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Abstract

The paper investigates the low-symmetric state of the compensating field of the distortion
tensor and proves that there is a gap in this state. It is shown that the distortion tensor is the
compensating field of the minimal interaction induced by a translation subgroup. In this paper,
for the first time, an exact wave solution for sound pressure in a continuous medium is obtained
from the equations of state for the distortion tensor. It is shown that the sound is described as
"massive" wave of the distortion tensor, the spectrum of which has the minimal frequency, which
corresponds to a gap. The presence of a gap in the low-symmetric state gives reason to believe
that the distortion tensor, as the compensating interaction field, describes a strong fundamental
interaction. As it is known, the description of the gap in the strong fundamental interaction has
been declared a Millennium problem by the Clay Mathematical Institute.

1. Introduction

In 2000, at the International Mathematical Congress, the Millennium problem was
formulated: the description of the gap of the strong fundamental interaction. It is known that
there is a gap in the strong fundamental interaction, but there is no description of it. The solution
to this problem was assumed within the framework of the Yang-Mills model [1, 2]. However, in
the description of the problem itself, it was emphasized that it is impossible to obtain a gap for
Yang-Mills fields since the non-Abelian symmetry gauge group leads to nonlinear self-action of
Yang-Mills fields in a low-symmetric state and the absence of wave solutions for Yang-Mills
fields.

On the other hand, in [3] a model was constructed with a tensor compensating field of
minimal interaction and an Abelian gauge group, which was induced by a commutative subgroup
of spatial translations. Therefore, there is reason to believe that in such a model a gap in the low-
symmetric state will be obtained since in Abelian models there is no self-action in a low-
symmetric state.

The minimal interaction in the field theory is understood as the interaction that is given by an
extended derivative with a compensating interaction field [4]. The construction of a minimal
interaction in the form of an extended derivative with a compensating interaction field was firstly
proposed by Pauli for an electromagnetic field [5]. The existence of the extended derivative in
electrodynamics was justified by the invariance of the Lagrangian with respect to the local
Abelian gauge group of symmetry. The gauge symmetry of the Lagrangian [4,5] was associated
with a quantum mechanical description using a complex wave function that has uncertainty in
the phase.

On the other hand, in [3] the Lagrangian gauge group was induced by a local irreducible
representation of a subgroup of spatial translations. It was proved in [6] that the charge in the
extended derivative of the minimal interaction induced by the translation subgroup [3] is the

wave vector or quantum momentum, and the compensating field is the distortion tensor A;.

As it is known, the distortion tensor was first defined in the theory of elasticity [7]. It sets the
dislocation density and is defined up to the gradient of the displacement vector. Since in [6] it

was shown that the distortion tensor Ay; is an interaction field, the distortion exists not only in a
solid state, but wherever there is momentum.
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Thus, the distortion tensor is not always related to the density of dislocations in a solid state.
Rather, on the contrary, under certain conditions it does indeed describe dislocations in a solid
state [6], but, in general, it is responsible for the interaction. Quantization of the Burgers vector
in a solid state is similar to quantization of the magnetic flux in Abrikosov vortices [8]. The
magnetic flux, as it is known, is not always quantized.

The law of conservation of momentum is associated with spatial translational symmetry.
Therefore, in this model, the quantum momentum is realized as a coefficient in front of the

compensating field: the distortion tensor A; in the extended derivative [6], as well as an electric

charge for the electromagnetic interaction.

In [9] it was shown that the attraction of equal and opposite-directed quantum momenta leads
to the pairing of electrons in the superconducting state [10]. In [9] it was proved that when the
coherence length of a Cooper pair of electrons is less than a micrometer, the attraction of
opposite and equal quantum momenta of electrons becomes greater than their natural electrical
repulsion. The existence of Cooper pairs, in fact, is proof of the attraction of quantum momenta
as charges.

In [10] this interaction of electrons was called the electron-phonon interaction due to the fact
that acoustic phonons were observed during the formation of Cooper pairs. Therefore, in the
theory of BCS, the pairing of electrons was associated with phonons, from where the name
electron-phonon interaction came from.

