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Abstract
Polymorphic short insertions and deletions (INDELs  50 bp) are abundant, although less common than single nucleotide polymorphisms (SNPs). Evidence from model organisms shows INDELs to be more strongly influenced by purifying selection than SNPs. Partly for this reason, INDELs are rarely used as markers for demographic processes or to detect balancing or divergent selection. Here, we compared INDELs and SNPs in the intertidal snail Littorina saxatilis, focusing on hybrid zones between ecotypes. Using capture sequencing data, we computed INDEL and SNP site frequency spectra (SFS) to compare the impact of purifying, positive and balancing selection on these variant types. Because signatures of selection may be confounded by GC-biased gene conversion and polarization errors, we also examined their influence. We assessed the impact of divergent selection by analysing allele frequency clines across habitat boundaries. We show evidence that short INDELs are affected more by purifying selection and less by positive selection than SNPs, but part of the observed SFS difference can be attributed to GC-biased gene conversion and polarization errors. We did not find a difference in the impact of balancing or divergent selection between short INDELs and SNPs. Short INDELs and SNPs were similarly distributed across the genome and so are likely to respond to indirect selection in the same way. A few regions likely affected by divergent selection were revealed by INDELs and not by SNPs. Short INDELs can be useful genetic markers helping to identify genomic regions under selective constraints or important for adaptation and population divergence.
Keywords
Insertions and deletions, single nucleotide polymorphism, hybrid zone, local adaptation, mollusc, speciation

