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Abstract
By employing the Nikiforov-Uvarov functional analysis (NUFA) method, we solved the radial Schrodinger equation with the shifted Morse potential model. The analytical expressions of the energy eigenvalues, eigenfunctions and numerical results were determined for selected values of the potential parameters. Variations of different thermodynamic functions with temperature were discussed extensively. Different quantum information theories including Shannon entropy, Fisher information and Fisher-Shannon product of the shifted Morse potential were investigated numerically and graphically in position and momentum spaces for ground and first excited states. The quantum information theories considered satisfied their corresponding inequalities including Bialynicki–Birula–Mycielski, Stam–Cramer–Rao inequalities and the Fisher–Shannon product relation.
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1. Introduction

In quantum mechanics, it is complex to determine the Schrödinger, Klein- Gordon and Dirac equation with some physical potential systems [1]. It is also known that the analytic solutions of the Schrödinger, Klein- Gordon and Dirac equations are only possible in few cases when the angular momentum  for some well-known physical potential models [2-3]. Different researchers have studied the Schrödinger, klein-Gordon and Dirac equations for s-wave case [4-5]. Some of these  potentials include: Schioberg potential [6], improved  Rosen Morse potential  [7],  multiparameter potential [8 ], Kratzer potential  [9],  Poschl-Teller potential  [10], Woods-Saxon potential  [11], to mention but a few. Different methods such as the exact quantization rule [12], asymptotic iteration method [13], Nikiforov-Uvarov method [14], and the newly proposed Nikiforov-Uvarov functional analysis method (NUFA) [15] have been used by many authors to obtain the bound state solutions and scattering state solutions of these potential systems.  Ikot et al. [16] investigated the eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential.  Jia et al. [17] obtained the thermodynamic properties for the Lithium dimer with the improved manning Rosen potential model. Ikot et al. [18] studied the Shannon entropy and fisher information-theoretic measures for Mobius square potential using the newly proposed NUFA method to obtain the energy eigenvalues and the corresponding wave function. Neves et al. [19] also investigated the thermodynamic properties for short-range interaction potentials.  Recently, Ikot et al. [20] by means of the Nikiforov-Uvarov functional analysis method obtained the approximate analytical solutions of the Klein-Gordon equation with generalized Morse potential. In this paper, we intend to investigate the thermal properties and the quantum information measures with the shifted Morse potential model. The shifted Morse potential is defined as [21-22]:

                                     		 (1)


where  is the dissociation energy,  is the screening parameter, A and  B are arbitrary constant.
This work is organized as follows: In Section 2, we present a brief review of the NUFA method. Section 3 is devoted to the solutions of the Schrodinger equation with the shifted Morse potential. In Section 4, the analytical expressions of different thermodynamic functions of shifted Morse potential are presented. We also give a brief description of the quantum information theories of shifted Morse potential in one dimension in Section 5. The various results obtained are discussed in Section 6. Finally, a brief concluding remarks is presented in Section 7.
2. A Brief Review of NUFA Method
The NUFA method was introduced for solving exponential type potential models using the idea of NU method [23], parametric NU method [24] and the functional analysis method [25]. A new approach of NUFA method is proposed for solving central potential models leading to confluent hypergeometric function. Given  the parametric form of NU proposed by Tezcan and Sever [26] of the form

		                                (2)






Where  and  are all parameters.  It can be noticed in equation (2) that the differential equation has two singularities at  and , but , the aim here is to create  a simple method for solving equation (2) when , if equation (2)  becomes

										(3)
Putting eq.(3) into eq.(2) leads to the following equation:

			(4)

Eq. (4) can be reduced to a confluent hypergeometric equation if we set  and we get

          				(5)


Eq. (5) becomes confluent hypergeometric function, if and only if the last two terms in   and  vanished.  That is,

										(6)

										(7)
Eq. (5) can now be written as [20]

				(8)


The values of  and  can be calculated by solving eqs. (7) and (8) explicitly as [20]

										(9)

								(10)
Eq. (8) is the confluent hypergeometric equation type of the form [25]

								(11)



Eq. (11) has a regular singularity at  and irregular singularity at . The energy eigenvalues is defined from eq. (8) as  which can be expressed explicitly as [20]

							(12)
The corresponding wave function is given by [25]

						(13)
Thus, the total wave function is written as [20]

				(14)

					
3. Solution of the Schrodinger equation with shifted Morse potential
The solution of Schrödinger equation in s-wave is given as [27].