Thus, we have the following initial data.

Firstly, the quantum momentum behaves as a charge of minimal interaction [6,9], it sets the
minimal interaction in the form of an extended derivative, similar to the electric charge for the
electromagnetic fundamental interaction [4, 5].

Secondly, the compensating field of this interaction is the distortion tensor: A;, which was

firstly introduced in the theory of elasticity [7] to describe plastic deformations with dislocations,
as a generalization of the strain tensor during the destruction of a continuous elastic medium.
Thirdly, according to the BCS theory [10], sound waves are associated with this interaction.
The paper shows that this interaction has a gap in the low-symmetric state when describing
the waves of the distortion tensor. Therefore, most likely, this interaction corresponds to a strong
fundamental interaction, which, as is well known from the Clay Mathematical Institute (CMI)
Millennium problem, has a gap in the low-symmetric state.

2. The problem statement.

At small distances for small wavelengths of particles, a quantum momentum, as a charge,
describes a very strong interaction, since the magnitude of the quantum momentum is inversely
proportional to the wavelength. The smaller an elementary particle, the more energy it takes to
destroy it. Therefore, large hadron colliders are being built to study elementary particles, which
make it possible to achieve very high energies.

Just as it was possible to describe the attraction of electrons in the Cooper pair [9], it is also
possible to describe the attraction of two protons with equal and opposite-directed quantum
momenta. Therefore, it can be expected that with the help of this formalism it will be possible to
describe the attraction of protons and neutrons in the nucleus of an atom as the attraction of their
guantum momenta. As is known, initially the strong fundamental interaction was found in the
nucleus of an atom. At the same time, the problem of describing the attraction of nucleons in the
nucleus of an atom is, in general, three-dimensional, and not one-dimensional, as for paired
electrons, with a total quantum momentum equal to zero. However, the solution of this problem:
the attraction of nucleons in the nucleus of an atom is beyond the scope of this paper.

The plan to prove the fact that the qguantum momentum can be the charge of the strong
fundamental interaction will be based on the description of the gap of the strong fundamental
interaction, declared as a Millennium problem in 2000.



The proof of the fact that a quantum momentum can be a charge of a strong fundamental
interaction will be based on the description of the gap of the strong fundamental interaction
declared the Millennium problem in 2000.

As is known, a gap is a characteristic of a low-symmetric state in which the gauge or gradient
symmetry of the equations of state for the compensating interaction field is broken. The
characteristic feature of the gap is the minimal frequency of the waves of the compensating
interaction field in the low-symmetric state. Therefore, it is necessary to prove that the waves of
the distortion tensor have a minimal frequency in the low-symmetric state, when the gradient
symmetry of the equations of state is broken.

In the future, we will call waves with minimal frequency "massive", by analogy with the
solutions of the Klein-Gordon equation for a massive scalar field [4].

It is known that the Yang-Mills fields have self-action in the low-symmetric state. Therefore,
they do not have wave solutions and, therefore, they can't describe the gap.

In connection with the Millennium problem, the question arises, which interactions have a
gap in the low-symmetric state?

Firstly, it is the electromagnetic interaction. It is known that the gap exists in a low-
symmetric state of the electromagnetic field, which occurs when the gauge or gradient symmetry
of the Maxwell equations is broken [11].

When the gauge symmetry of the electromagnetic field is broken, the superconducting state

is formed, which are described in the London equations A = —&'%j; [11, 12], here A -

electromagnetic potential, J; - current density, &' - depth of magnetic field penetration in the

superconductor.

As you know, London was able to describe the Meissner effect, the ejection of a magnetic
field from a superconductor. When the London equations are fulfilled, the gradient symmetry of
the Maxwell equations is broken. In this case, electromagnetic waves in the superconducting
state satisfy the inhomogeneous d’ Alembert equation, which has wave solutions with a minimal
frequency.

The minimal frequency is related to the depth of penetration of the magnetic field into the

superconductor by the relation: @,0’ =c', where ¢’ is the velocity of electromagnetic waves in

the superconductor. Thus, the minimal frequency of electromagnetic waves in the
superconducting state is an indicator of broken gauge symmetry in the low-symmetric state of
the electromagnetic field.

