8%)
	Asp
	3,11E-03 ± 5,30E-03
	-5,35E-03
 (-271,7%)

	Leu
	-2,13E-02 ± 6,59E-03
	-2,36E-02 (+11,2%)
	Gly
	2,49E-02 ± 4,37E-03
	1,63E-02
 (-34,7%)

	Lys
	-9,82E-03 ± 6,15E-03
	-1,32E-02 (+34,7%)
	Glyc
	5,63E-03 ± 1,57E-03
	5,07E-03 
(-9,9%)

	Met
	-4,77E-03 ± 4,28E-03
	-3,40E-03 
(-28,6%)
	
	
	

	Phe
	-6,41E-03 ± 3,13E-03
	-5,66E-03 
(-11,8%)
	
	
	


	Pro
	-5,00E-03 ± 6,36E-03
	-7,04E-03 (+40,6%)
	
	

	


	Ser
	-3,69E-02 ± 9,66E-03
	-2,45E-02 
(-33,7%)
	
	

	


	Thr
	-1,03E-02 ± 5,76E-03
	-7,57E-03 
(-26,4%)
	
	

	

	Trp
	-3,68E-03 ± 4,96E-03
	-1,31E-03 
(-64,2%)
	
	
	


	Tyr
	-4,25E-03 ± 3,59E-03
	-3,72E-03 
(-12,4%)
	
	

	


	Val
	-1,45E-02 ± 6,64E-03
	-1,36E-02 
(-6,4%)
	
	
	

	Cit
	-9,41E-04 ± 1,96E-03
	3,61E-03
 (-483,9%)
	
	

	






[bookmark: _Hlk98251290]Figures
Figure 1. Box-plot of fluxes during exponential cell growth aggregated from 21 independent CHO cultivations. The bar represents the median, the box is the first and third quartile, and the whisker the minimum and maximum of the fluxes. Blue axis: fluxes with higher values. Orange axis: fluxes with lower values).

Figure 2. PCA of flux data of 21 reactor experiments (data points) and 27 extracellular rates (process descriptors) during exponential growth. A – normalized measured rates over PCA transformed rates. The colors refer to different measured species. B – Biplot of Principal Component 2 (18.5% explained variance) over Principal Component 1 (45.5% explained variance). Red dots represent score values of the 21 reactor experiments. Blue vectors represent the coefficients of process descriptors.

[bookmark: _Hlk92793189]Figure 3. Predicted specific growth rate by FBA for 8 test case scenarios. The light blue bar represents the mean experimental value. The horizontal dashed lines represents the experimental +1,+2 and +3 boundaries. The dark blue bars represent the computed specific growth rate interval by the model. The middle blue dash represents the predicted half-interval value Case 1 - All exchange fluxes except the specific growth rate were constrained to the   domain.  Case 2 - All exchange fluxes except the specific growth rate were constrained to the   domain.  Case 3 - All exchange fluxes except the specific growth rate were constrained to the   domain.  Case 4 - All exchange fluxes except the specific growth rate were constrained to the   domain.  Case 5 - All exchange fluxes except the specific growth rate were constrained to the   domain.  Case 6 - The same as case 1 for substrates only. All substrates are constrained to the   domain. The products have unlimited lower/upper bounds. Case 7 - Only Glc and Gln are constrained to the mean domain. All other compounds had unlimited bounds. Case 8 - Only Glc and Gln are fixed to the mean domain. All other compounds had unlimited bounds. The sum of squares of residuals (difference between the experimental mean and predicted half-interval value) was 1.68.

Figure 4. Calibration of the HybridFBA method. A - Predicted maximum specific growth rate as function of the number of principal components in the hybrid model (Eq. 3b) for a relaxation factor RF=0.5. B - Predicted maximum specific growth rate as function of the relaxation factor value for number of principal components NPC=4.

[bookmark: _Hlk78989392]Figure 5. Predicted specific growth rate by HybridFBA with number of principal components NPC = 4 and relaxation factor RF = 1.0 for 8 test case scenarios. The light blue bar represents the mean experimental value. The horizontal dashed lines represents the experimental +1,+2 and +3 boundaries. The dark blue bars represent the computed specific growth rate interval by the model. The middle blue dash represents the predicted half-interval value Case 1 - All exchange fluxes except the specific growth rate were constrained to the   domain.  Case 2 - All exchange fluxes except the specific growth rate were constrained to the   domain.  Case 3 - All exchange fluxes except the specific growth rate were constrained to the   domain.  Case 4 - All exchange fluxes except the specific growth rate were constrained to the   domain.  Case 5 - All exchange fluxes except the specific growth rate were constrained to the   domain.  Case 6 - The same as case 1 for substrates only. All substrates are constrained to the   domain. The products have unlimited lower/upper bounds. Case 7 - Only Glc and Gln are constrained to the mean domain. All other compounds had unlimited bounds. Case 8 - Only Glc and Gln are fixed to the mean domain. All other compounds had unlimited bounds. The sum of squares of residuals (difference between the experimental mean and predicted half-interval value) was 0.0016.
Figure 6. Comparison experimentally measured fluxes and HybridFBA predictions for test case 6 (All substrates were constrained to the ±1  domain whereas all products had unlimited lower/upper bounds). A – Specific growth rate (objective). Light blue bar is the measured specific growth rate. Dark blue is the respective model prediction. B, C – Predicted (bars) versus measured mean (square) with 1, 2 and 3 experimental bounds. Pink bars refer to the prediction of the substrate rates that were constrained to mean ±1.  The open blue bars represent the prediction of the unconstrained product fluxes. 

Figure 7. GEM subsystems activity variation of the OptCHO flux solution in relation to the reference condition. Blue bars represent the subsystem activity variation in mmol/gDWh in relation to the reference condition. The subsystem activity is computed as the sum of the absolute value of in/out fluxes to the subsystem. A value of 0 means that OptCHO activity is equal to the reference condition activity. A value >> 1 means that the subsystem is up-regulated in relation to the reference condition.  A value << 1 means that the subsystem is down-regulated in relation to the reference condition.  

Figure 8. Validation of the OptCHO feed in a reactor experiment. Blue lines and symbols refer to the control cultivation (without OptCHO). Green line and symbols refer to the design cultivation (with OptCHO feed). Time 0 corresponds to the onset of OptCHO feeding (in the design culture) or to induction (in the control culture). Dashed line and symbols refer to the post-induction phase in the control culture. The grey shadow line marks the time window (48 hours) for OptCHO feeding.  A, B, C, D, E, F, G, H– Measured concentrations of VCC, Glc, Lac, Gln, Glu, NH4, Pyr, and Glyc over process time 
26