Introduction
With the emergence of high-throughput and next-generation sequencing technologies, single nucleotide polymorphisms (SNPs) have been extensively used for studying the evolutionary history and adaptation of populations (Brumfield, Beerli, Nickerson, & Edwards, 2003; Morin, Luikart, Wayne, & the SNP workshop group, 2004; Schlötterer, 2004). However, SNPs are not the only category of common, small variants: Short insertions and deletions (INDELs  50 bp) could represent additional or alternative candidate genetic markers, as they are the most common type of genetic variants among the non-SNP variants (e.g., Catanach et al., 2019; Montgomery et al., 2013). Short INDELs can be called using the same short-read input sequences often used for calling SNPs (while long INDELs and other structural variants may require a different sequencing approach; see Zhang, Chaturvedi, Nice, Lucas, & Gompert, 2022, for example) and could therefore easily be analysed along with SNPs. However, short INDELs are typically not used as markers in studies of evolutionary processes, including studies of divergence between wild populations, which is the context of our study. They are used for improving the alignment of the reads onto the reference genome but then they are typically discarded and not analysed either as a source of genetic variation for divergent selection to act upon or as markers potentially under indirect selection. 
Generally, genetic variants are used to study two classes of evolutionary processes, neutral and selective. The first class typically involves estimating gene flow and the demographic history of populations (e.g., changes in population size over time). Neutral processes are expected to change the frequencies of variants across the whole genome, which means that we can measure their effects on genetic variation using variants unlinked to targets of selection. The second class instead aims to characterize selective processes such as background selection and divergent selection, for example during the evolution of adaptive traits in different environments. Selective processes are expected to have locus-specific effects; divergent selection, for example, generates outliers with large allele-frequency difference (high FST)) between populations. Selective processes affect the selected markers themselves (direct selection) as well as linked neutral loci (indirect selection), while the majority of the genome is assumed to consist of unlinked neutral loci whose behaviour (e.g., FST) reflects the baseline differentiation between populations.
The most common methods used to identify variants with elevated FST (i.e., outliers), such as outlier scans (Beaumont & Nichols, 1996) and hybrid zone analyses (Harrison, 1993), or to analyse the demographic history of populations are valid if the bulk of markers is not affected by selection. This requirement can be problematic for many variants used as markers. Those variants that are affected by purifying selection will, on average, tend to be present at lower frequency than expected under neutrality (Fay, Wyckoff, & Wu, 2001; Massouras et al., 2012). If such variants are common, the assumptions of demographic analyses and selection tests are violated. Compared to SNPs, short INDELs, especially those in functional genomic regions, are considered more likely to cause fitness reductions and be under purifying selection (Mullaney, Mills, Pittard, & Devine, 2010). In line with these expectations, the difference in nucleotide diversity between non-coding and coding SNPs can range between five and ten-fold in birds and Drosophila (Barton & Zeng, 2018; Corcoran et al., 2017) while it can increase up to a 30-fold difference between non-coding and coding INDELs, as in the case of Drosophila melanogaster (Barton & Zeng, 2018). In model organisms, short INDELs were also found to be segregating at lower frequencies compared to SNPs, with a clear excess of low-frequency alleles for deletions in coding regions, as indicated by the most negative values of Tajima’s D (e.g., Barton & Zeng, 2019; Montgomery et al., 2013). These two patterns, high difference in nucleotide diversity between non-coding and coding regions and excess of low-frequency alleles, are strong pieces of evidence for purifying selection acting on short INDELs. Thus, short INDELs might not be useful as markers for neutral demographic processes or to study other types of selection (e.g., balancing or divergent).
SNPs, however, are not without problems either. Like short INDELs, they can also disrupt the function of a protein or the control of gene expression and potentially reduce fitness. In coding regions, a substantial proportion of the SNPs changing the amino acid sequence of a protein was predicted to be under strong purifying selection in the great tit (~80%) and the zebra finch (~85%) (Corcoran et al., 2017) as well as in the common fruit fly (78%) and the house mouse (69%) (Athanasios Kousathanas & Keightley, 2013). Somewhat higher proportions were estimated for short INDELs in the coding regions of the great tit (96%) (Barton & Zeng, 2019) and the common fruit fly genomes (~95%) (Barton & Zeng, 2018). However, considering all coding SNPs, not only the nonsynonymous ones, the difference between SNPs and INDELs in coding regions is likely to be much higher, assuming synonymous SNPs to be mostly neutral.
