REFERENCES
Ahlborn, J., Wesche, K., Lang,
B., Oyunbileg, M., Oyuntsetseg, B., Römermann, C., . . . von Wehrden, H.
(2021). Interactions between species richness, herbivory and
precipitation affect standing biomass in Mongolian rangelands.Applied Vegetation Science, 24(2), e12581.
doi:https://doi.org/10.1111/avsc.12581
Andrino, A., Guggenberger, G.,
Sauheitl, L., Burkart, S., & Boy, J. (2021). Carbon investment into
mobilization of mineral and organic phosphorus by arbuscular mycorrhiza.Biology and Fertility of Soils, 57(1), 47-64.
doi:10.1007/s00374-020-01505-5
Avolio, M. L., Koerner, S. E.,
La Pierre, K. J., Wilcox, K. R., Wilson, G. W. T., Smith, M. D., &
Collins, S. L. (2014). Changes in plant community composition, not
diversity, during a decade of nitrogen and phosphorus additions drive
above-ground productivity in a tallgrass prairie. Journal of
Ecology, 102(6), 1649-1660. doi:10.1111/1365-2745.12312
Bélanger, N., & Rees, K. C.
J. V. (2007). Soil Sampling and Methods of Analysis. Second Edition.Crc Press, 15-24.
Bai, Y., Han, X., Wu, J.,
Chen, Z., & Li, L. (2004). Ecosystem stability and compensatory effects
in the Inner Mongolia grassland. Nature, 431(7005), 181-184.
Bao, Y., & Yan, W. (2004).
Arbuscular mycorrhizae and their structural types on common plants in
grasslands of mid-western Inner Mongolia. Biodiversity Science,
12(5), 501-508.
Benner, J. W., & Vitousek, P.
M. (2007). Development of a diverse epiphyte community in response to
phosphorus fertilization. Ecology Letters, 10(7), 628-636.
doi:10.1111/j.1461-0248.2007.01054.x
Brambila, A., Chesnut, J. W.,
Prugh, L. R., & Hallett, L. M. (2020). Herbivory enhances the effect of
environmental variability on plant community composition and beta
diversity. Journal of Vegetation Science, 31(5), 744-754.
doi:https://doi.org/10.1111/jvs.12862
Carmona, C. P., Mason, N. W.
H., Azcarate, F. M., & Peco, B. (2015). Inter-annual fluctuations in
rainfall shift the functional structure of Mediterranean grasslands
across gradients of productivity and disturbance. Journal of
Vegetation Science, 26(3), 538-551. doi:10.1111/jvs.12260
Chen, S. K., & Edwards, C.
A. (2001). A microcosm approach to assess the effects of fungicides on
soil ecological processes and plant growth: comparisons of two soil
types. Soil Biology & Biochemistry, 33(14), 1981-1991.
doi:10.1016/s0038-0717(01)00132-8
Collins, C. D., & Foster, B.
L. (2009). Community-level consequences of mycorrhizae depend on
phosphorus availability. Ecology, 90(9), 2567-2576.
doi:10.1890/08-1560.1
Cozzolino, V., Di Meo, V.,
Monda, H., Spaccini, R., & Piccolo, A. (2016). The molecular
characteristics of compost affect plant growth, arbuscular mycorrhizal
fungi, and soil microbial community composition. Biology and
Fertility of Soils, 52(1), 15-29. doi:10.1007/s00374-015-1046-8
Crowther, T. W., Riggs, C.,
Lind, E. M., Borer, E. T., Seabloom, E. W., Hobbie, S. E., . . . Routh,
D. (2019). Sensitivity of global soil carbon stocks to combined nutrient
enrichment. Ecology Letters, 22(6), 936-945.
doi:10.1111/ele.13258
Cui, H., Sun, W.,
Delgado-Baquerizo, M., Song, W., Ma, J.-Y., Wang, K., & Ling, X.
