REFERENCES
Ahlborn, J., Wesche, K., Lang, B., Oyunbileg, M., Oyuntsetseg, B., Römermann, C., . . . von Wehrden, H. (2021). Interactions between species richness, herbivory and precipitation affect standing biomass in Mongolian rangelands.Applied Vegetation Science, 24(2), e12581. doi:https://doi.org/10.1111/avsc.12581
Andrino, A., Guggenberger, G., Sauheitl, L., Burkart, S., & Boy, J. (2021). Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza.Biology and Fertility of Soils, 57(1), 47-64. doi:10.1007/s00374-020-01505-5
Avolio, M. L., Koerner, S. E., La Pierre, K. J., Wilcox, K. R., Wilson, G. W. T., Smith, M. D., & Collins, S. L. (2014). Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in a tallgrass prairie. Journal of Ecology, 102(6), 1649-1660. doi:10.1111/1365-2745.12312
Bélanger, N., & Rees, K. C. J. V. (2007). Soil Sampling and Methods of Analysis. Second Edition.Crc Press, 15-24.
Bai, Y., Han, X., Wu, J., Chen, Z., & Li, L. (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431(7005), 181-184.
Bao, Y., & Yan, W. (2004). Arbuscular mycorrhizae and their structural types on common plants in grasslands of mid-western Inner Mongolia. Biodiversity Science, 12(5), 501-508.
Benner, J. W., & Vitousek, P. M. (2007). Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters, 10(7), 628-636. doi:10.1111/j.1461-0248.2007.01054.x
Brambila, A., Chesnut, J. W., Prugh, L. R., & Hallett, L. M. (2020). Herbivory enhances the effect of environmental variability on plant community composition and beta diversity. Journal of Vegetation Science, 31(5), 744-754. doi:https://doi.org/10.1111/jvs.12862
Carmona, C. P., Mason, N. W. H., Azcarate, F. M., & Peco, B. (2015). Inter-annual fluctuations in rainfall shift the functional structure of Mediterranean grasslands across gradients of productivity and disturbance. Journal of Vegetation Science, 26(3), 538-551. doi:10.1111/jvs.12260
Chen, S. K., & Edwards, C. A. (2001). A microcosm approach to assess the effects of fungicides on soil ecological processes and plant growth: comparisons of two soil types. Soil Biology & Biochemistry, 33(14), 1981-1991. doi:10.1016/s0038-0717(01)00132-8
Collins, C. D., & Foster, B. L. (2009). Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology, 90(9), 2567-2576. doi:10.1890/08-1560.1
Cozzolino, V., Di Meo, V., Monda, H., Spaccini, R., & Piccolo, A. (2016). The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biology and Fertility of Soils, 52(1), 15-29. doi:10.1007/s00374-015-1046-8
Crowther, T. W., Riggs, C., Lind, E. M., Borer, E. T., Seabloom, E. W., Hobbie, S. E., . . . Routh, D. (2019). Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecology Letters, 22(6), 936-945. doi:10.1111/ele.13258
Cui, H., Sun, W., Delgado-Baquerizo, M., Song, W., Ma, J.-Y., Wang, K., & Ling, X. (2020a). The effects of mowing and multi-level N fertilization on soil bacterial and fungal communities in a semiarid grassland are year-dependent. Soil Biology and Biochemistry, 151, 108040. doi:https://doi.org/10.1016/j.soilbio.2020.108040
Cui, H., Sun, W., Delgado-Baquerizo, M., Song, W., Ma, J.-Y., Wang, K., & Ling, X. (2020b). Phosphorus addition regulates the responses of soil multifunctionality to nitrogen over-fertilization in a temperate grassland. Plant and Soil. doi:10.1007/s11104-020-04620-2
DeMalach, N., & Kadmon, R. (2017). Light competition explains diversity decline better than niche dimensionality. Functional Ecology, 31(9), 1834-1838. doi:doi:10.1111/1365-2435.12841
Ehleringer, J. R., Schwinning, S., & Gebauer, R. (2000). Water use in arid land ecosystems. Physiological Plant Ecology, 347-365.
