REFERENCES
Albertos, P., Dundar, G., Schenk, P., Carrera, S., Cavelius, P.,
Sieberer, T., & Poppenberger, B. (2022). Transcription factor BES1
interacts with HSFA1 to promote heat stress resistance of plants.Embo Journal , e108664. doi:10.15252/embj.2021108664
Balazadeh, S. (2021). A ’hot’ cocktail: The multiple layers of
thermomemory in plants. Curr Opinion in Plant Biology, 65 ,
102147. doi:10.1016/j.pbi.2021.102147
Balmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015).
The ’prime-ome’: towards a holistic approach to priming. Trends in
Plant Science, 20 (7), 443-452.
Brzezinka, K., Altmann, S., & Baurle, I. (2019). BRUSHY1/TONSOKU/MGOUN3
is required for heat stress memory. Plant Cell Environment,
42 (3), 771-781. doi:10.1111/pce.13365
Clarke, S. M., Cristescu, S. M., Miersch, O., Harren, F. J. M.,
Wasternack, C., & Mur, L. A. J. (2009). Jasmonates act with salicylic
acid to confer basal thermotolerance in Arabidopsis thaliana. New
Phytologist .
Diaz, K., Espinoza, L., Carvajal, R., Silva-Moreno, E., Olea, A. F., &
Rubio, J. (2021). Exogenous Application of Brassinosteroid 24-Norcholane
22(S)-23-Dihydroxy Type Analogs to Enhance Water Deficit Stress
Tolerance in Arabidopsis thaliana. International Journal of
Molecular Sciences, 22 (3). doi:10.3390/ijms22031158
Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S., Brzezinka, K.,
Lamke, J., . . . Baurle, I. (2021). Heteromeric HSFA2/HSFA3 complexes
drive transcriptional memory after heat stress in Arabidopsis. Nat
Commun, 12 (1), 3426. doi:10.1038/s41467-021-23786-6
Guo, H., Li, L., Aluru, M., Aluru, S., & Yin, Y. (2013). Mechanisms and
networks for brassinosteroid regulated gene expression. Current
Opinion in Plant Biology, 16 (5), 545-553. doi:10.1016/j.pbi.2013.08.002
Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M.
(2013). Physiological, Biochemical, and Molecular Mechanisms of Heat
Stress Tolerance in Plants. International Journal of Molecular
Sciences, 14 (5), 9643-9684.
Huang, J., Zhao, X., Burger, M., Wang, Y., & Chory, J. (2021). Two
interacting ethylene response factors regulate heat stress response.Plant Cell, 33 (2), 338-357. doi:10.1093/plcell/koaa026
Ibanez, C., Delker, C., Martinez, C., Burstenbinder, K., Janitza, P.,
Lippmann, R., . . . Quint, M. (2018). Brassinosteroids Dominate Hormonal
Regulation of Plant Thermomorphogenesis via BZR1. Current Biology,
28 (2), 303-310. doi:10.1016/j.cub.2017.11.077
Janeczko, A., Okleková, J., Pociecha, E., Kocielniak, J., & Mirek, M.
(2011). Physiological effects and transport of 24-epibrassinolide in
heat-stressed barley. Acta Physiologiae Plantarum, 33 (4),
1249-1259.
Lamke, J., Brzezinka, K., Altmann, S., & Baurle, I. (2015). A
hit-and-run heat shock factor governs sustained histone methylation and
transcriptional stress memory. The EMBO Journal, 35 (2).
Lei, W., Li, Y., Yao, X., Qiao, K., Wei, L., Liu, B., . . . Lin, H.
(2020). NAP is involved in GA-mediated chlorophyll degradation and leaf
senescence by interacting with DELLAs in Arabidopsis. Plant Cell
Reports, 39 (1), 75-87.
Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme
weather disasters on global crop production. nature, 529 (7584),
84.
Li, T., Lei, W., He, R., Tang, X., Han, J., Zou, L., . . . Zhang, D.
(2020). Brassinosteroids regulate root meristem development by mediating
BIN2-UPB1 module in Arabidopsis. PLoS Genetics, 16 (7), e1008883.
doi:10.1371/journal.pgen.1008883
Manvi, S., & Ashverya, L. (2016). Jasmonates: Emerging Players in
Controlling Temperature Stress Tolerance. Frontiers in Plant
Science, 6 , 1129.