(2020a). The effects of mowing and multi-level N fertilization on soil
bacterial and fungal communities in a semiarid grassland are
year-dependent. Soil Biology and Biochemistry, 151, 108040.
doi:https://doi.org/10.1016/j.soilbio.2020.108040
Cui, H., Sun, W.,
Delgado-Baquerizo, M., Song, W., Ma, J.-Y., Wang, K., & Ling, X.
(2020b). Phosphorus addition regulates the responses of soil
multifunctionality to nitrogen over-fertilization in a temperate
grassland. Plant and Soil. doi:10.1007/s11104-020-04620-2
DeMalach, N., & Kadmon, R.
(2017). Light competition explains diversity decline better than niche
dimensionality. Functional Ecology, 31(9), 1834-1838.
doi:doi:10.1111/1365-2435.12841
Ehleringer, J. R.,
Schwinning, S., & Gebauer, R. (2000). Water use in arid land
ecosystems. Physiological Plant Ecology, 347-365.
Felton, A. J., Slette, I. J.,
Smith, M. D., & Knapp, A. K. (2020). Precipitation amount and event
size interact to reduce ecosystem functioning during dry years in a
mesic grassland. Global Change Biology, 26(2), 658-668.
doi:https://doi.org/10.1111/gcb.14789
Gause, G. F. (1934).
Experimental analysis of Vito Volterra’s mathematical theory of the
struggle for existence. Science, 79(2036), 16-17.
doi:10.1126/science.79.2036.16-a
Grace, J. B. (2006).Structural equation modeling and natural systems. Cambridge, UK:
Cambridge University Press.
Han, J., Chen, J., Shi, W.,
Song, J., Hui, D., Ru, J., & Wan, S. (2021). Asymmetric responses of
resource use efficiency to previous-year precipitation in a semi-arid
grassland. Functional Ecology, 35(3), 807-814.
doi:https://doi.org/10.1111/1365-2435.13750
Harpole, W. S., Ngai, J. T.,
Cleland, E. E., Seabloom, E. W., Borer, E. T., Bracken, M. E. S., . . .
Smith, J. E. (2011). Nutrient co-limitation of primary producer
communities. Ecology Letters, 14(9), 852-862.
doi:https://doi.org/10.1111/j.1461-0248.2011.01651.x
Hsu, J. S., Powell, J., &
Adler, P. B. (2012). Sensitivity of mean annual primary production to
precipitation. Global Change Biology, 18(7), 2246-2255.
doi:https://doi.org/10.1111/j.1365-2486.2012.02687.x
Huang, J., Xu, Y., Yu, H.,
Zhu, W., Wang, P., Wang, B., & Na, X. (2021). Soil prokaryotic
community shows no response to 2 years of simulated nitrogen deposition
in an arid ecosystem in northwestern China. Environmental
Microbiology, 23(2), 1222-1237.
doi:https://doi.org/10.1111/1462-2920.15364
Huang, J., Yu, H., Lin, H.,
Zhang, Y., Searle, E. B., & Yuan, Z. (2016). Phosphorus amendment
mitigates nitrogen addition-induced phosphorus limitation in two plant
species in a desert steppe, China. Plant and Soil, 399(1-2),
221-232. doi:10.1007/s11104-015-2649-4
Huang, L., Wang, D., Yao, L.,
Li, X., Wang, D., Du, Q., . . . Guo, Y. (2019). Primary limitation on
vegetation productivity shifts from precipitation in dry years to
nitrogen in wet years in a degraded arid steppe of Inner Mongolia,
northern China. Journal of Soils and Sediments, 19(2), 544-556.