In contrast, in non-coding regions, the majority of both short INDELs and SNPs are likely to be effectively neutral (Kimura, 1979; estimates for all mutations in non-coding regions range from 50% to 95% effectively neutral, Eyre-Walker & Keightley, 2007). Importantly, because only a small minority of variants are located in coding regions, the overall difference in the extent of purifying selection on short INDELs vs SNPs is expected to be small. This suggests that short INDELS might be useful markers, alongside SNPs, at least for some types of studies or when it is practical to focus on variants outside coding regions. 
To infer the impacts of selection on different types of variants (e.g., INDELs and SNPs), methods based on the site frequency spectrum (SFS) are commonly used. Different forms of selection shift the SFS away from the neutral expectation in characteristic ways which can be measured using summary statistics such as Tajima’s (1989) D. Importantly, the SFS can also be affected by demographic processes and by confounding factors including GC-biased gene conversion (gBGC) (Marchi & Excoffier, 2020). It is important to consider gBGC when comparing SNPs and INDELs because it can distort the SFS for SNPs but not INDELs, highlighting a potential disadvantage of SNPs as markers. GC-biased gene conversion occurs during recombination (Marais, 2003) and is well-documented for model species such as yeast and human (Lachance & Tishkoff, 2014; Mancera, Bourgon, Brozzi, Huber, & Steinmetz, 2008; but see Mugal, Weber, & Ellegren, 2015 for a list of other taxa where there is indirect evidence of gBGC). It implies that substitutions changing AT alleles into GC alleles should increase in frequency as if they were under positive selection, whereas substitutions changing GC into AT alleles should decrease in frequency as if they were under purifying selection.
INDEL discovery does not come without bioinformatic challenges (Onishi-Seebacher & Korbel, 2011; Väli, Brandstrom, Johansson, & Ellegren, 2008) which are part of the reason why variant calling pipelines often adopt an INDEL filter. Mapping algorithms deal poorly with long INDELs and with repeated motifs (Narzisi & Schatz, 2015). False negatives and false positives can be generated when coverage distribution is not uniform or the efficiency of targeted resequencing is not even across the queried regions of the genome (Fang et al., 2016). However, these issues are encountered less frequently with short INDELs as they show a lower false discovery rate than longer ones (Kumaran, Subramanian, & Devarajan, 2019; Massouras et al., 2012). Polarization can also be challenging when working with INDELs because, due to homoplasy, ancestral deletions can be misidentified as derived insertions (or vice versa). As a consequence of ancestral state misidentification, the SFS can be inaccurate and this will influence estimates of the strength of selection (Hernandez, Williamson, & Bustamante, 2007). Methods that estimate the strength of selection and deal with polarization errors are available, but they still require information about insertion and deletion mutation rates (e.g., Barton & Zeng, 2018).
Using the current best practice for variant calling, short INDELs can be called relatively reliably and easily integrated with SNPs (Hwang, Kim, Lee, & Marcotte, 2015; Li et al., 2019; Van der Auwera et al., 2013). To understand to what extent different types of variants can be used to reflect evolutionary processes, it is necessary to understand how they are affected by purifying selection, either directly or indirectly, using SFS-based methods as described above. Then, one can ask how other processes, such as positive, divergent and balancing selection, influence different genetic variants, not only in model organisms in lab settings but also in natural populations of model and non-model species that live in heterogeneous habitats. Here, we annotate short variants across the genome of the marine snail Littorina saxatilis, and then, for each functional category, infer the directions of natural selection using allele frequency spectra and Tajima’s D summary statistics. We also examine the influence that gBGC and polarization errors may have on these estimates. Finally, we compare marker performance when studying adaptive divergence in a hybrid zone, where short INDELs have been overlooked as genetic markers so far (see Zhang et al. 2022 for recent work on larger structural variants in a hybrid zone).
[bookmark: bookmark=id.30j0zll]Two ecotypes of L. saxatilis, the ‘Crab’ and the ‘Wave’ forms, display divergent phenotypes associated with the ecological conditions of their local habitats. In, for example, the UK and Sweden, for example, snails with large shells and wary behaviour are typically found in boulder fields where crab predation is common, while snails with smaller shells and bolder behaviour are found in crevices of the bedrock exposed to wave-action, not very distant from the boulders. These adaptations were shown experimentally to help resisting crab predation and wave exposure, respectively (Johannesson, 1986; Le Pennec et al., 2017). Here, we specifically refer to a recent study (Westram, Faria, Johannesson, & Butlin, 2021) using SNPs to investigate neutral and adaptive processes. This study compared seven replicate hybrid zones between L. saxatilis crab and wave ecotypes on a small geographical scale. SNP clines were used to distinguish neutral genomic regions from those putatively under divergent selection between ecotypes (Westram et al., 2018). Here, after inferring the impact of purifying, positive and possibly balancing selection on SNPs and short INDELs, we use the study by Westram et al. (2021) as a case study to test whether their main findings based on SNPs can be replicated when short INDELs are the genetic markers whose allele frequencies are used to fit clines.