Mazorra, L. M., Holton, N., Bishop, G. J., & Nunez, M. (2011). Heat
shock response in tomato brassinosteroid mutants indicates that
thermotolerance is independent of brassinosteroid homeostasis.Plant Physiol Biochem, 49 (12), 1420-1428.
doi:10.1016/j.plaphy.2011.09.005
McLoughlin, F., Kim, M., Marshall, R. S., Vierstra, R. D., & Vierling,
E. (2019). HSP101 Interacts with the Proteasome and Promotes the
Clearance of Ubiquitylated Protein Aggregates. Plant Physiology,
180 (4), 1829-1847. doi:10.1104/pp.19.00263
Nawaz, F., Naeem, M., Zulfiqar, B., Akram, A., Ashraf, M. Y., Raheel,
M., . . . Aurangzaib, M. (2017). Understanding brassinosteroid-regulated
mechanisms to improve stress tolerance in plants: a critical review.Environmental Science and Pollution Research International,
24 (19), 15959-15975. doi:10.1007/s11356-017-9163-6
Nie, W. F., Wang, M. M., Xia, X. J., Zhou, Y. H., Shi, K., Chen, Z., &
Yu, J. Q. (2013). Silencing of tomato RBOH1 and MPK2 abolishes
brassinosteroid-induced H(2)O(2) generation and stress tolerance.Plant Cell Environment, 36 (4), 789-803. doi:10.1111/pce.12014
Nishad, A., & Nandi, A. K. (2021). Recent advances in plant
thermomemory. Plant Cell Report, 40 (1), 19-27.
doi:10.1007/s00299-020-02604-1
Nolan, T. M., Nemanja, V., Liu, D., Eugenia, R., & Yin, Y. (2019).
Brassinosteroids: Multidimensional Regulators of Plant Growth,
Development, and Stress Responses[OPEN]. The Plant Cell (2),
2.
Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017).
Transcriptional Regulatory Network of Plant Heat Stress Response.Trends in Plant Science, 22 (1), 53-65.
doi:10.1016/j.tplants.2016.08.015
Samakovli, D., Roka, L., Plitsi, P. K., Kaltsa, I., Daras, G., Milioni,
D., & Hatzopoulos, P. (2020). Active BR signalling adjusts the
subcellular localisation of BES1/HSP90 complex formation. Plant
Biology, 22 (1), 129-133. doi:10.1111/plb.13040
Sedaghatmehr, M., Mueller-Roeber, B., & Balazadeh, S. (2016). The
plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly
regulate thermomemory in Arabidopsis. Nat Communcations, 7 ,
12439. doi:10.1038/ncomms12439
Setsungnern, A., Munoz, P., Perez-Llorca, M., Muller, M., Thiravetyan,
P., & Munne-Bosch, S. (2020). A defect in BRI1-EMS-SUPPRESSOR 1
(bes1)-mediated brassinosteroid signaling increases photoinhibition and
photo-oxidative stress during heat stress in Arabidopsis. Plant
Science, 296 , 110470. doi:10.1016/j.plantsci.2020.110470
Shah Jahan, M., Wang, Y., Shu, S., Zhong, M., Chen, Z., Wu, J., . . .
Guo, S. (2019). Exogenous salicylic acid increases the heat tolerance in
Tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency
and improving antioxidant defense system through scavenging of reactive
oxygen species. Scientia Horticulturae, 247 , 421-429.
Shigeta, T., Zaizen, Y., Sugimoto, Y., Nakamura, Y., Matsuo, T., &
Okamoto, S. (2015). Heat shock protein 90 acts in brassinosteroid
signaling through interaction with BES1/BZR1 transcription factor.Journal of Plant Physiology, 178 , 69-73.
doi:10.1016/j.jplph.2015.02.003
Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W. R., &
Baurle, I. (2014a). Arabidopsis miR156 Regulates Tolerance to Recurring
Environmental Stress through SPL Transcription Factors. Plant
Cell, 26 (4), 1792.
Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W. R., &
Baurle, I. (2014b). Arabidopsis miR156 Regulates Tolerance to Recurring
Environmental Stress through SPL Transcription Factors. Plant
Cell, 26 (4), 1792-1807. doi:10.1105/tpc.114.123851
Sun, Y., Fan, X. Y., Cao, D. M., Tang, W., He, K., Zhu, J. Y., . . . Oh,
E. (2010). Integration of Brassinosteroid Signal Transduction with the
Transcription Network for Plant Growth Regulation in Arabidopsis.Developmental Cell, 19 (5), 765-777.
Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A., &
Mittler, R. (2011). Respiratory burst oxidases: the engines of ROS
signaling. Current Opinion in Plant Biology, 14 , 691-699.
doi:doi: 10.1016/j.pbi.2011.07.014
Thussagunpanit, J., Jutamanee, K., Sonjaroon, W., Kaveeta, L.,
Chai-Arree, W., Pankean, P., & Suksamrarn, A. (2015). Effects of
brassinosteroid and brassinosteroid mimic on photosynthetic efficiency
and rice yield under heat stress. Photosynthetica, 53 (2),
312-320. doi:10.1007/s11099-015-0106-5
Wang, K., Zhang, X., & Ervin, E. (2012). Antioxidative responses in
roots and shoots of creeping bentgrass under high temperature: Effects
of nitrogen and cytokinin. Journal of Plant Physiology, 169 (5),
492-500.
Wang, L. J., Fan, L., Loescher, W., Wei, D., Liu, G. J., Cheng, J. S., .
. . Li, S. H. (2010). Salicylic acid alleviates decreases in
photosynthesis under heat stress and accelerates recovery in grapevine
leaves. Bmc Plant Biology, 10 (1), 34.
Wang, R., Wang, R., Liu, M., Yuan, W., Zhao, Z., Liu, X., . . . Tang, W.
(2021). Nucleocytoplasmic trafficking and turnover mechanisms of
BRASSINAZOLE RESISTANT1 in Arabidopsis thaliana. Proc Natl Acad
Sci U S A, 118 (33). doi:10.1073/pnas.2101838118
Wang, X., Zhuang, L., Shi, Y., & Huang, B. (2017). Up-Regulation of
HSFA2c and HSPs by ABA Contributing to Improved Heat Tolerance in Tall
Fescue and Arabidopsis. International Journal of Molecular
Sciences, 18 (9), 1981.
Wu, T. Y., Juan, Y. T., Hsu, Y. H., Wu, S. H., Liao, H. T., Fung, R., &
Charng, Y. Y. (2013). Interplay between Heat Shock Proteins HSP101 and
HSA32 Prolongs Heat Acclimation Memory Posttranscriptionally in
Arabidopsis. Plant Physiology, 161 (4), 2075-2084.
Yadava, P., Kaushal, J., Gautam, A., Parmar, H., & Singh, I. (2016).
Physiological and Biochemical Effects of 24-Epibrassinolide on
Heat-Stress Adaptation in Maize (Zea mays L.). Natural Science,
8 (4), 171-179.
Yang, M., Li, C., Cai, Z., Hu, Y., Nolan, T., Yu, F., . . . Wang, X.
(2017). SINAT E3 Ligases Control the Light-Mediated Stability of the
Brassinosteroid-Activated Transcription Factor BES1 in Arabidopsis.Dev Cell, 41 (1), 47-58 e44. doi:10.1016/j.devcel.2017.03.014
Yin, Y., Qin, K., Song, X., Zhang, Q., Zhou, Y., Xia, X., & Yu, J.
(2018). BZR1 Transcription Factor Regulates Heat Stress Tolerance
Through FERONIA Receptor-Like Kinase-Mediated Reactive Oxygen Species
Signaling in Tomato. Plant Cell Physiol, 59 (11), 2239-2254.
doi:10.1093/pcp/pcy146
Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J.
(2005). A new class of transcription factors mediates
brassinosteroid-regulated gene expression in Arabidopsis. Cell,
120 (2), 249-259. doi:10.1016/j.cell.2004.11.044
Yu., X., J., Z., M., A., Ye., H., A., F., Guo., H., . . . Yin., Y.
(2011). A brassinosteroid transcriptional network revealed by
genome-wide identification of BESI target genes in Arabidopsis thaliana.The Plant Journal, 65 , 634–646.
Zhang, D., Tan, W., Yang, F., Han, Q., Deng, X., Guo, H., . . . Lin, H.
(2021). A BIN2-GLK1 Signaling Module Integrates Brassinosteroid and
Light Signaling to Repress Chloroplast Development in the Dark.Dev Cell, 56 (3), 310-324 e317. doi:10.1016/j.devcel.2020.12.001