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Abstract

In this work, we present a new boundary conditions for fractional cubic spline (FCS) model for
solving fractional Volterra-integral equations. We reduced the problem to a set of a linear systems by
using fractional continuity conditions. Convergence analysis proved to solve fractional Volterra-integral
equations by obtained linear systems, to determine fractional spline derivatives, we applied the Caputo
fractional derivative. The process is detailed and computed with three computational examples, and the
results show that it is both effective and simple to use. Moreover, the results are compared with the
methods in [1], [2] and [4].

Keywords: Fractional spline function, derivative of fractional order, analysis of convergence, Fractional
Volterra integral equations.

1 Introduction

Integral equations have generated a lot of interest due to their numerous uses, specifically in sciences related
to physics and engineering, functional, mechanic, numerical optimization and dynamical systems, etc.
Heat conduction problems [9], diffusion problems [7], engineering [24] and physics [16]. In mathematical
modeling, integral equations are used in special ways. For such equations, it is almost hard to obtain
an analytical solution. As a result, numerical approaches for obtaining approximate solutions to such
equations have been developed. A large number of authors have written about the numerical solution of
integral equations. some of these solutions are as follows: In [5] the author used Quintic spline polynomial
for solving FIE, an application of the Homotopy analysis method for solving the nonlinear and linear
integral equations of the second kind presented in [28] also Grigorieff in [8] presented a periodic pseudo
differential operators with multiple knot splines, author in [23] solved integro-differential equations by
using Exponential spline function, in [6] authors presented a modified variational iteration method for
solving Fredholm integro-differential equations, author in [10] used Bernstein polynomial for solving
Volterra integral equation.

We want to use fractional Cubic spline (FCS) to propose a numerical procedure for the solution of the
linear integral equation of the second kind

0
y(t) = F(t) + / k(t, v)y(v)dv 1)

(t)

The kernel function of two variables x and t is k(¢, ), h(t) and g(¢) are the limit of integration’s and can
be constants, variables, or mixed (for this paper we take h(t) =t) , y(¢) is the unknown function, and
f(t) is given.

Fractional calculus is one of the most trustworthy procedures for managing complex systems, and it is
still an area where many models are still to be proposed, studied, and applied to real world applications
in many areas of science and engineering where no locality significantly contributes. In recent, several
definitions of fractional derivatives and integrals have been proposed. In [25] authors introduce two classes
of lacunary fractional spline functions by using the Liouville-Caputo fractional Taylor expansion, Debnath
in [20] presented applications of fractional calculus to dynamical systems, some important pioneers that
started to apply fractional calculus to scientific and engineering problems during the nineteenth and
twentieth century’s presented in [18].

The following sections of this paper are organized in the following order: in Sect. 2 we derives the
fractional spline function and matrix representation of the system, Sect. 3 and 4 provided methodology
for integral equations and convergence analysis is investigated, respectively. In Sect. 5 by solving some
fractional examples, the proposed method’s efficiency is illustrated and comparison of the numerical
solutions with some other existing methods in [1],[2] and [4]. Finally, we arrive at the conclusion of our
paper.



2 FRACTIONAL SPLINE MODEL AND MATRIX REP-
RESENTATION

Definition 1 [21] (B is the order of Fractional Integral) For all 8 > 0 and f(t) be a local integrable
function, the left FI can be defined as:

b
B00 = 5 [ w0, s <i<bzo,
Also the right FI defined:
S f(E) = ﬁ/ (t —w)’ f(u)du, —oo<a<t< oo

Alternatively
Definition 2 [21] (Caputo fractional derivative of order \) is defined as:

SDM () = ﬁ/ (t—u)"™ (%)n fw)du ,n=[Aand\ > 0.

For a = 0, we introduce the notation:
“DRf(t) = D f(1).