                   						(15)





Where,  is the reduced mass,  is the energy spectrum,  is the reduced planck’s constant and  and  are the radial and orbital angular momentum quantum numbers respectively. Substituting eq. (1) into eq. (15) gives

 	(16)

Using a coordinate transformation of the form   , eq. (16) reduces to the differential equation

  					(17)
where

				(18)
Comparing eq. (17) with eq. (2) lead to the following parameters,

                      ,                             		(19)


Using eqs. (9) and (10), we obtained  and  as follows:

                  									(20)
Thus, the energy eigenvalues and the corresponding wave function using eqs. (12) and (14) are given as

         				(21)

             						(22)
In terms of Laguerre polynomial [25], we obtain the wave function as

								(23)

where  is the normalization constant. The normalization constants for both the ground state and the first excited state are respectively obtained as 

								(24)			

		(25)	


where,  is the . 
It is worthy to report here that we have considered only the ground state and first excited wavefunctions, due to the difficulty in obtaining higher excited state eigenfunctions, both analytically and numerically.

4. Thermodynamic Functions of Shifted Morse Potential
The partition function is the starting point usually employed in investigating different thermodynamic functions of a given system. The partition function is known to be a function of temperature, which is obtained via the expression [28-30]:


									(26)




Here,  is the Boltzmann’s constant,  is the maximum vibration quantum number,  is the absolute temperature and  represents the energy eigenvalues of the shifted Morse potential model.
By substituting eq. (21) into eq. (26), we obtain

								(27)
where

							(28).

With the help of a Mathematica software, the partition function of the shifted Morse Potential is obtained as


			(29).

Here  denotes the error function [31]. Other thermodynamic functions can be obtained using the following expressions [32]:

					(30).


5. Quantum Information Theory of Shifted Morse Potential
It is worthy to state generally here that the information entropy densities for position and momentum spaces are expressed respectively as [33]:

 							(31)

							(32)
Similarly, the Shannon entropies for position and momentum spaces are respectively given as [33]:

								(33)

								(34)
The sum of the Shannon entropies for both position and momentum spaces must be seen to satisfy the Bialynicki-Birula-Mycielski (BBM) inequality [34]. The BBM inequality is defined as

									(35)

In addition, the Fisher information is known to be the gradient function of the probability density of a given system. It is defined in position and momentum spaces as [35]:

										(36)

										(37)




Here,  is the probability density in position space,  is the probability density in the momentum space, where is obtained using Fourier transform. The product of the Fisher information in both spaces must be seen to satisfy the Stam-Cramer-Rao inequality relations [36], which is given as .
The Shannon entropy power can be expressed as [37]

								(38),


where  are the respective Shannon entropy powers for position and momentum spaces, and  are the Shannon entropy for position and momentum spaces, respectively. Similarly, the Fisher-Shannon product expressions for both position and momentum spaces are given as [37]

									(39).

Here,  represent Fisher information on both spaces. 

6. Results and Discussions






In this study, the analytical expressions for the energy eigenvalues and wave functions of the shifted Morse potential are given in eqs. (21) and (22), respectively. Numerical results of the energies of the shifted Morse potential are presented in Tables 1 and 2. It is worthy to mention here that the following parameters are employed for both our numerical and graphical analysis throughout this work: . The energy eigenvalues of the shifted Morse potential is seen to decrease with increase in the principal quantum number, . It is also seen in Table 1 that for a specific principal quantum number, the energy eigenvalues decreases slowly with increase in the parameter , as the parameter  is kept constant. Similarly, Table 2 shows energy increase with a slow increase in parameter , at constant values of .