Felton, A. J., Slette, I. J., Smith, M. D., & Knapp, A. K. (2020). Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland. Global Change Biology, 26(2), 658-668. doi:https://doi.org/10.1111/gcb.14789
Gause, G. F. (1934). Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science, 79(2036), 16-17. doi:10.1126/science.79.2036.16-a
Grace, J. B. (2006).Structural equation modeling and natural systems. Cambridge, UK: Cambridge University Press.
Han, J., Chen, J., Shi, W., Song, J., Hui, D., Ru, J., & Wan, S. (2021). Asymmetric responses of resource use efficiency to previous-year precipitation in a semi-arid grassland. Functional Ecology, 35(3), 807-814. doi:https://doi.org/10.1111/1365-2435.13750
Harpole, W. S., Ngai, J. T., Cleland, E. E., Seabloom, E. W., Borer, E. T., Bracken, M. E. S., . . . Smith, J. E. (2011). Nutrient co-limitation of primary producer communities. Ecology Letters, 14(9), 852-862. doi:https://doi.org/10.1111/j.1461-0248.2011.01651.x
Hsu, J. S., Powell, J., & Adler, P. B. (2012). Sensitivity of mean annual primary production to precipitation. Global Change Biology, 18(7), 2246-2255. doi:https://doi.org/10.1111/j.1365-2486.2012.02687.x
Huang, J., Xu, Y., Yu, H., Zhu, W., Wang, P., Wang, B., & Na, X. (2021). Soil prokaryotic community shows no response to 2 years of simulated nitrogen deposition in an arid ecosystem in northwestern China. Environmental Microbiology, 23(2), 1222-1237. doi:https://doi.org/10.1111/1462-2920.15364
Huang, J., Yu, H., Lin, H., Zhang, Y., Searle, E. B., & Yuan, Z. (2016). Phosphorus amendment mitigates nitrogen addition-induced phosphorus limitation in two plant species in a desert steppe, China. Plant and Soil, 399(1-2), 221-232. doi:10.1007/s11104-015-2649-4
Huang, L., Wang, D., Yao, L., Li, X., Wang, D., Du, Q., . . . Guo, Y. (2019). Primary limitation on vegetation productivity shifts from precipitation in dry years to nitrogen in wet years in a degraded arid steppe of Inner Mongolia, northern China. Journal of Soils and Sediments, 19(2), 544-556. doi:10.1007/s11368-018-2070-8
Irisarri, J. G. N., Derner, J. D., Porensky, L. M., Augustine, D. J., Reeves, J. L., & Mueller, K. E. (2016). Grazing intensity differentially regulates ANPP response to precipitation in North American semiarid grasslands. Ecological Applications, 26(5), 1370-1380. doi:10.1890/15-1332
Jia, Y., Walder, F., Wagg, C., & Feng, G. (2021). Mycorrhizal fungi maintain plant community stability by mitigating the negative effects of nitrogen deposition on subordinate species in Central Asia. Journal of Vegetation Science, 32(1), e12944. doi:https://doi.org/10.1111/jvs.12944
Jiang, S., Liu, Y., Luo, J., Qin, M., Johnson, N. C., Öpik, M., . . . Feng, H. (2018). Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem. New Phytologist, 220(4), 1222-1235. doi:10.1111/nph.15112
Johnson, N. C. (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185(3), 631-647. doi:10.1111/j.1469-8137.2009.03110.x
Johnson, N. C., Wilson, G. W. T., Wilson, J. A., Miller, R. M., & Bowker, M. A. (2015). Mycorrhizal phenotypes and the Law of the Minimum. New Phytologist, 205(4), 1473-1484. doi:10.1111/nph.13172
Kiers, E. T., Duhamel, M., Beesetty, Y., Mensah, J. A., Franken, O., Verbruggen, E., . . . Bücking, H. (2011). Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science, 333(6044), 880-882. doi:10.1126/science.1208473
Knapp, A. K., Avolio, M. L., Beier, C., Carroll, C. J. W., Collins, S. L., Dukes, J. S., . . . Smith, M. D. (2017). Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years.Global Change Biology, 23(5), 1774-1782. doi:10.1111/gcb.13504