Materials and Methods
Data set
All details about the data set, which was previously analysed solely based on SNPs, are described in Westram et al. (2021). Briefly, snails were sampled from the rocky shore of three small islands located on the Swedish west coast and labelled CZA, CZB and CZD (Fig. 1A). Each shore contained two rocky headlands separated by a 50-100m wide boulder field, for a total of three populations (one Crab and two Wave) and two Crab-Wave hybrid zones per island. On each island, we sampled ~384 snails along a ~300 m long transect. In the SFS analyses, we considered the three populations on an island separately and assigned each snail to one population based on its hybrid index and its position along the shore (Fig. 1B). The hybrid index was based on read count of SNPs and it varied from 0, the Crab extreme, to 1, the Wave extreme (see Johannesson, Zagrodzka, Faria, Westram, & Butlin, 2020 for details). Since the index (HI) is more variable in the Wave ecotype, and the steepest change was from 0.25 to 0.5, we defined Crab ecotype as HI < 0.25 and Wave ecotype as HI > 0.5. Samples with intermediate coefficients (putative hybrids, 0.25 < HI < 0.5) were removed. In the hybrid zone analysis, we considered the two hybrid zones on an island separately, but used all individuals; i.e., we split the sampled transect in the middle of the boulder field to represent a ‘left’ and a ‘right’ hybrid zone (Fig. 1B). For each of the six hybrid zones, we defined the position of each snail on a one-dimensional path along the shore, to facilitate cline analysis. For each snail, a capture sequencing protocol was used with 40,000 probes widely distributed across the genome and Illumina paired-end sequencing, providing information on about 15Mb of the 1.35Gb genome sequence (see Westram et al., 2018 for details).

