REFERENCES
Albertos, P., Dundar, G., Schenk, P., Carrera, S., Cavelius, P., Sieberer, T., & Poppenberger, B. (2022). Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants.Embo Journal , e108664. doi:10.15252/embj.2021108664
Balazadeh, S. (2021). A ’hot’ cocktail: The multiple layers of thermomemory in plants. Curr Opinion in Plant Biology, 65 , 102147. doi:10.1016/j.pbi.2021.102147
Balmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The ’prime-ome’: towards a holistic approach to priming. Trends in Plant Science, 20 (7), 443-452.
Brzezinka, K., Altmann, S., & Baurle, I. (2019). BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory. Plant Cell Environment, 42 (3), 771-781. doi:10.1111/pce.13365
Clarke, S. M., Cristescu, S. M., Miersch, O., Harren, F. J. M., Wasternack, C., & Mur, L. A. J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist .
Diaz, K., Espinoza, L., Carvajal, R., Silva-Moreno, E., Olea, A. F., & Rubio, J. (2021). Exogenous Application of Brassinosteroid 24-Norcholane 22(S)-23-Dihydroxy Type Analogs to Enhance Water Deficit Stress Tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences, 22 (3). doi:10.3390/ijms22031158
Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S., Brzezinka, K., Lamke, J., . . . Baurle, I. (2021). Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun, 12 (1), 3426. doi:10.1038/s41467-021-23786-6
Guo, H., Li, L., Aluru, M., Aluru, S., & Yin, Y. (2013). Mechanisms and networks for brassinosteroid regulated gene expression. Current Opinion in Plant Biology, 16 (5), 545-553. doi:10.1016/j.pbi.2013.08.002
Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14 (5), 9643-9684.
Huang, J., Zhao, X., Burger, M., Wang, Y., & Chory, J. (2021). Two interacting ethylene response factors regulate heat stress response.Plant Cell, 33 (2), 338-357. doi:10.1093/plcell/koaa026
Ibanez, C., Delker, C., Martinez, C., Burstenbinder, K., Janitza, P., Lippmann, R., . . . Quint, M. (2018). Brassinosteroids Dominate Hormonal Regulation of Plant Thermomorphogenesis via BZR1. Current Biology, 28 (2), 303-310. doi:10.1016/j.cub.2017.11.077
Janeczko, A., Okleková, J., Pociecha, E., Kocielniak, J., & Mirek, M. (2011). Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiologiae Plantarum, 33 (4), 1249-1259.
Lamke, J., Brzezinka, K., Altmann, S., & Baurle, I. (2015). A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. The EMBO Journal, 35 (2).
Lei, W., Li, Y., Yao, X., Qiao, K., Wei, L., Liu, B., . . . Lin, H. (2020). NAP is involved in GA-mediated chlorophyll degradation and leaf senescence by interacting with DELLAs in Arabidopsis. Plant Cell Reports, 39 (1), 75-87.
Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. nature, 529 (7584), 84.
Li, T., Lei, W., He, R., Tang, X., Han, J., Zou, L., . . . Zhang, D. (2020). Brassinosteroids regulate root meristem development by mediating BIN2-UPB1 module in Arabidopsis. PLoS Genetics, 16 (7), e1008883. doi:10.1371/journal.pgen.1008883
Manvi, S., & Ashverya, L. (2016). Jasmonates: Emerging Players in Controlling Temperature Stress Tolerance. Frontiers in Plant Science, 6 , 1129.
Mazorra, L. M., Holton, N., Bishop, G. J., & Nunez, M. (2011). Heat shock response in tomato brassinosteroid mutants indicates that thermotolerance is independent of brassinosteroid homeostasis.Plant Physiol Biochem, 49 (12), 1420-1428. doi:10.1016/j.plaphy.2011.09.005
McLoughlin, F., Kim, M., Marshall, R. S., Vierstra, R. D., & Vierling, E. (2019). HSP101 Interacts with the Proteasome and Promotes the Clearance of Ubiquitylated Protein Aggregates. Plant Physiology, 180 (4), 1829-1847. doi:10.1104/pp.19.00263
Nawaz, F., Naeem, M., Zulfiqar, B., Akram, A., Ashraf, M. Y., Raheel, M., . . . Aurangzaib, M. (2017). Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review.Environmental Science and Pollution Research International, 24 (19), 15959-15975. doi:10.1007/s11356-017-9163-6
Nie, W. F., Wang, M. M., Xia, X. J., Zhou, Y. H., Shi, K., Chen, Z., & Yu, J. Q. (2013). Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H(2)O(2) generation and stress tolerance.Plant Cell Environment, 36 (4), 789-803. doi:10.1111/pce.12014
Nishad, A., & Nandi, A. K. (2021). Recent advances in plant thermomemory. Plant Cell Report, 40 (1), 19-27. doi:10.1007/s00299-020-02604-1
Nolan, T. M., Nemanja, V., Liu, D., Eugenia, R., & Yin, Y. (2019). Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses[OPEN]. The Plant Cell (2), 2.
Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional Regulatory Network of Plant Heat Stress Response.Trends in Plant Science, 22 (1), 53-65. doi:10.1016/j.tplants.2016.08.015
Samakovli, D., Roka, L., Plitsi, P. K., Kaltsa, I., Daras, G., Milioni, D., & Hatzopoulos, P. (2020). Active BR signalling adjusts the subcellular localisation of BES1/HSP90 complex formation. Plant Biology, 22 (1), 129-133. doi:10.1111/plb.13040
Sedaghatmehr, M., Mueller-Roeber, B., & Balazadeh, S. (2016). The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nat Communcations, 7 , 12439. doi:10.1038/ncomms12439
Setsungnern, A., Munoz, P., Perez-Llorca, M., Muller, M., Thiravetyan, P., & Munne-Bosch, S. (2020). A defect in BRI1-EMS-SUPPRESSOR 1 (bes1)-mediated brassinosteroid signaling increases photoinhibition and photo-oxidative stress during heat stress in Arabidopsis. Plant Science, 296 , 110470. doi:10.1016/j.plantsci.2020.110470
Shah Jahan, M., Wang, Y., Shu, S., Zhong, M., Chen, Z., Wu, J., . . . Guo, S. (2019). Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scientia Horticulturae, 247 , 421-429.
Shigeta, T., Zaizen, Y., Sugimoto, Y., Nakamura, Y., Matsuo, T., & Okamoto, S. (2015). Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor.Journal of Plant Physiology, 178 , 69-73. doi:10.1016/j.jplph.2015.02.003
Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W. R., & Baurle, I. (2014a). Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors. Plant Cell, 26 (4), 1792.
Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W. R., & Baurle, I. (2014b). Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors. Plant Cell, 26 (4), 1792-1807. doi:10.1105/tpc.114.123851
Sun, Y., Fan, X. Y., Cao, D. M., Tang, W., He, K., Zhu, J. Y., . . . Oh, E. (2010). Integration of Brassinosteroid Signal Transduction with the Transcription Network for Plant Growth Regulation in Arabidopsis.Developmental Cell, 19 (5), 765-777.
Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A., & Mittler, R. (2011). Respiratory burst oxidases: the engines of ROS signaling. Current Opinion in Plant Biology, 14 , 691-699. doi:doi: 10.1016/j.pbi.2011.07.014
Thussagunpanit, J., Jutamanee, K., Sonjaroon, W., Kaveeta, L., Chai-Arree, W., Pankean, P., & Suksamrarn, A. (2015). Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica, 53 (2), 312-320. doi:10.1007/s11099-015-0106-5
Wang, K., Zhang, X., & Ervin, E. (2012). Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: Effects of nitrogen and cytokinin. Journal of Plant Physiology, 169 (5), 492-500.
Wang, L. J., Fan, L., Loescher, W., Wei, D., Liu, G. J., Cheng, J. S., . . . Li, S. H. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. Bmc Plant Biology, 10 (1), 34.
Wang, R., Wang, R., Liu, M., Yuan, W., Zhao, Z., Liu, X., . . . Tang, W. (2021). Nucleocytoplasmic trafficking and turnover mechanisms of BRASSINAZOLE RESISTANT1 in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 118 (33). doi:10.1073/pnas.2101838118
Wang, X., Zhuang, L., Shi, Y., & Huang, B. (2017). Up-Regulation of HSFA2c and HSPs by ABA Contributing to Improved Heat Tolerance in Tall Fescue and Arabidopsis. International Journal of Molecular Sciences, 18 (9), 1981.
Wu, T. Y., Juan, Y. T., Hsu, Y. H., Wu, S. H., Liao, H. T., Fung, R., & Charng, Y. Y. (2013). Interplay between Heat Shock Proteins HSP101 and HSA32 Prolongs Heat Acclimation Memory Posttranscriptionally in Arabidopsis. Plant Physiology, 161 (4), 2075-2084.
Yadava, P., Kaushal, J., Gautam, A., Parmar, H., & Singh, I. (2016). Physiological and Biochemical Effects of 24-Epibrassinolide on Heat-Stress Adaptation in Maize (Zea mays L.). Natural Science, 8 (4), 171-179.
Yang, M., Li, C., Cai, Z., Hu, Y., Nolan, T., Yu, F., . . . Wang, X. (2017). SINAT E3 Ligases Control the Light-Mediated Stability of the Brassinosteroid-Activated Transcription Factor BES1 in Arabidopsis.Dev Cell, 41 (1), 47-58 e44. doi:10.1016/j.devcel.2017.03.014
Yin, Y., Qin, K., Song, X., Zhang, Q., Zhou, Y., Xia, X., & Yu, J. (2018). BZR1 Transcription Factor Regulates Heat Stress Tolerance Through FERONIA Receptor-Like Kinase-Mediated Reactive Oxygen Species Signaling in Tomato. Plant Cell Physiol, 59 (11), 2239-2254. doi:10.1093/pcp/pcy146
Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120 (2), 249-259. doi:10.1016/j.cell.2004.11.044
Yu., X., J., Z., M., A., Ye., H., A., F., Guo., H., . . . Yin., Y. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana.The Plant Journal, 65 , 634–646.
Zhang, D., Tan, W., Yang, F., Han, Q., Deng, X., Guo, H., . . . Lin, H. (2021). A BIN2-GLK1 Signaling Module Integrates Brassinosteroid and Light Signaling to Repress Chloroplast Development in the Dark.Dev Cell, 56 (3), 310-324 e317. doi:10.1016/j.devcel.2020.12.001