In this work we used the fractional spline function to derive an approximate solution to the integral
equation in this section. We introduce a set Q@ = [a, b] with partitions A :a =wvo < ... < v, = b, where
v; = a+ jh (h is step size).

we are modified the construction in [22] it consists of a new scheme the boundary conditions such
as based on the fractional cubic spline function with new fractional continuity conditions, defined on
[’Uj,’l)j+1],j = O,...,n— 1 as:

o

Nl
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Si(v) = aj +bj (0= v))% +¢j(v— ) +di (v —v)F +e5(v—v))* + fi(v—v;)% +g;(v—2;)%.  (2)

where a;,b;,cj,d;, e;, f; and g; are real numbers.
To find all coefficients aj, bj, c;,d;, e;, f; and g; , we define boundary conditions: S; (vj) = y;,S; (vj+1) =
Yit1, S5 (v;) = Mj, S} (vjg1) = Mj1, S (vi) = F;

SJ,-, (’l}j+1) = Fj+1andS;” (Uj) = ‘y;-". (3)
Then we get: a; = y;j, bj = —% + yf/%l - hg% - \/EM"+23M"+1 —h? Fj_;%FHvaj =M;, d;=
3
h2y!" on o —2M; OF +4F; F;
9] + Jgi/ﬁ J_\/E J93+176_7J,
4 ,, 4Fj*4Fj+1 y}”
fi=—Vh—y!' — I andg; = 2 4
J 15 J 15\/5 J 6 ( )

1

1 1
By using fractional derivative, we derived the new continuity conditions .S J( ) (vj) = Sj(_zl) (vj) and
(§) 3
820 (vj) = Sj(fl) (v;) we get:
T —6 . —19% F,
(22=8) Mj_1 +2M; — My = 3 [yj — 3yj—1 — 3Yj+1] + 3h [604;? Fj—1+ 55 — %FJ#l}

h2 " 1 "1
+E 13y]-_1 + 5yj (5)
4 4 2 2 vy 16 5
Mj—1—2Mj+ Mj41 =h [(; - g) Fii+3F+ §Fj+1} + [_é + i (@ - 6) (6)

Subtracting (5) in (6) and multiplying by (ﬁ) we get:  M; = m [y, + 29541 — Yjaa] +
hx 40—137 7
m[( )Fj+§Fj+1+2Fj+2]

]’L27T 37+ 32 " 9 "
36 —2) [( - )yj _Syj“} @

Eliminating of M;’s between (5) and (6) to get the following system: (7"27;56873'0*”120) Fi+ (43907;116200) Fii+
(60—2877

o T . _4r
157r730) Fit2 — s57=60 Fi+3 T 3m 60 Li+4

=T
2h2(n—2)[y; —4yj 4146y 42— 4y 43y 4] —

W [(277° =188 4102 (697r+260) oo ( 337r+160) +( r ) } -
3672 — 72 Ys 1807 — 360/ ¥t~ \ 1807 — 360/ Y2 " \ 207 —40/) V713

We need two more equations, to get a unique solution for a system (8).
For this purpose by using the method of undetermined coefficients for fifth-order technique and the Taylor
series can be calculated , as shown below: Zj‘:1 vy§ = }%2 23:0 15y; + O (h5)

4 L8
no__ 5
WY = 33 E ojy; + O (h°) (9)
j=2 j=1
_ (497w—120 60—287 —T 47
Where (71,72,73,74) = ( 30m—60 * 15m—30° 307—60° 3077760) )
( ) = (_49#—120 2037480 _ 1577—360 1077—240 _ 537120 _ —x )
7057157257135 74, M)5) = 30m—60 ° 30m—60 °  157m—30 ’ 157—30 >  30m—60 > 307—60 )’
_ (60—287 37w—80 _ 5m—12 _ _ 3m 47
(01,02,03,04,05) = (15#*307 10m—20°  37—6° 10m—20° 307r760) :



The system (8) is non-singular with (3) are matrix that have a unique solution to get Fo, Fi,..., Fn.
In the matrix notation, the relations (8) can be expressed as follows:

RF = LY + LY (10)
(B B Bs Bi O 0O 0 0 0 017
Bs P1 B2 Pz Pa 0 0 0O 0 O
0 Bs p1 B2 B3 0O 0 0 0 O
R=
0 0 0 0 0 pBs P1 P2 Bz pPa O
0 0 0 O 0 0 pfBs B P2 B3 Pa
L O 0 0 0 0 0 0 Bs P11 B2 Bs 1
1 -4 6 -4 1 o - 0 0
0 1 -4 6 —4 1 0 0
0 0 1 -4 6 —4 0 0
Li=gegmy | 00 11 i
0 0 0 0 0 0 1 0
0 O 0 0 0 0 -4 1 0
00 0 0 0 0 6 —4 1 |
[ a1 a2 a3 as O O 0 0 0 ]
0 a1 a a3 as O 0 0 0
0 0 o1 a2 @3 a4 0 0 0
andLo = —h

0 0 0 0 as 0 O

0 0 0
0 0 0 0 0 0 0 a3 ag O
L 0 0 0 0 0 0 0 a2 a3 a4 |
497—120 60—287 - 4 772 —60mw+120 2772 —18874+192
Where£1+:2603077760 ’ﬁ233: i?g0730’53 = Sor2600 P4 = sone00P5 = Tsamon 01 = 367r2—72tr )
Q2 = Tg 3600 ¥3 = ~igom—s60 Nd = 35755
Also the relations (7) can be expressed as follows:
M =L,Y + LsF + L¢Y (11)
Where: ~ -
-1 2 -1 0 0 0 0 0
o -1 2 -1 0 0 0 0
0 o -1 2 -1 0 0 0
Li=3 h(77rr—2)
0 0 0 o -1 2 =1 0 0
0 0 0 0 o -1 2 -1 0
L O 0 0 0 0 o -1 2 -1




[od=isr 7/ 2 0 0 0 0 0 0
0 01372 2 0 .- 0 0 0 0
0 0 0B 7/2 2 0 0 0 0
hm . . . . . . . . . .
Ls = T5(r—2) : : : : . . . : : ol
0 0 0 0 o0 2=Br 7/ 2 0 0
0 0 0 0 0 0 0-13n - 7/2 2 0
.0 0 0 0 0 0 0 0-13n7/2 2
[ 3m£32 —9/5 0 0 0 .- 0 0 0 ]
0 =2 _—9/5 0 0 - 0 0 0
0 0 =2 _9/5 0 ... 0 0 0
_ h2r . . . . . . . . .
Le = 36m—172) : : : : . . . : : )
0 0 0 0 0 2xi32  _9/5 0 0
0 0 0 0 0 0 =2 _9/5 0
| 0 0 0 0 0 0 0 smt3z - _9/5 |

_ _ _ T _
Y:(yanlayQa e 7yN)TaF = (F07F13F2a- . aFN) and Y = (yg/ayi//ayé”v' . '7y5<;)T

From expanding equation (8) by Taylor series expansion about (v;), we get the local truncation error T;
of FCS method.

Tj = pryf + p2hy’ + psh®y$ + pah®y\Y + psh*y'¥ + peh®y" + O (h7) (12)

Where p1 = 81+ B2+ B3+ B4+ 85,02 = B1 +2B82 — 283 — Ba+ a1 —az +au, p3 = %+252+2ﬁ3+% -
as — 201 moztanp= g 8Ly 42 4 By
201 + 92 + %, p5 = 5} +252+2ﬁ3+&*%*%+a4andﬂ6 Wi+ y.
By substltutlng pr in (18) we get:
IT] < uh5yj(.7) , whereuisconstantand

k=0,1,...,6.(13)

3 METHODOLOGY

We derive problem for the equation (1), using a fractional spline polynomial technique.

y(t) = J(t) + [, Kt v)y(v)d
From (2) and (4) we obtained:
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S
[h%yﬂTJrzMa;lfM _2fF+2 }(u—uj)u?j(u—@j)?— [\/E‘“"’

& (v =)’ (14)

+45 15f (v —v))

Hence, from (1), we obtain for all j =0,...,n.
v5 = i+ [y kG0 y@)do = 5+ 5500 [ R (L,0) 85 (0)dv + 0 (1)