Analysis of short genomic variants
Sequence data were obtained from Westram et al. (2021) and the same analytical steps were performed whenever possible. Here, we specify adjustments needed to include INDELs. The first adjustment was the inclusion of whole-genome sequences from three individuals of L. compressa (from Stankowski et al., 2020) as an outgroup. These additional reads were needed to define the ancestral vs. derived state of alleles (see below, section Polarization, site frequency spectra and Tajima’s D). Trimming, mapping and quality filters stayed the same but variant calling used GATK (McKenna et al., 2010) because of its superior performance for INDEL discovery (Hwang et al., 2015). We followed the GATK (version 4.1) best practice for “Germline short variant discovery” (here SNPs and INDELs  50 bp) (see https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-; last accessed February 4, 2020). Variants were called per-sample in local haplotypes which were assembled independently from the existing mapping information. Per-sample variants were then combined and, finally, these were jointly genotyped (Poplin et al., 2017; Van der Auwera et al., 2013). The final adjustment was to filter raw variants according to the GATK best practice hard filters (for SNPs: QD  2.0, QUAL  30.0, SOR  3.0, FS  60.0, MQ  40.0, MQRankSum  -12.5, ReadPosRankSum  -8.0; for INDELs: QD  2.0, QUAL  30.0, FS  200.0, ReadPosRankSum  -20.0; see https://gatk.broadinstitute.org/hc/en-us/articles/360035531112#2). Filtered variants (both SNPs and short INDELs) were then treated in the same way as the SNPs in Westram et al. (2021). We retained only biallelic variants to reduce the number of false positive calls due to sequencing errors and we kept only the variants that were detected within 1,000 base pairs from any SNP present in the L. saxatilis linkage map (Westram et al., 2018). By doing so, we excluded duplicated loci with unusual segregation patterns (see Westram et al. 2021, Materials & Methods, section Genotyping and bioinformatics). We also removed variants positioned inside known chromosomal inversions to avoid confounding effects due to the absence of recombination. We extracted information about the positions of inversions from Faria et al. (2019) with buffers as described in Westram et al. (2021). 
We annotated variants using the L. saxatilis GFF annotation file (see Supporting Information, section Genome assembly and annotation) and SnpEff (Cingolani et al., 2012). To avoid small sample size and to facilitate comparison between SNPs and INDELs, variants were classified as either silent or non-silent. Silent was assigned to variants that were predicted not to modify the amino acid sequence of a protein, including variants in intergenic and intronic regions and synonymous SNPs. Non-silent variants included all INDELs in coding regions and non-synonymous SNPs. Genome annotation for L. saxatilis is at an early stage and, therefore, this categorisation is likely to be imperfect. We did not include variants in upstream, downstream or untranslated regions because of low sample size and uncertainty about fitness effects. 
Polarization, site frequency spectra and Tajima’s D
We polarized SNPs and INDELs based on the genotype of L. compressa. Only those variants that were fixed in our sample of L. compressa and polymorphic in L. saxatilis were kept. To determine whether proportions of deletions and insertions were similar between silent and non-silent categories, we performed Pearson’s chi-squared test. We then classified polymorphic SNPs according to the expected bias in gene conversion (Galtier, Piganeau, Mouchiroud, & Duret, 2001) as WW if both ancestral and derived alleles were A or T (Weak), SS if both ancestral and derived alleles were G or C (Strong), SW if the ancestral allele was either G or C and the derived alleles was either A or T and finally, WS if the ancestral allele was either A or T and the derived allele was either G or C. WS polymorphisms are expected to show a right-shifted SFS, like variants affected by positive selection, and SW polymorphisms to show left-shifted SFS, like variants affected by purifying selection, while for WW and SS polymorphic SNPs the SFS should not be biased by gene conversion.
Before performing the SFS analyses, we down-sampled from the total number of individuals, , in each of the  populations to  , using this number to avoid missing genotypes while maximizing the count of polarized variants. We filtered out variants with fewer than  genotypes and kept those with  or more genotypes. For the latter, we sampled  genotypes at random and if there were only homozygotes among the sampled genotypes for either the ancestral or the derived allele, the variants were removed. Then, for each set of annotated and polarized variants, we calculated the SFS as the count of sites where the derived allele was at frequency  with  being an integer from 1 to .
We tested whether the distributions of SFS differed between variant types in each population, and consistently across populations. The first test was a G-test, similar to Test 1 in Nielsen et al. (2005) and used to compare the SFS of one set of variants (e.g., SFS of silent INDELs) to the SFS of another set of variants (e.g., SFS of silent SNPs) given the null hypothesis of no difference. The contribution of each individual frequency class to the overall difference between two SFS was tested with 2x2 contingency tables and Pearson’s chi-squared test with Bonferroni correction. Given that chi-squared approximations may not be reliable for expected values of the contingency table , we merged and summed five consecutive individual frequency classes, where necessary, to ensure that all the expected values of the contingency table were greater than 1. When this criterion was no longer satisfied by merging of five classes, we merged and summed all remaining individual frequency classes.
We computed Tajima’s D using the software DH (Zeng, Fu, Shi, & Wu, 2006) for each variant type and population. Our aim was to test for a difference between variant types (e.g., silent vs non-silent INDELs and silent INDELs vs silent SNPs) and not to test for departures from neutral expectations. Therefore, we were mainly concerned about the relative values of Tajima’s D between variant types, rather than the absolute values.
As the sampling design in Westram et al. (2021) consisted of multiple replicate hybrid zones, we were also able to test whether the patterns generated by purifying, positive and balancing selection were consistent across these replicates. For the SFS analyses, these replicates consisted of two wave populations (e.g., CZA WAVE LEFT and CZA WAVE RIGHT) and one crab population (e.g., CZA CRAB) for each of the three islands. We examined the contribution of island and ecotype to Tajima’s D visually as we expected this summary statistic to be influenced by selective processes in a consistent direction across populations.
Genomic distribution and hybrid zone analysis
If short INDELs and SNPs are similarly distributed across the genome then patterns of population differentiation created by indirect selection are expected to be similar. To test for any difference in genomic distribution between variant types, we counted the numbers of short INDELs and SNPs, outside inversions, per map position of the linkage map of L. saxatilis (Westram et al., 2018). We then fitted linear models in R (R Core Team, 2020) between SNP count and INDEL count to test the expectation that, given equivalent genomic distributions, the estimated slope would equal the overall observed INDEL to SNP count ratio. We chose SNP count to be the independent variable because, compared to INDEL count, it was expected to have a lower error due to a higher sample size. However, to test for a significant departure of the observed slope from the expectation, we used permutation to build a distribution of slopes expected under the null hypothesis of equal distribution.
[bookmark: bookmark=id.1fob9te]After assessing the distribution of short INDELs and SNPs along the genome, we continued with cline analysis to compare the patterns of divergence across habitat boundaries that were detected using the two types of variants. We retained variants that were found in at least 150 individuals per island at a minor allele frequency > 0.1 and that were present in all six hybrid zones. A sigmoid cline model was then fitted to the MAF of each SNP and INDEL in each hybrid zone separately (equations in Derryberry, Derryberry, Maley, & Brumfield, 2014). How well the cline fitted the data compared to a model without clinal variation was determined by using the Akaike Information Criterion (for details, see Westram et al. 2021). From the cline analysis output, we extracted and analysed patterns for four values: the position of the cline centre, the allele frequency at each cline end, and the proportion of variance in the data explained by the cline model (var.ex). Westram et al. (2018) showed that, while the cline width in this dataset is an unreliable indicator of selection due to noise in the estimates, var.ex is more informative: loci with a high var.ex are likely to be affected by divergent selection. For each hybrid zone, we considered the 5% of short INDELs and the 5% of SNPs with the highest var.ex to be likely affected by divergent selection, either directly or indirectly. Finally, for each cline parameter, we tested for a significant difference between the short INDEL and SNP empirical distributions using a two-sample Kolmogorov-Smirnov test in R (R Core Team, 2020).