Table 1: Numerical values of energy eigenvalues of shifted Morse Potential, where 
	

	

	

	


	0
	0.02396851613
	0.02912952290
	0.03235477070

	1
	0.5922741755
	0.6103990945
	0.6214088670

	2
	1.800579835
	1.831668666
	1.850462963

	3
	3.648885494
	3.692938237
	3.719517059

	4
	6.137191155
	6.194207810
	6.228571155

	5
	9.265496815
	9.335477380
	9.377625250

	6
	13.03380248
	13.11674696
	13.16667934

	7
	17.44210813
	17.53801652
	17.59573344

	8
	22.49041379
	22.59928610
	22.66478754

	9
	28.17871946
	28.30055567
	28.37384164

	10
	34.50702509
	34.64182528
	34.72289571





Table 2: Numerical values of energy eigenvalues of shifted Morse Potential, where 
	

	

	

	


	0
	0.02396851613
	- 0.003534452900
	- 0.04620728179

	1
	0.5922741755
	0.5468476220
	0.4817703120

	2
	1.800579835
	1.737229697
	1.649747906

	3
	3.648885494
	3.567611773
	3.457725498

	4
	6.137191155
	6.037993845
	5.905703090

	5
	9.265496815
	9.148375925
	8.993680685

	6
	13.03380248
	12.89875800
	12.72165828

	7
	17.44210813
	17.28914007
	17.08963587

	8
	22.49041379
	22.31952214
	22.09761346

	9
	28.17871946
	27.98990422
	27.74559106

	10
	34.50702509
	34.30028627
	34.03356864




The numerical results of Shannon entropies of shifted Morse potential for both position and momentum spaces are presented in Tables 3 and 4 for the ground and first excited states. In Table 3, the Shannon entropy of shifted Morse potential increases with increase in the values of Parameter A (other parameters being kept constant), at the ground state for both position and momentum spaces. At the first excited state, the Shannon entropy decreases in position space and increases in the momentum space, as the values of the parameter A increases. 
Table 4 shows decrease in both ground and first excited states Shannon entropies of the shifted Morse potential for position space, as the values of Parameter B increase. For momentum space, we observe an increase in both ground and first excited states Shannon entropies. It has also been established here that the BBM inequality is statisfied at both ground and first excited states.
The numerical results of Fisher information of shifted Morse potential for both position and momentum spaces are presented in Tables 5 and 6 for the ground and first excited states. In Table 5, the Fisher information of shifted Morse potential increases with increase in the values of Parameter A, at the ground state for position space. At the first excited state of the position space, the Fisher information increases with increase in the values of parameter A. The Fisher information of shifted Morse potential for both ground state and first excited state for momentum space increase with increase in the values of the parameter A.  The product of the Fisher information in both spaces is seen to satisfy the Stam-Cramer-Rao inequality relations.
In Table 6, it is seen that the exist increase in both ground state’s Fisher information and first excited state’s Fisher information values inbothe position and momentum spaces, as the values of the parameter B increase. Also, the Stam-Cramer-Rao inequality relations have been satisfied.

Table 7 shows the numerical results of both Shannon entropy power and Fisher-Shannon product of shifted Morse potential for position and momentum spaces at the ground state. For increasing values of the parameter A, the Shannon entropy power, the Fisher-Shannon product and the multiplication of the Fisher-Shannon product all increase. The results of the multiplication of the Fisher-Shannon product as shown in Table 7 satisfies the relation .   
Table 8 shows the numerical results of both Shannon entropy power and Fisher-Shannon product of shifted Morse potential for position and momentum spaces at the first excited state. For increasing values of the parameter A, the Shannon entropy power and the Fisher-Shannon product for position space decreases. Conversely, the Shannon entropy power and the Fisher-Shannon product for first excited space and the multiplication of the Fisher-Shannon product all increase. Here, multiplication of the Fisher-Shannon product of both position and momentum spaces also satisfy the relation as seen in Table 7.
Table 9 shows the numerical results of both Shannon entropy power and Fisher-Shannon product of shifted Morse potential for position and momentum spaces at the ground state, for varying values of the parameter B. For increasing values of the parameter B, the Shannon entropy power and the Fisher-Shannon product for position space decreases. In addition, the Shannon entropy power and the Fisher-Shannon product for momentum space and the multiplication of the Fisher-Shannon product all increase.
In Table 10, the numerical results of both Shannon entropy power and Fisher-Shannon product of shifted Morse potential for position and momentum spaces at the first excited state, for varying values of the parameter B are shown. It is also seen that the Shannon entropy power and the Fisher-Shannon product for position space decreases, as the values of the parameter B increases. But, the Shannon entropy power, the Fisher-Shannon product for momentum space and the multiplication of the Fisher-Shannon product increase as the values of the parameter B increases. The results of the multiplication of the Fisher-Shannon product of both position and momentum spaces satisfy the relation as seen in Tables 9 - 10.