doi:10.1007/s11368-018-2070-8
Irisarri, J. G. N., Derner,
J. D., Porensky, L. M., Augustine, D. J., Reeves, J. L., & Mueller, K.
E. (2016). Grazing intensity differentially regulates ANPP response to
precipitation in North American semiarid grasslands. Ecological
Applications, 26(5), 1370-1380. doi:10.1890/15-1332
Jia, Y., Walder, F., Wagg,
C., & Feng, G. (2021). Mycorrhizal fungi maintain plant community
stability by mitigating the negative effects of nitrogen deposition on
subordinate species in Central Asia. Journal of Vegetation
Science, 32(1), e12944. doi:https://doi.org/10.1111/jvs.12944
Jiang, S., Liu, Y., Luo, J.,
Qin, M., Johnson, N. C., Öpik, M., . . . Feng, H. (2018). Dynamics of
arbuscular mycorrhizal fungal community structure and functioning along
a nitrogen enrichment gradient in an alpine meadow ecosystem. New
Phytologist, 220(4), 1222-1235. doi:10.1111/nph.15112
Johnson, N. C. (2010).
Resource stoichiometry elucidates the structure and function of
arbuscular mycorrhizas across scales. New Phytologist, 185(3),
631-647. doi:10.1111/j.1469-8137.2009.03110.x
Johnson, N. C., Wilson, G. W.
T., Wilson, J. A., Miller, R. M., & Bowker, M. A. (2015). Mycorrhizal
phenotypes and the Law of the Minimum. New Phytologist, 205(4),
1473-1484. doi:10.1111/nph.13172
Kiers, E. T., Duhamel, M.,
Beesetty, Y., Mensah, J. A., Franken, O., Verbruggen, E., . . . Bücking,
H. (2011). Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal
Symbiosis. Science, 333(6044), 880-882.
doi:10.1126/science.1208473
Knapp, A. K., Avolio, M. L.,
Beier, C., Carroll, C. J. W., Collins, S. L., Dukes, J. S., . . . Smith,
M. D. (2017). Pushing precipitation to the extremes in distributed
experiments: recommendations for simulating wet and dry years.Global Change Biology, 23(5), 1774-1782. doi:10.1111/gcb.13504
Knapp, A. K., Ciais, P., &
Smith, M. D. (2017). Reconciling inconsistencies in
precipitation–productivity relationships: implications for climate
change. New Phytologist, 214(1), 41-47. doi:10.1111/nph.14381
Knapp, A. K., & Smith, M. D.
(2001). Variation among biomes in temporal dynamics of aboveground
primary production. Science (New York, N.Y.), 291(5503), 481-484.
doi:10.1126/science.291.5503.481
Koerner, S. E., Collins, S.
L., Blair, J. M., Knapp, A. K., & Smith, M. D. (2014). Rainfall
variability has minimal effects on grassland recovery from repeated
grazing. Journal of Vegetation Science, 25(1), 36-44.
doi:10.1111/jvs.12065
Kong, D. L., Lu, X. T.,
Jiang, L. L., Wu, H. F., Miao, Y., & Kardol, P. (2013). Extreme
rainfall events can alter inter-annual biomass responses to water and N
enrichment. Biogeosciences, 10(12), 8129-8138.
doi:10.5194/bg-10-8129-2013
Lin, G., McCormack, M. L., &
Guo, D. (2015). Arbuscular mycorrhizal fungal effects on plant
competition and community structure. Journal of Ecology, 103(5),
1224-1232. doi:10.1111/1365-2745.12429
Ma, Q., Liu, X., Li, Y., Li,
L., Yu, H., Qi, M., . . . Xu, Z. (2020). Nitrogen deposition magnifies
the sensitivity of desert steppe plant communities to large changes in
precipitation. Journal of Ecology, 108(2), 598-610.
doi:https://doi.org/10.1111/1365-2745.13264
Maurer, G. E., Hallmark, A.
J., Brown, R. F., Sala, O. E., & Collins, S. L. (2020). Sensitivity of
primary production to precipitation across the United States.Ecology Letters, 23(3), 527-536.
doi:https://doi.org/10.1111/ele.13455
Püschel, D., Bitterlich, M.,
Rydlová, J., & Jansa, J. (2021). Drought accentuates the role of
mycorrhiza in phosphorus uptake. Soil Biology and Biochemistry,
108243. doi:https://doi.org/10.1016/j.soilbio.2021.108243
Qiao, Y., Bai, Y., Zhang, Y.,
She, W., Lai, Z., & Qin, S. (2019). Arbuscular mycorrhizal fungi shape
the adaptive strategy of plants by mediating nutrient acquisition in a
shrub-dominated community in the Mu Us Desert. Plant and Soil,
443(1), 549-564. doi:10.1007/s11104-019-04253-0
Reichmann, L. G., Collins, H.