Results
Using the capture sequencing data from Westram et al. (2021), we called polymorphic INDELs and SNPs in each island separately (Van der Auwera et al., 2013). We grouped variants in two categories: silent and non-silent (Table S1). We then used the annotated dataset of each island for two different sets of analyses. In the first one, we use SFS comparisons to compare the impact of purifying, positive and possibly balancing selection between variant types and address the contribution of GC-biased gene conversion. In the second set of analyses, we analysed hybrid zones to understand whether the effects of divergent selection and gene flow are shared between short INDELs and SNPs, given the expectation that other selective forces such as purifying and positive selection may act differently on the two types of variants. For both sets of analyses, we tested whether the patterns of the different selective processes are consistent across the six L. saxatilis hybrid zones.
Abundance and size distribution
Each population shared roughly half of the variants with at least one of the remaining eight populations and the percentages of population-unique variants were generally slightly higher for short INDELs than for SNPs (Table 1), although the difference was significant in only one population. Of the total pool of polymorphic variants, the number of silent SNPs was five times higher than the number of silent INDELs. Overall, silent SNPs were nearly 30 times more numerous than non-silent SNPs while silent INDELs were approximately 50 times more numerous than non-silent INDELs. The observed reduction in non-silent variants was significantly stronger for INDELs than for SNPs and it was consistent across populations (chi-squared was positive and p in all nine Pearson’s Chi-squared tests; Table S1). The different proportions of short INDELs and SNPs in silent and non-silent categories was the first evidence that purifying selection was stronger against short INDELs than against SNPs, as expected.
Deletions and insertions differed only marginally with respect to their number, regardless of the category of annotation (Table S2). Their size distributions differed more, partly as expected from the predicted likelihood of deleterious effects (Fig. 2). In the silent category, the most frequent size was 1 bp for both insertions and deletions (~35% and ~30%, respectively) but there were more insertions (~60%) than deletions (~50%) within a size range between 2 bp and 9 bp (chi-squared = 8.97, df = 1, p = 0.003): silent insertions tended to be shorter than silent deletions (median size was 2 bp for insertions and 3 bp for deletions). Compared to silent insertions, non-silent insertions were differently distributed over seven length classes (1 bp to 6 bp and 6+ bp) (chi-squared = 12.85, df = 6, p < 0.05; Fig. 2) with an over-representation of 3 bp and an under-representation of 4 bp and 5 bp non-silent insertions (Table 1; Table S3). For deletions, we could not reject the null hypothesis that silent and non-silent variants were equally distributed across the seven length classes (chi-squared = 8.90 df = 6, p = 0.18; Fig. 3; Table S3). Finally, as in the silent case, the median size of non-silent insertions was smaller than that of non-silent deletions (2 bp vs 3 bp). Hence, we found that the size of INDELs was not consistent between insertions and deletions because, as observed previously, most insertions were shorter than most deletions (Petrov, 2001).
SFS comparisons
To further assess whether INDELs were more affected by purifying selection than SNPs, we aimed to test whether the SFS differed between silent and non-silent variants and between variant types. However, our sample sizes of non-silent variants were insufficient for meaningful comparisons and so we only describe here the SFS comparison between silent SNPs and silent short INDELs. We have included the figures showing the comparisons for non-silent variants in the Supporting Information (Fig. S1-S3).
All the SFS comparisons between silent short INDELs and silent SNPs except one returned significant differences (p < 0.05; bottom panel in Fig. 3 as an example of one population and Fig. S4 for all the other populations). Differences were in the expected direction: there was an excess of rare short INDELs compared to rare SNPs. In all populations this excess was found in either the singleton or the doubleton class or both, and the contributions of these classes were significant in five populations (p < Bonferroni corrected threshold; Fig. 3, Fig. S4).
Patterns of Tajima’s D
We computed Tajima’s D summary statistics using the software DH (Zeng et al., 2006) which takes the SFS as input data. Lower Tajima’s D values indicate a greater impact of purifying selection. 
Tajima’s D was lower in short INDELs than in SNPs and this pattern was consistent across populations (Fig. 4A). It was also lower in non-silent than in silent variants but values for non-silent variants were noisy due to small sample sizes. This pattern of Tajima’s D is consistent with greater purifying selection on INDELs than on SNPs, regardless of category, and on non-silent compared to silent variants. 
Patterns of Tajima’s D are not only driven by demography and selective processes but they can also be influenced by molecular mechanisms such as biased gene conversion. Here, we predicted that Tajima’s D should increase from the SW to the WW+SS to the WS class of SNPs due to gBGC. We found a weak trend in the expected direction for silent SNPs and a noisy pattern for non-silent SNPs, due to small sample size (Table S4), although non-silent SW variants still showed lower Tajima’s D than non-silent WS variants in all populations (Fig. 4B).
[bookmark: bookmark=id.3znysh7]The impact of purifying selection might also differ between insertions and deletions. Here, Tajima’s D did not appear different between silent insertions and deletions. In the non-silent category, there was a noisy tendency for Tajima’s D to be lower for insertions suggesting greater deleterious effects (Fig. 4C).
Inference of the impact of divergent and balancing selection
Our test for a difference in genomic distribution between INDELs and SNPs could not reject the null hypothesis of equivalent distributions. In all nine populations, the estimate of the slope parameter was not significantly different from the observed INDEL to SNP count ratio based on overlap of the permutation-derived confidence intervals with the slope expected for equal genomic distribution (Fig. S5; Table S5).
To test whether patterns of divergence are shared between short INDELs and SNPs, we performed two-sample Kolmogorov-Smirnov tests comparing the distributions of several cline parameters between SNPs and short INDELs. If variants are primarily influenced by indirect selection and similarly distributed along the genome, similar clinal patterns are expected for SNPs and INDELs . However, the greater influence of purifying selection on INDELs and of gBGC on SNPs might create differences. The cline parameters used were the position of the cline centre, the allele frequency at each cline end, and the variance in the data explained by the cline model (var.ex). Because these comparisons were made for the results of the hybrid zone analysis, the data were split by hybrid zone (two for each island) and not by population.
Of the four cline parameters and six hybrid zones (24 comparisons), the allele frequencies in the Wave habitat of CZA left and CZA right were the only ones that showed significant differences between the empirical distributions for short INDEL and SNP clines (Fig. 5, Fig. S6). Similar genomic distributions and similar clinal patterns under divergent selection suggest that short INDELs and SNPs are likely to be influenced by loci under direct selection in an equivalent way. 
Candidate contigs affected by selection were identified by outlier SNPs (76%), by both SNP and INDEL outliers (~18%) or, in few cases, by outlier short INDELs alone (6%). In the few outlier contigs of the genome that were detected exclusively by short INDELs, the majority were unique to one hybrid zone. One variant was shared across four hybrid zones and it was annotated in an intergenic region.