Table 3: Numerical Values of Shannon  Entropy for position and  momentum space for ground state and first excited state of shifted Morse Potential with .
	






                                    

	






                                            













Table 4: Numerical Values of Shannon  Entropy for position and  momentum space for ground state and first excited state of shifted Morse Potential with .
	






                                     

	






                                        



Table 5: Numerical values of Fisher information for position and  momentum space for ground state and first excited state of shifted Morse Potential with .
	






                                         

	






                                             



Table 6: Numerical values of Fisher Infomation for position and  momentum space for ground state and first excited state of shifted Morse Potential with .
	






                                         

	






                                        



Table 7: Numerical values of Fisher Shannon Product for position and  momentum spaces for ground state  of shifted Morse Potential with 
	





                                                                 

	





                                 



Table 8: Numerical values of Fisher Shannon Product for position and  momentum space for first excited state of shifted Morse Potential with 
	





                                                                  

	





                                      




Table 9: Numerical values of Fisher Shannon Product for position and  momentum space for ground excited state of shifted Morse Potential with 
	





                                                                  

	





                                     



Table 10: Numerical values of Fisher Shannon Product for position and  momentum space for first excited state of shifted Morse Potential with 
	





                                                                  

	





                                    




The variation of the wave functions of shifted Morse potential with respect to position and momentum is shown in Figure 1 for ground, first and second excited states. As can be observed, the nodes of the wave functions increase with increase in position and momentum. Specifically, the quantum state increases in the position space as the nodes of the wave functions increase. But, increase in the nodes of the wave functions of momentum space corresponds to a decrease in the quantum state. It is seen here that wave functions does not pick from the origin.
Figure 2 shows the variation of the probability density of shifted Morse potential with respect to position and momentum for ground, first and second excited states. The highest node of the probability density corresponds to the first excited state, followed by the second excited state, before the ground state in the position space. Our analysis showed that the nodes were peaked at the origin, and it gets broader as the value increases. Also, the nodes of the probability density decrease as the position increases. It is observed that there exists a sharp decrease in the node of probability density corresponding to the ground state in the momentum space. The nodes of the excited states of the probability density of shifted Morse potential in the momentum space drastically reduces and all the nodes tend to remain constant as the momentum continually increases. As the values of n increase, localization increases in the position space and decreases (localization) in the momentum space.
[image: ] [image: ]
Figure 1: Wavefunction of the Position and Momentum spaces of shifted Morse Potential for ground, first and second excited states.
 [image: ] [image: ]
Figure 2: Probability density of the Position and Momentum spaces of shifted Morse Potential for ground, first and second excited states.
In Figure 3, we investigate the position and momentum space graphically for ground and excited states for Shannon entropy. We see that more fluctuation occurred in the negative region than the positive as the quantum state increases. Shannon entropy quantifies uncertainty in a random process. Hence, events in the negative space will measure higher uncertainty than the positive region. 

Figure 4 shows the Fisher information in the position and momentum spaces for ground and first excited states. Here, fluctuation increases as quantum state increases in the position space. On the contrary, it decreases in the momentum space as quantum state increases. Increasing fluctuations is a consequence of growing localization for Fisher information of the system. 
	