P., Jin, V. L., Johnson, M.-V. V., Kiniry, J. R., Mitchell, R. B., . . .
Fay, P. A. (2018). Inter-Annual Precipitation Variability Decreases
Switchgrass Productivity from Arid to Mesic Environments.BioEnergy Research, 11(3), 614-622.
doi:10.1007/s12155-018-9922-3
Sloat, L. L., Gerber, J. S.,
Samberg, L. H., Smith, W. K., Herrero, M., Ferreira, L. G., . . . West,
P. C. (2018). Increasing importance of precipitation variability on
global livestock grazing lands. Nature Climate Change, 8(3),
214-218. doi:10.1038/s41558-018-0081-5
Smith, S. E., & Read, D. J.
(2008). Mycorrhizal Symbiosis (3th ed ed.). New
York: Elsevier.
Song, J., Wan, S., Piao, S.,
Knapp, A. K., Classen, A. T., Vicca, S., . . . Zheng, M. (2019). A
meta-analysis of 1,119 manipulative experiments on terrestrial
carbon-cycling responses to global change. Nature Ecology &
Evolution. doi:10.1038/s41559-019-0958-3
Stevens, B. M., Propster, J.
R., Öpik, M., Wilson, G. W. T., Alloway, S. L., Mayemba, E., & Johnson,
N. C. (2020). Arbuscular mycorrhizal fungi in roots and soil respond
differently to biotic and abiotic factors in the Serengeti.Mycorrhiza, 30(1), 79-95. doi:10.1007/s00572-020-00931-5
Suding, K. N., Collins, S.
L., Gough, L., Clark, C., Cleland, E. E., Gross, K. L., . . . Pennings,
S. (2005). Functional- and abundance-based mechanisms explain diversity
loss due to N fertilization. Proceedings of the National Academy
of Sciences of the United States of America, 102(12), 4387-4392.
doi:10.1073/pnas.0408648102
Tian, H., Gai, J. P., Zhang,
J. L., Christie, P., & Li, X. L. (2009). Arbuscular mycorrhizal fungi
associated with wild forage plants in typical steppe of eastern Inner
Mongolia. European Journal of Soil Biology, 45(4), 321-327.
Tian, Q., Liu, N., Bai, W.,
Li, L., Chen, J., Reich, P. B., . . . Zhang, W.-H. (2016). A novel soil
manganese mechanism drives plant species loss with increased nitrogen
deposition in a temperate steppe. Ecology, 97(1), 65-74.
doi:10.1890/15-0917.1
Trouvelot, A. (1986).Mesure du taux de mycorhization VA d’un systeme radiculaire.
Recherche de methodes d’estimation ayant une significantion
fonctionnelle. Paper presented at the Physiological and Genetical
Aspects of Mycorrhizae, Paris, INRA.
Wang, Z., Zhang, Q., Xin, X.,
Ding, Y., Hou, X., Sarula, . . . Liu, Z. (2014). Response of the annual
biomass production of a typical steppe plant community to precipitation
fluctuations. The Rangeland Journal, 36(6), 527-534.
doi:https://doi.org/10.1071/RJ14065
Yahdjian, L., Gherardi, L.,
& Sala, O. E. (2011). Nitrogen limitation in arid-subhumid ecosystems:
A meta-analysis of fertilization studies. Journal of Arid
Environments, 75(8), 675-680.
doi:https://doi.org/10.1016/j.jaridenv.2011.03.003
Yan, H., Liang, C., Li, Z.,
Liu, Z., Miao, B., He, C., & Sheng, L. (2015). Impact of Precipitation
Patterns on Biomass and Species Richness of Annuals in a Dry Steppe.PLOS ONE, 10(4), e0125300. doi:10.1371/journal.pone.0125300
Yang, G., Yang, X., Zhang,
W., Wei, Y., Ge, G., Lu, W., . . . Zhang, Y. (2016). Arbuscular
mycorrhizal fungi affect plant community structure under various
nutrient conditions and stabilize the community productivity.Oikos, 125(4), 576-585. doi:10.1111/oik.02351
Yang, G. W., Liu, N., Lu, W.