[bookmark: bookmark=id.2et92p0]Discussion
Neutral and selective processes affect the evolution of populations in ways that can be studied using genetic variants. Having a reference distribution of allele frequencies at putatively neutral variants helps to make the effects of natural selection clear. With the advantage of being the most abundant type of genetic variant in many species, SNPs have been widely used for studying both neutral and selective processes as a substantial proportion of them can be considered effectively neutral. For instance, in studies of population divergence, neutral SNPs have been consistently shown to have a much lower allele frequency difference between populations than candidate SNPs already identified to be affected by selection (e.g., Via & West, 2008). Short INDELs, on the contrary, have been used much less, even though they are the second most abundant type of genetic variation and can be extracted from the same sequencing data as SNPs. One reason for short INDELs to be overlooked is that they might be more affected by purifying selection than SNPs due to their higher probability of disrupting important biological functions. Therefore, they may be less useful as markers for neutral demographic processes or to study other types of selection (e.g., balancing or divergent). Here, we first annotated variants that either changed (non-silent) or did not change (silent) the amino acid sequence of proteins and then tested for a difference in the impact of purifying, positive and balancing selection between short INDELs and SNPs in a non-model organism, by means of SFS comparisons and Tajima’s D summary statistics. Because our study species L. saxatilis is an excellent example of adaptive divergence with gene flow, we assessed whether short INDELs and SNPs may also differ in the way that divergent selection and gene flow affect them. We used sequence data from Westram et al. (2021), and the same analytical approaches, to look at the repeatability of the different selection patterns across the six L. saxatilis hybrid zones. Note that the evidence of consistent patterns across islands and ecotypes must be treated with care because the samples were not fully independent due to the opportunity for dispersal and gene flow.
We found support for the expectation that short INDELs are on average more deleterious than SNPs because we were able to infer a stronger impact of purifying selection on short INDELs than on SNPs. Firstly, the reduction in number of non-silent INDELs compared to that of silent INDELs was significantly larger than between non-silent and silent SNPs. Secondly, both the SFS comparisons and the relative values of the D statistics suggested that INDELs segregated at lower frequencies than SNPs, although our sample sizes meant that the difference between the SFSs could only be demonstrated robustly for the silent category. Other authors who have compared short INDELs and SNPs have found similar results. Barton and Zeng (2018) examined polymorphisms in D. melanogaster and quantified a much larger reduction in diversity between non-coding and coding INDELs than between 4-fold and 0-fold degenerate sites. A similar reduction was also found in the European great tit (Barton & Zeng, 2019). Like in L. saxatilis, values of Tajima’s D were lower, especially in protein coding sequences, for INDELs than for SNPs which, together with the difference in nucleotide diversity, suggested that in both the common fruit fly and the European great tit, coding INDELs were affected more strongly by purifying selection. 
Our data also indicate that selective constraints are not limited to non-silent variation, a result that is in line with previous work demonstrating selective constraints on regulatory regions in Drosophila (Kohn, Fang, & Wu, 2004) and wild house mice (A. Kousathanas, Oliver, Halligan, & Keightley, 2011). The difference between SNPs and INDELs could emerge for different reasons: Either a larger proportion of INDELs is deleterious (with similar selection coefficients as for SNPs), or individual INDELs are more deleterious (larger selection coefficients than for SNPs), or both. These options cannot be fully disentangled at present.
In addition to purifying selection, non-coding variants can be affected by other evolutionary processes in the same way as coding variants. In the specific case of non-coding INDELs, there is evidence that this type of variant can be maintained by positive selection, as for human-specific INDELs with a putative role in promoting RNA and protein level changes (C. H. Chen, Chuang, Liao, & Chen, 2009; F. C. Chen, Chen, Li, & Chuang, 2007) or balancing selection, as for an intronic INDEL polymorphism for vulnerability to infection in humans (Cagliani et al., 2010). However, in L. saxatilis, there was no clear evidence for short INDELs affected by either positive or balancing selection. The generally positive values for Tajima’s D in SNPs may be partly due to balancing selection but they are more likely to reflect aspects of demographic history or the ongoing gene flow between divergent ecotypes.
Patterns of genetic variation may not be exclusively generated by demographic and selective processes. In L. saxatilis, the influence of gBGC was weak, as often reported in other studies (e.g., Mancera et al., 2008; Lachance & Tishkoff, 2014), and it was clearer for silent than non-silent SNPs, probably due to the difference in sample size. However, a weak bias can be enough to induce large changes in the allele frequency of variants on the evolutionary timescale as has been shown for nucleotide substitutions with a putatively important role in species divergence or adaptation of humans, birds and plants (e.g., Corcoran et al., 2017; Dreszer , Wall, Haussler, & Pollard, 2007; Hämälä & Tiffin, 2020).
As the SFS for SNPs can be influenced by confounding factors mimicking the effects of natural selection, so can the SFS for short INDELs. Evidence for confounding effects on INDELs was initially found in humans where insertions were reported to segregate at higher frequencies than deletions. It was suggested that such a difference in distribution of allele frequencies could be either due to positive selection (Parsch, 2003) or insertion-biased gene conversion (Leushkin & Bazykin, 2013). However, Kvikstad and Duret (2014) showed that this frequency bias towards insertions was positively correlated with the mutation rate and with the errors in polarization of INDELs. In sites with elevated mutation rate, it is more difficult to determine the correct ancestral state of a variant because the same mutation may have occurred multiple times in both the outgroup and the species under study (i.e., homoplasy). Misidentifying the ancestral state while working with INDELs means that insertions are mistaken as deletions (or vice versa) and this can lead to an incorrect SFS and thus, biased estimates of summary statistics. In L. saxatilis, deletions were not more abundant than insertions, in contrast with what has been observed in other taxa (Besenbacher et al., 2015; Petrov, 2002), and there was no clear difference in Tajima’s D. However, these observations could be impacted by errors in polarization. Correction of polarization errors is not straightforward in non-model species like L. saxatilis because it requires information on the mutation rate of insertions and deletions and the reference sequencing of multiple closely related species (Belinky, Cohen, & Huchon, 2010).
Calling short INDELs and SNPs in L. saxatilis, a model species for adaptive divergence, allowed us to understand whether both types of variants reflected the divergence process and selection in a hybrid zone similarly. We used the same samples and method as described in Westram et al. (2021) and found that genomic patterns of divergence were closely similar between variant types. These patterns were shared probably because of similar hitchhiking effects of directly-selected variants on both short INDELs and SNPs as these variants were similarly distributed across the L. saxatilis genome.
In conclusion, short INDELs can potentially be used as genetic markers alongside SNPs to study evolutionary processes. Purifying selection can influence both types of variants, even when they are silent, with a difference in strength that is small. Both types of variants may be subject to other effects that distort population genetic patterns, particularly biased gene conversion in the case of SNPs. Overall, these effects did not impede the use of short INDELs in the detection of divergent selection (direct or indirect) in hybrid zones. Using both types of variants increases the coverage of the genome. This allowed us to detect some previously unknown outlier regions in L. saxatilis. Including INDELs as markers might be even more fruitful in taxa with a low genetic diversity, where many genomic regions may lack SNP markers.
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Figure 1. Sampling design. (A) Sketch map not in scale of the islands that were sampled by Westram et al. (2021). For this study, samples from CZA, CZB and CZD were used and each island was divided into two Wave populations (in blue) and one Crab population (in red). The figure was adapted with permission from Westram et al. (2021) and reproduced under CC BY license. (B) For each of the three islands, sampling position of the snails along the transect (x-axis) is color-coded by the hybrid index (y-axis > 0.5 = blue ("Wave"); y-axis < 0.25 = red ("Crab"); 0.25 < y-axis < 0.5 = black ("Hybrid")). In the SFS comparisons, we removed snails with intermediate coefficients (black dots) and only used Wave-left snails (blue dots at the left side of the dashed line), Crab snails (red dots) and Wave-right snails (blue dots at the right side of the dashed line). In the hybrid zone analysis, we included all snails. Dashed vertical lines indicate the boundaries between ‘left’ and ‘right’ transects.