Above relation is equivalent to
- yJNfJJrZJ Oyfft»k (tj, ) dvfz [ +\fM7 +h2 +h2 }f E (t;,v) vaj)%dv+

Z;z;ol |:yJ+1 \/>2M]+1 +h§16F+1]f k t],v)(va])2dv+Z" 1M f k t,,v)(vaj)dvf
S [2M + h—7h2 ]f k(tj,v) (v—1;) %dv+z [QMJ“ f4 H}f E( tj,v)(vaj)2 dv

=0 | 3Vh

n—1 Fj n—1 4y7! n—1 4F
+Z f k(t;,v) (v—v;)° dv— Z s [\/E L 15f} f k(t;,v) (v —v;) 2dv+2j 0 157\;%1 fvjk (ti,v)
(vaj)zvarZ"ly f k(tj,v) v;)° dv
Let a(j,1) f k (t;,v) dv, b], f k(t;,v) «/v—vjdv—c(],z—i—l) d(j f k( t],v)( v;) dv,
g(]7 _f k t]7v) (U_UJ) dU—T(j7Z+1) f k t]vv)(v_vj) dv q]v f k t],’l))

(v —v;)° dv—z(],z—l—l)ands (J,4 f k( tj,v) (v—vj) dv.
The defined notations can be ertten as a matrix as shown below:
A= a(.ja i)vB = b(]? Z),C = C(j7i+ 1),D = d(]v i): G= g(.j7 i)vR = T(jvi + 1)7P = p(j7 Z)»Q :TQ(jv i)a
Z=2(j,i+1),8 = 5(j,1), Y # Y = (90, 51,52, ,Gn) ", M ~ M = (MOMA?MN) :

~

—~ o~ ~ T
F~F= (FoandFl,Fg,...,FN) .



T _ \FB \/ﬁ 2R
ﬁY-F—i—(A f+f)Y+< +D- 3f+3f)
+

Vi vh¥® B, 6vh3C _ 2vhG _ 4vhR | P - Vi B |, vh3G  4V/hQ | s\ v
M <_ 90 T “e0 T8 — 9 T3~ 15f + 1Of F+ (_ 90 T -9 — i 6) Y-(15)
Y =F 4+ A1Y + AoM + AsF + AV, (16)
[¢] _ _ vhB VhC 2R _ _vn3 B, 16Vh3C 2vhG
Where Al_A_\7h+T’A2__T_ +D_3\m+ As =T+ Te - — Ty

4\/ﬁ _ _ VW5 B |, vh3G _ 4vhQ | S
+7 15\F+15\/H’A4 0t o 5 +6'

An approximation solution of equation (1), will be obtained by solving the above system, we can use FCS
S; to find approximation solution of y; function, where

S;j(v) =9; — [7@-7’\/@%“ + h%% + \/EMJ‘HBMJ‘H + n3 F_7'*1960Fj+1:| (v — vj)%
+ M (v —vj) + [h% Y yoten Ny 2\/57@*29@“} (v—v;)%

5w - VAR At 0o
Vj = 0(1)n — landv € (v;,v41),weget :  S;(v) —S;(v) =61 h”

andhence HSj — S'JH <6 (h7) ; (17)
From equations (10) and (11) we get:

F=R 'LiY+R 'LoY and M= LY + LsF + LY

Let
Y =LY - F =R 'LiY+R 'LyLsV (18)

—M=LsY+ R "L1LsY + R 'LoLsLsY + L3Y (19)

Putting (18) and (19) in (16) we get:

- Y=F + A1Y + AsLyY + AsR L1 LsY + AsR ' LoLsLsY + AsLsY + AsR™ LY + AsR 'Ly Ls

Y —+ A4L3Y N
[I — (Al + AoLy+AsR 'L L5+ AsR 'LoLsLs + AsLs + AR 'L+ A3R 'LoLz + A4L3)} Y

= F7

Y= [[ — (Al + AsLy + AsR 'LiLs + AoR 'LoLsLs + AoLs + AsR™'Li+ A3R 'LoLs + A4L3)]

(20)
We consider that the exact matrix form solution of equation (20) is

[I = (Av+ AsLs+ AsR™'LiLs + AsR™'LoLsLs + AsLs + AsR™'L1 + AsR™'LoLs+ AsLs)]Y = F+T.