	



[image: ] [image: ]
Figure 3: Shannon Entropy in position and Momentum Space of Shifted Morse Potential for ground state and first excited state
[image: ] [image: ]Figure 4: Fisher Information in position and momentum space of shifted Morse potenital for ground state and first excited state.

Various thermodynamic functions  of shifted Morse potential with respect to temperature were studied, as regards different values of parameter A and B, respectively. In Figures 5a and 5b, the partition function decreases with increase in temperature first. Later, the partion function of shifted Morse potential remains constant as the temperature is much enhanced, for the various values of parameter A and B. Figures 6a and 6b show monotonous increase in free energy as temperature is increased, for the selected values of parameter A and B, respectively. In Figure 7a, the internal energy plot for prameter A = 0.1 reduces montonously as temperature is enhanced. But, the internal energy plots for other parameters (A = 0.5, 1.0) increase with increase in temperature. In Figure 7b, the internal energy plots for the parameter values considered (B = 1.0, 1.5, 2.0) reduces with increase in temperature. Figures 8a and 8b show firstly, a sharp increase in entropy at unique temperature values to a certain value. Thereafter, further enhancement of the temperature produces a monotonous decrease in the entropy values for the selected values of the potential parameters A and B. The specific values of temperature that produces the peak entropy values for the potential parameter is known as Critical Temperature. Figures 9a and 9b show the variation of specific heat capacity with temperature for selected values of parameter A and B (A = 0.1, 0.5, 1.0; B = 1.0, 1.5, 2.0), respectively. Our observations are similar to the behaviours of entropy plots with temperature variation, as explained above.  
[image: ]
Figure 5a: Variation of partition function of shifted Morse potential with temperature for

          various values of .
[image: ]
Figure 5b: Variation of partition function of shifted Morse potential with temperature for

          various values of .

[image: ]
Figure 6a: Variation of free energy of shifted Morse potential with temperature for

          various values of .
[image: ]
Figure 6b: Variation of free energy of shifted Morse potential with temperature for

          various values of .

[image: ]
Figure 7a: Variation of internal energy of shifted Morse potential with temperature for

          various values of .
[image: ]
Figure 7b: Variation of internal energy of shifted Morse potential with temperature for

          various values of .
[image: ]
Figure 8a: Variation of entropy of shifted Morse potential with temperature for

          various values of .


[image: ]
Figure 8b: Variation of entropy of shifted Morse potential with temperature for

          various values of .
[image: ]
Figure 9a: Variation of specific heat capacity of shifted Morse potential with temperature for

          various values of .

[image: ]
Figure 9b: Variation of specific heat capacity of shifted Morse potential with temperature for

          various values of .
7. Concluding Remarks
In this work, the Nikiforov-Uvarov functional analysis (NUFA) method was employed to solve the radial Schrodinger equation for the shifted Morse potential model and their analytical expressions of energy eigenvalues and wave functions obtained. With the help of the energy eigenvalues, the expression for partition function and other thermodynamic properties expressions were obtained using the exact method. Also, the probability density, Shannon entropy, Fisher information, Fisher–Shannon product of the shifted Morse potential were obtained in position and momentum spaces, using the normalized wave functions. Numerical results of the energies for the shifted Morse potential have been presented for various values of the potential parameters. These energies depend on the variation of the principal quantum number. The numerical and graphical studies of the different quantum information theories have been discussed for the ground and first excited states, in position and momentum spaces. Our results presented show that the Shannon entropy of the shifted Morse potential satisfies the BBM inequality both at the ground and first excited states. The product of the Fisher information in both spaces also satisfies the Stam-Cramer-Rao inequality relations. Also, the results of the multiplication of the Fisher-Shannon product is greater unity, as expected. The energy eigenvalues expression of the shifted Morse potential have been employed to evaluate different thermodynamic functions and their variations with temperature. Specific result seen here is the existence of the critical temperature that produces the peak entropy values for the potential parameters considered. This work promises to be a guide in application to different areas of studies [38-40].
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