In this example, physical interaction models containing a gap or a minimal frequency in the
low-symmetric state of the compensating field end in the field theory.

Note that the concept of the gauge symmetry is usually used in field theory along with
gradient symmetry. In field theory, it is assumed that the abstract gauge symmetry of the
Lagrangian sets the minimal interaction [2, 4, 5].

Since in [3] it was possible to construct the expanded derivative induced by the usual
translation subgroup, there is no reason to use an abstract gauge group of internal symmetries of
the Lagrangian. In paragraph 4 of [13] it was shown that the Abelian symmetry gauge group for
electromagnetic interaction can also be interpreted as a local irreducible representation of the
subgroup of time translations. At the same time, it is not necessary to postulate that the
electromagnetic potential changes sign during time inversion, as is done in the field theory [2, 4].

Thus, it is possible to get away from abstract local gauge groups of internal symmetries of
the Lagrangian, to construct the interaction in the form of an expanded derivative, and use local
representations of the global subgroup of space-time translations. In this case, the equations of
state for compensating fields will have gradient symmetry, which is also called gauge symmetry.

In the future, the name gradient symmetry will be used in relation to equations of state, and
the name gauge symmetry will be used in relation to abstract models of field theory that are not
related to space-time symmetry, for example, for Yang-Mills fields.



As noted above, there is a very important clue in the theory of BCS [10]. In it, the pairing of
electrons was associated with the electron-phonon interaction. It was shown in [9] that lattice
vibrations have no relation to the attraction of electrons. The attraction of electrons is caused by
the interaction of their quantum momenta with each other using the distortion tensor, which is
the compensating interaction field in the expanded derivative as well as the electromagnetic
potential.

The observed acoustic waves during the formation of Cooper pairs give reason to believe that
the waves of the distortion tensor in a continuous elastic medium describe sound. After all, the
distortion tensor was originally introduced in the theory of elasticity as a generalization of the
strain tensor [7].

It is obvious that sound exists in a continuous medium with density: © . Therefore, it is
necessary to investigate the equations of state for the compensating field: the distortion tensor, in
a continuous medium, and make sure that they describe the sound waves.

In this paper, for the first time, an exact wave solution for sound pressure in a continuous

elastic medium is obtained in the form: P = P, exp(—iw(t —X/c)) , where C is the speed of the

sound, and P, is the amplitude of the pressure in the sound wave. This solution is derived from

the equation of state for the distortion tensor when the momentum is proportional to the velocity
field: pi = IOUi .

As it is known, sound waves in gases and liquids are described by Euler's equations of
hydrodynamics [14]. However, this description does not stand up to criticism.

Firstly, the Euler's equation is nonlinear and has no wave solutions. It is easy to see this if
you substitute wave solutions into Euler's equation. Therefore, in order to obtain wave solutions
the Euler's equation is linearized. I. e., the nonlinear terms in the Euler equation are neglected.
Obviously, this can’t be done, since the nonlinear potential term in Euler's equation is
responsible for the kinetic energy of the continuum medium in the Bernoulli equation.
Consequently, it is also responsible for the kinetic energy of the mechanical wave.

Secondly, the linearized Euler equations don’t contain the quadratic d'Alembert operator,
since the Euler equation is linear in derivatives. Therefore, in order to obtain wave equations
with the d'Alembert operator, velocity and pressure are usually defined as derivatives of the

scalar potential function ¢ : U, =0@/ Ox;, p=—p0¢/ Ot [14]. However, the wave solutions
obtained in this way contain a linear dependence of the pressure from the frequency:

p =wp Re(ip, exp(—iw(t — x/C))) , see pp. 351-354 [14].

These solutions, in general, do not correspond to sound waves, since in sound waves the
frequency does not depend on pressure. This is well known and is used when extracting sound
from all musical instruments. For example, "forte” and "piano” have the meaning of "louder" and
"quieter”. It is known that the frequency of sound does not change when the same keys are
pressed on a piano with different pressures.