(21)
Where Y = (§0,¥1,...,¥n) " is column vector of the exact solution (n41) dimensional. T = (to,t1,...,tn)"
is the vector of the local truncation error.
By subtracting (20) and (21) we get:

[I— A1 —AsLy— AsR™'LiLs — AsR 'LoLsLs — AoLs — AgR™'Li— AgR™'LyLs — A4Ls] E=T

(22)
Where
E=[I— Ay~ AsLs — AsR™'LiLs — AsR ' LoLsLs — AoLs — AsR 'Ly~ AsR™'LoLs — AuLs] ' T
(23)
Where E = (ep, e1,...,e,)" is the column vector of errors, e; = y; — #);,y; is the exact solution and §; is

the approximation solution, for j =0,1,...,n.

4 CONVERGENCE ANALYSIS

In this section, we studied some important lemmas and theorems, as well as the fractional cubic spline’s
convergence analysis.

Lemma 1 [22] If M zs a square Matriz with |M||s < 1, then the matriz (I — M)™' is exist. And
(=27 < =
Lemma 2 The matriz

— (Al}’} =+ A2L4§} + AgRilLlL5§r + A2R71L2L3L5§} + A2L3?+ A3R71L1? + A3R71L2L3?+
A4LsY)] in equation (20) is invertible, if

2 h(mr —2)

+ (we + wr) w1 + wawswewr

2 h%(r—2 36w — 72 h
el (b—a) <e+w3w6 22 ue e “’8) <1

fori=1,...,n, we have:

1Al < [[Klloo (b — a)8
1Blloc = 1Cloe < [[Klloc (b — a) 22
1Dlso < [lklloo(b— )%,
I1Gllse = IIRllse < [Ik]loo (b — a) 242
1Plloo < [lkloo (b — a) %

3

3

1 F’



7
1Qlse = IIL]loo < [[Klloo (b — a) 22

T,
1Sllo < lIklloo (b — a) &,

1Ll < 22020y, Lo, < 22,

ILs|l,, < 8Os o) < GO o yp) < 2hir-2es
1Al < IEllse (@ — a)8,  [[Az]l, < [Flloo(b — a)we,

143l < [IKlloo (@ — a)wr,  [[Aally < [[Flloc (b — a)uws,

_ 0%2—2vhe3 _ 24¢/(h9)3-12Vhed + 03 — 6vh305 VoS _ svhoT | 0t (24)
we = 6 W7 = 15 6 W8 = 135 105 1-

From equation (21) of the matrix representation we get:

(AL + A2l Lall + [A2| ||RTHNLAl s |+ A2l | BT 1Ll I Zsl 1 Ls ]+ (| A2]l | Zsll +

Al | R 121l + sl | R Za 2o + Al sl < 1.

Then we use lemma(1), the matrix

[I — Ay —AsLy — A2R71L1L5— A2R71L2L3L5 —AoL3 — A3R71L1 — A3R71L2L3 — A4L3]

is invertible, if

HAl + A2L4 -+ AQR_1L1L5 -+ AQR_1L2L3L5 -+ A2L3 -+ A3R_1L1 + A3R_1L2L3+ A4L5Hoo < 1, we get:

—_ 2 T — T — wow w
e|lk]|oo (b — a) (9 +w3w6w + (we + wr) w1 w—k WaWsWewWT 36h37r72 + =2 7;'1 8) <1.
Theorem 1 Let y(x) € C3(I),k(t,z) € C¥(I x I) such that

_ 2 v T — wow w
|lk]|oo(z — a) (6‘ + wawe 22T =2) h(: 2) 4 (we + wr) wi 2h7(w—2) (Tr 2 4 WaWsWewWT 36h3ﬂ72 4 =2 7:h 8) <1

Then develop a unique approzimating solution and the error obtained, equation (23), satisfies
(0] (h5) , Q= [a, 7] Where x,0, h,w; fori=1,...,8 are constants. satisfies
Where x,0, h,w; fori=1,...,8 are constants.