Table 1. Total number of polymorphisms per population. Counts of short INDELs and SNPs and percentages of population-unique variants.
	Population
	INDELs
	SNPs

	CZA CRAB
	2,683 (3%)
	13,843 (2%)

	CZA WAVE LEFT
	2,764 (1%)
	15,015 (1%)

	CZA WAVE RIGHT
	2,838 (1%)
	15,087 (1%)

	CZA CRAB*
	2,597 (2%)
	13,623 (1%)

	CZB WAVE LEFT
	2,846 (2%)
	16,484 (2%)

	CZB WAVE RIGHT
	3,137 (2%)
	16,984 (2%)

	CZD CRAB
	3,205 (2%)
	17,798 (1%)

	CZD WAVE LEFT
	3,152 (4%)
	16,584 (4%)

	CZD WAVE RIGHT
	3,085 (2%)
	15,913 (2%)


Population followed by * indicate p < 0.01 for the percentage of unique variants to be significantly different between INDELs and SNPs.
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Figure 2. Percentages of silent (first row) and non-silent (second row) deletions (first columns) and insertions (second column) split by size (colours). All nine populations combined.
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Figure 3. SFS patterns of silent INDELs vs silent SNPs (CZB Wave left population as an example; for the other eight populations, see Fig. S4). First panel: count of derived silent INDELs per frequency class. Second panel: count of derived silent SNPs per frequency class. Third panel: proportion of silent INDELs minus proportion of silent SNPs for each frequency class. Fourth panel: Pearson’s chi-squared test for the contribution of each frequency class (or set of merged classes) and p-value for the overall difference between SFSs based on the contributions of the single and merged frequency classes. Red point was significant after Bonferroni correction.
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Figure 4. Patterns of Tajima’s D between silent (green) and non-silent (orange) variants. All nine populations are shown (small dots connected by a line) in addition to the mean across populations (big dots). (A) INDELs and SNPs. (B) GC-biased (SW and WS) and GC-unbiased SNPs (WWSS). (C) Insertions and deletions.
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Figure 5. Empirical distribution functions of the cline estimates for short INDELs (red) and SNPs (pink) (CZD left and right hybrid zone as an example: for the other four hybrid zones, see Fig. S6). The cline estimates are the position of the cline centre (Centre), the variance in the data explained by the cline model (Var.Ex) and the allele frequency at the cline end in the Crab habitat (p_crab) and in the Wave habitat (p_wave).
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Figure	6.	SFS	patterns	of	non-coding	INDELs	vs	non-coding	SNPs	(CZB	Wave	left	population	as	an	
example:	for	the	other	eight	populations,	see	Fig.	S3).	First	panel:	count	of	derived	non-coding	INDELs	
per	frequency	class.	Second	panel:	count	of	derived	non-coding	SNPs	per	frequency	class.	Third	
panel:	proportion	of	non-coding	INDELs	minus	proportion	of	non-coding	SNPs	for	each	frequency	
class.	Fourth	panel:	Test1-like	test	was	used	for	calculating	the	p-value	for	the	overall	difference	
between	SFS	based	on	the	contributions	of	the	single	and	merged	frequency	classes.	Pearson’s	chi-
squared	test	and	Bonferroni	correction	were	performed	to	determine	frequency	classes	with	
significant	(red	dots)	and	non-significant	(black	dots)	contributions.
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Figure	12.	Empirical	distribution	functions	of	the	cline	estimates	for	short	INDELs	(red)	and	SNPs	(pink)	



(CZD	left	and	right	hybrid	zone	as	an	example:	for	the	other	four	hybrid	zones,	see	Fig.	S6).	The	cline	



estimates	are	the	position	of	the	cline	center	(Centre),	the	variance	in	the	data	explained	by	the	cline	model	



(Var.Ex)	and	the	allele	frequency	at	the	cline	end	in	the	Crab	habitat	(p_crab)	and	in	the	Wave	habitat	



(p_wave).
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