Knapp, A. K., Ciais, P., & Smith, M. D. (2017). Reconciling inconsistencies in precipitation–productivity relationships: implications for climate change. New Phytologist, 214(1), 41-47. doi:10.1111/nph.14381
Knapp, A. K., & Smith, M. D. (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science (New York, N.Y.), 291(5503), 481-484. doi:10.1126/science.291.5503.481
Koerner, S. E., Collins, S. L., Blair, J. M., Knapp, A. K., & Smith, M. D. (2014). Rainfall variability has minimal effects on grassland recovery from repeated grazing. Journal of Vegetation Science, 25(1), 36-44. doi:10.1111/jvs.12065
Kong, D. L., Lu, X. T., Jiang, L. L., Wu, H. F., Miao, Y., & Kardol, P. (2013). Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment. Biogeosciences, 10(12), 8129-8138. doi:10.5194/bg-10-8129-2013
Lin, G., McCormack, M. L., & Guo, D. (2015). Arbuscular mycorrhizal fungal effects on plant competition and community structure. Journal of Ecology, 103(5), 1224-1232. doi:10.1111/1365-2745.12429
Ma, Q., Liu, X., Li, Y., Li, L., Yu, H., Qi, M., . . . Xu, Z. (2020). Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. Journal of Ecology, 108(2), 598-610. doi:https://doi.org/10.1111/1365-2745.13264
Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E., & Collins, S. L. (2020). Sensitivity of primary production to precipitation across the United States.Ecology Letters, 23(3), 527-536. doi:https://doi.org/10.1111/ele.13455
Püschel, D., Bitterlich, M., Rydlová, J., & Jansa, J. (2021). Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biology and Biochemistry, 108243. doi:https://doi.org/10.1016/j.soilbio.2021.108243
Qiao, Y., Bai, Y., Zhang, Y., She, W., Lai, Z., & Qin, S. (2019). Arbuscular mycorrhizal fungi shape the adaptive strategy of plants by mediating nutrient acquisition in a shrub-dominated community in the Mu Us Desert. Plant and Soil, 443(1), 549-564. doi:10.1007/s11104-019-04253-0
Reichmann, L. G., Collins, H. P., Jin, V. L., Johnson, M.-V. V., Kiniry, J. R., Mitchell, R. B., . . . Fay, P. A. (2018). Inter-Annual Precipitation Variability Decreases Switchgrass Productivity from Arid to Mesic Environments.BioEnergy Research, 11(3), 614-622. doi:10.1007/s12155-018-9922-3
Sloat, L. L., Gerber, J. S., Samberg, L. H., Smith, W. K., Herrero, M., Ferreira, L. G., . . . West, P. C. (2018). Increasing importance of precipitation variability on global livestock grazing lands. Nature Climate Change, 8(3), 214-218. doi:10.1038/s41558-018-0081-5
Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis (3th ed ed.). New York: Elsevier.
Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., . . . Zheng, M. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution. doi:10.1038/s41559-019-0958-3
Stevens, B. M., Propster, J. R., Öpik, M., Wilson, G. W. T., Alloway, S. L., Mayemba, E., & Johnson, N. C. (2020). Arbuscular mycorrhizal fungi in roots and soil respond differently to biotic and abiotic factors in the Serengeti.Mycorrhiza, 30(1), 79-95. doi:10.1007/s00572-020-00931-5
Suding, K. N., Collins, S. L., Gough, L., Clark, C., Cleland, E. E., Gross, K. L., . . . Pennings, S. (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4387-4392. doi:10.1073/pnas.0408648102
Tian, H., Gai, J. P., Zhang, J. L., Christie, P., & Li, X. L. (2009). Arbuscular mycorrhizal fungi associated with wild forage plants in typical steppe of eastern Inner Mongolia. European Journal of Soil Biology, 45(4), 321-327.
Tian, Q., Liu, N., Bai, W., Li, L., Chen, J., Reich, P. B., . . . Zhang, W.-H. (2016). A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97(1), 65-74. doi:10.1890/15-0917.1
Trouvelot, A. (1986).Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une significantion fonctionnelle. Paper presented at the Physiological and Genetical Aspects of Mycorrhizae, Paris, INRA.