Since in a continuous elastic medium the velocity field U; and the distortion tensor A; are
proportional to the conjugate observed fields: the momentum p; and the stress tensor oj;

accordingly, then the equations of the state for compensating fields v;, A; [6] in a continuous

elastic medium are inhomogeneous d'Alembert equations. Therefore, not ordinary mechanical
waves are responsible for sound in a continuous elastic medium, but "massive" waves of the
distortion tensor, which have a spectrum with a minimal frequency.

As you know, the Clay Mathematical Institute (CMI) declared the description of the gap of
the strong fundamental interaction-the problem of the Millennium. Consequently, there is a
reason to believe that the "massive"” waves of the distortion tensor in a continuous elastic
medium describe the gap of the strong fundamental interaction.



This conclusion is based on the fact that so far the gap has been described only in the low-
symmetric state of the electromagnetic field [11], and for a strong fundamental interaction, the
gap has not been described so far. At the same time, there are no and there can be no other gaps
related to the symmetry of space-time.

Indeed, since the expanded derivative of the minimal interaction [6] is associated with a
subgroup of spatial translations, and the expanded derivative of the electromagnetic interaction is
associated with temporal translations [13], there can be no other gaps, based on the translational
symmetry of space-time.

It is not difficult to make sure that there are no other nonequivalent local irreducible
representations, except for the representations of the translation subgroup, suitable for
constructing the expanded derivative of the minimal interaction.

The assumptions that fundamental interactions in nature can be induced by abstract local
gauge groups of internal symmetries of the Lagrangian, unrelated to the symmetry of space-time,
in our opinion, are not substantiated and unlikely.

And now let's give a mathematical justification for what was said above.

3. The equation of state for the compensating field of interaction: v;, A;.

In the paper [6] the minimal interaction was recorded in the form of an expanded derivative:

o .
Dj‘//g:(a_xj_' KpApi}f”lZ- (1)

p

Where the wave vector i, is the coefficient in front of the compensating field, A,; is the
distortion tensor [6]. Here . is the wave function (or order parameter [3]) which is transformed
by the local irreducible representation of the translation subgroup: 8, =exp(id,k,a, )y,
where k, =k (X;), and A, is transformed by:

8, (e, Ayy) = e, Ay + 6,0 0(K3,) /0K 2

Then the extended derivative (1) is the eigenfunction of the translation operator:
a,(Djy.)=exp(io,k,a,)D;w, .

Similarly, the velocity field v; compensates for the time derivative

0 .
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éq(KiUi ) =Ky, +5iq 6(kiaq)/at- (4)
The equations of state for the compensating interaction field: v;, A;, or the 4-distortion
tensor [15, 16] induced by the quantum momentum as the charge [6,9] have the form:
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the centrally symmetric tension of the compensating fields v;, A;, and

oA,
pip :_epkn axk ) (8)

vortex tension of the distortion tensor A;. Here y - the dimensional coefficient, €, - the anti-
symmetric Levi-Civita tensor.
These equations of state (5, 6) can be obtained by variation of the Lagrangian: dL/duv =0,

oL/oA; =0, for the 4-distortion tensor v;, A; [15, 16]:
y, 1
L= pu, —o;A +§(C_28ij€ij _Pijpij), 9)

where p, =0L/dv,, o;; =—0L/0A; . This conclusion is analogous to the conclusion of
Maxwell's equations from the Lagrangian of the electromagnetic field in the field theory [17].
The Lagrangian (9) is a consequence of the Lagrangian L =L(y,v;, A;), where the
momentum P; and the stress tensor oy; are the first integrals dependent on the fields v, v;, A;,
according to E. Noether's theorem [9]. However, when the momentum P; and stress tensor oy;

are external sources for the fields v;, A;, the Lagrangian has the form (9).