J., Wang, S., Kan, H. M., Zhang, Y. J., . . . Chen, Y. L. (2014). The
interaction between arbuscular mycorrhizal fungi and soil phosphorus
availability influences plant community productivity and ecosystem
stability. Journal of Ecology, 102(4), 1072-1082.
doi:10.1111/1365-2745.12249
Yang, H., Jiang, L., Li, L.,
Li, A., Wu, M., & Wan, S. (2012). Diversity-dependent stability under
mowing and nutrient addition: evidence from a 7-year grassland
experiment. Ecology Letters, 15(6), 619-626.
doi:10.1111/j.1461-0248.2012.01778.x
Yang, X., Liu, Y., Tian, H.,
& Shen, Y. (2021). Short-term nitrogen and phosphorus additions rather
than mycorrhizal suppression determine plant community composition and
productivity in desert steppe. Applied Soil Ecology, 168, 104144.
doi:https://doi.org/10.1016/j.apsoil.2021.104144
Yang, X., Mariotte, P., Guo,
J., Hautier, Y., & Zhang, T. (2021). Suppression of arbuscular
mycorrhizal fungi decreases the temporal stability of community
productivity under elevated temperature and nitrogen addition in a
temperate meadow. Science of the Total Environment, 762, 143137.
doi:https://doi.org/10.1016/j.scitotenv.2020.143137
Yang, X., Shen, Y., Badgery,
W. B., Guo, Y., & Zhang, Y. (2018). Arbuscular mycorrhizal fungi alter
plant community composition along a grazing gradient in Inner Mongolia
Steppe. Basic and Applied Ecology, 32, 53-65.
doi:https://doi.org/10.1016/j.baae.2018.07.002
Yu, H., Ma, Q., Liu, X., Li,
Y., Li, L., Qi, M., . . . Zhang, F. (2021). Resistance, recovery, and
resilience of desert steppe to precipitation alterations with nitrogen
deposition. Journal of Cleaner Production, 317, 128434.
doi:https://doi.org/10.1016/j.jclepro.2021.128434
Zhang, T., & Feng, G.
(2021). Arbuscular mycorrhizal fungi alleviate the negative effects of
increases in phosphorus (P) resource diversity on plant community
structure by improving P resource utilization. Plant and Soil.
doi:10.1007/s11104-020-04825-5
Zhang, W., & Zhou, T.
(2019). Significant Increases in Extreme Precipitation and the
Associations with Global Warming over the Global Land Monsoon Regions.Journal of Climate, 32(24), 8465-8488.
doi:10.1175/jcli-d-18-0662.1
Zhao, Y., Yang, B., Li, M.,
Xiao, R., Rao, K., Wang, J., . . . Guo, J. (2019). Community
composition, structure and productivity in response to nitrogen and
phosphorus additions in a temperate meadow. Science of the Total
Environment, 654, 863-871. doi:10.1016/j.scitotenv.2018.11.155
Zheng, Z., Ma, P., Li, J.,
Ren, L., Bai, W., Tian, Q., . . . Zhang, W.-H. (2018). Arbuscular
mycorrhizal fungal communities associated with two dominant species
differ in their responses to long-term nitrogen addition in temperate
grasslands. Functional Ecology, 32(6), 1575-1588.
doi:10.1111/1365-2435.13081
TABLE 1. Analysis of variance for the effects of year (Y),
fungicide application (F), nitrogen addition (N) and phosphorus addition
(P) on aboveground net primary production (ANPP) and the aboveground
biomass of plant species from 2019 to 2020.