Wang, Z., Zhang, Q., Xin, X., Ding, Y., Hou, X., Sarula, . . . Liu, Z. (2014). Response of the annual biomass production of a typical steppe plant community to precipitation fluctuations. The Rangeland Journal, 36(6), 527-534. doi:https://doi.org/10.1071/RJ14065
Yahdjian, L., Gherardi, L., & Sala, O. E. (2011). Nitrogen limitation in arid-subhumid ecosystems: A meta-analysis of fertilization studies. Journal of Arid Environments, 75(8), 675-680. doi:https://doi.org/10.1016/j.jaridenv.2011.03.003
Yan, H., Liang, C., Li, Z., Liu, Z., Miao, B., He, C., & Sheng, L. (2015). Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe.PLOS ONE, 10(4), e0125300. doi:10.1371/journal.pone.0125300
Yang, G., Yang, X., Zhang, W., Wei, Y., Ge, G., Lu, W., . . . Zhang, Y. (2016). Arbuscular mycorrhizal fungi affect plant community structure under various nutrient conditions and stabilize the community productivity.Oikos, 125(4), 576-585. doi:10.1111/oik.02351
Yang, G. W., Liu, N., Lu, W. J., Wang, S., Kan, H. M., Zhang, Y. J., . . . Chen, Y. L. (2014). The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Journal of Ecology, 102(4), 1072-1082. doi:10.1111/1365-2745.12249
Yang, H., Jiang, L., Li, L., Li, A., Wu, M., & Wan, S. (2012). Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters, 15(6), 619-626. doi:10.1111/j.1461-0248.2012.01778.x
Yang, X., Liu, Y., Tian, H., & Shen, Y. (2021). Short-term nitrogen and phosphorus additions rather than mycorrhizal suppression determine plant community composition and productivity in desert steppe. Applied Soil Ecology, 168, 104144. doi:https://doi.org/10.1016/j.apsoil.2021.104144
Yang, X., Mariotte, P., Guo, J., Hautier, Y., & Zhang, T. (2021). Suppression of arbuscular mycorrhizal fungi decreases the temporal stability of community productivity under elevated temperature and nitrogen addition in a temperate meadow. Science of the Total Environment, 762, 143137. doi:https://doi.org/10.1016/j.scitotenv.2020.143137
Yang, X., Shen, Y., Badgery, W. B., Guo, Y., & Zhang, Y. (2018). Arbuscular mycorrhizal fungi alter plant community composition along a grazing gradient in Inner Mongolia Steppe. Basic and Applied Ecology, 32, 53-65. doi:https://doi.org/10.1016/j.baae.2018.07.002
Yu, H., Ma, Q., Liu, X., Li, Y., Li, L., Qi, M., . . . Zhang, F. (2021). Resistance, recovery, and resilience of desert steppe to precipitation alterations with nitrogen deposition. Journal of Cleaner Production, 317, 128434. doi:https://doi.org/10.1016/j.jclepro.2021.128434
Zhang, T., & Feng, G. (2021). Arbuscular mycorrhizal fungi alleviate the negative effects of increases in phosphorus (P) resource diversity on plant community structure by improving P resource utilization. Plant and Soil. doi:10.1007/s11104-020-04825-5
Zhang, W., & Zhou, T. (2019). Significant Increases in Extreme Precipitation and the Associations with Global Warming over the Global Land Monsoon Regions.Journal of Climate, 32(24), 8465-8488. doi:10.1175/jcli-d-18-0662.1
Zhao, Y., Yang, B., Li, M., Xiao, R., Rao, K., Wang, J., . . . Guo, J. (2019). Community composition, structure and productivity in response to nitrogen and phosphorus additions in a temperate meadow. Science of the Total Environment, 654, 863-871. doi:10.1016/j.scitotenv.2018.11.155
Zheng, Z., Ma, P., Li, J., Ren, L., Bai, W., Tian, Q., . . . Zhang, W.-H. (2018). Arbuscular mycorrhizal fungal communities associated with two dominant species differ in their responses to long-term nitrogen addition in temperate grasslands. Functional Ecology, 32(6), 1575-1588. doi:10.1111/1365-2435.13081
TABLE 1. Analysis of variance for the effects of year (Y), fungicide application (F), nitrogen addition (N) and phosphorus addition (P) on aboveground net primary production (ANPP) and the aboveground biomass of plant species from 2019 to 2020.