From (23) and lemma (24), we get ||E|| <

5 1B =
|E| =0 (h°),Q:= [a,1]

1T 9
1—(llArl+A2 | Lall+I A2 I Lall+ 1 Aall Ll +|| B [N A2 L2 [ Ls [+ Az I L2 I La 1 Ls 1+ As [ L1 [+ Azl I L2 | L3 ) (25)
By substituting ||T|| < ph®d2 and (24) in (25) we obtained: ||E| <O (hs).
Where 62 = maxa, <v<a;,, ¥ (v), 4 and v are constants.
Therefore, we have:

ly = Slloe < 85 (R°) . (26)
Where §3 = ‘E—T,
2
da=1—¢|lk|loo(z — a) (0 + wawe 22D 4 (we + wr) w1 22T 4 wwswewr 28TT2 4

wgun};khwg) <1
Since ||y — Sloo < |y — Sloo + IS — S]|oo, thus applying (26) and (17), we get: ||y — Sloo < 3 ( h5) +
51 ( h7) =6 (h5), where § = 61 + 3.

5 NUMERICAL RESULTS

The proposed technique is applied to three fractional Volterra integral equations, and a comparison of
FCS method and the exact solutions to show the correctness and effectiveness of the proposed approach
with figures, all of the calculations are obtained by the Python software. The maximum absolute error is
computed, and the results are compared to well-known values in [1],[2] and [4].

+2

Example 1 [2] Consider the fractional V-FIE equation y(t) = f(t)+ﬁ fot(tfs)%yZ(s)der (3) fol(lf
2 2
2 13/2
s)%y(s)ds,t € [0, 1], where f(t)=t> — %, and the exact solution is y(t) = t>.
h ||E|| of FCS Best || E|| in [2]
0.25 5.306150311984864 x 10~ * | 4.015179 x 10 °
0.0625 | 2.2544240725426358 x 10" | 2.603753 x 10"
0.03125 | 3.659526172419494 x 10 ° | 6.671122 x 10°
0.015625 | 5.052937917680365 x 10~ ° | 1.831474 x 10 °
0.0078125 | 3.347020452462105 x 10" [ 6.260511 x 10~ °
comparison of the FCS’s solution and method in [2], of example 1.
Example 2 [1],[4] Consider the FVIE y(t) = f(t)+ 19('%1)1;% f;(tfs)_%y(s)ds, where, f(t) = \/(\l/f-it)?* +
3 fom, i — _ VT
0.027% and the ezact solution is y(t) = o
h [|E|| of FCS Best || E|| in [1] | Best ||E|| in [4]
0.2 | 3.290319631998884 x 10~ ° | 4.226282 x 10" 0.1
0.1 | 2.559823498726743 10 ° | 4.446827 x 10~° 0.001
comparison of the FCS’s solution and method in [1] and [4], of example 2.
8
. t sy(s 3
Example 3 [/] Consider the FVIE y(t) = f(t) + @ fo (ZES))S ds, where f(t) =T (% t— %5, and

the ezact solution is y(t) =T (

2

3

) t.

h | E| of FCS Best [|E| in [4]
0.2 0.0022799512383703535 0.003
0.05 | 4.336918367485454 x 10~° >107°

comparison of the FCS’s solution and method in [4], of example 3.
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Figure 1: Maximum errors of example 1.
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Figure 3: Comparison of FCS solutions with exact solution of example 3.

6 CONCLUSION

In this paper, according to the fractional cubic spline, a method for approximating FVIE is presented. The
proposed approach for solving fractional Volterra-integral equations is simple and effective.We calculated
the proposed method’s fifth-order convergence, and the computational illustration was found to be
comparable with theoretical expectations. The current technique was developed using three different
examples by Python program, and the outcomes were compared to the exact solution. In 2D, for various
points, and Our method shows more accuracy compared to the existing method in [1],[2] and [4].
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