From (5,6) by direct differentiation follows the continuity equation, which has the meaning
of the law of conservation of momentum, written in differential form:

00y _ o
ox; ot
To obtain wave equations with the d’ Alembert operator, as in the field theory [17], we use

the pseudo Lorentz calibration condition [15, 16] for fields v;, A;.

aAij e ou,
OX. ot -
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Substituting (7, 8) in (5, 6), taking into account the condition (11), we obtain the equations

of state in the form:

(10)

(11)
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The equations of state (12, 13) for interaction fields: v, Aij , contain the d'Alembert
operator. This is a consequence of the gradient invariance of the equations of the state (5-8). It
follows from (12, 13) that the source of the interaction fields: v;, Aij , are conjugate observable

fields: P; and o;;. According to the continuity equation (10), the stress tensor oy is the

momentum flow with a minus sign: T;; = —P;V; , where V; is the flow rate. Thus, the equations

(12, 13) are similar to Maxwell's equations [17], where charge and current density act as the
source of the electromagnetic field.

4. "Massive' waves of the distortion tensor in a continuous elastic medium.



As it is known, in the isotropic continuous medium with density 0, there is the directly
proportional relationship between momentum and velocity: P; = oU; (the difference between a
quantum momentum and the conventional momentum is shown below, in paragraph 6). Then the
equations of state (12, 13) for the fields v;, A; in a continuous medium will have the form of
the inhomogeneous wave equation:

oc? 2 18
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Indeed, equation (14) is obtained by direct substitution P; = oU; in (12). It follows from the
known relation between momentum and velocity in a continuous medium with density o .

Equation (15) is obtained from the relation P; = ©U; and two equations: the continuity

equation (10) and the gauge condition (11), which also has the form of a continuity equation. It
follows from the continuity equation (10) that the stress tensor can be represented as the

momentum flow with a minus sign ;; = —[;V; . Similarly, it follows from equation (11) that
the distortion tensor Aij can be represented as the flow of the velocity field with a minus sign

- -2 L : : o
and a coefficient 1/¢*: AJ- =—C "U\V;. Since in a continuous medium the velocity field

o : : . -2
coincides with the flow velocity: U; =V, we obtain: 0j; = —puv;, Ajj =—C ;.
Whence it follows that in a continuous medium with density 0 :
2
oy = C° A (16)

This means that there is elasticity in a continuous medium, since the distortion tensor Aij
was originally introduced into elasticity theory as a generalization of the strain tensor [7].

Equation (15) follows from the relation: &3; = pCZAU- , Which has the form of Hooke's law for

the distortion tensor. Here the coefficient: K = ,002 , Iin fact, characterizes the elasticity of the
continuous medium.
Thus, twelve equations of state (12, 13), for the compensating field of interaction: v;, A;, in

a continuous isotropic medium turned into the same inhomogeneous d’ Aalembert equation with
the same spectrum. Let's say at once that this phenomenon is associated with the violation of the
gradient symmetry of the equations of state (12, 13) and with the phase transition to the state of a
continuous elastic medium, which will be discussed later in paragraph 6.

Let's call the equations (14,15) the equation of a "massive" wave due to the fact that it is
similar to the Klein-Gordon equation for a massive scalar field [4], and due to the fact that the
spectrum with the minimal frequency in the equations (14,15) is given by the density of the
continuous medium © not equal to zero.

Indeed, the equations (14, 15) have solutions: U; = U;, eXP(IGX —iat),
A; = Ao Xp(igX —imt) , with spectrum: @ =C4 G° +¢c @, and minimal frequency:

w, =C°\/ply . (17)



The frequency @ is also called the zero frequency, below which there can be no wave solutions
. . - 2
for the equations of state (14, 15). Knowing the minimal frequency: @, =C ,0/7/ , the

. . . 4 2 . .
dimensional constant can be calculated from the expression 7 = OC | @F , from which its

physical meaning follows.
We show that the waves of the 4-distortion tensor describe sound waves. In the future, we
will omit the 4-distortion tensor, and use the expression distortion tensor to denote a pair of

fields: v;, A;.
The equations of state (5-8) by construction have gradient invariance:
A, — Aj+0U; /0%, v, =, +0u; /ot (18)

where U; is the displacement vector [7]. The displacement vector U; satisfies the wave equation

in a continuous medium. This follows from the pseudo Lorentz condition (11) when substituting
a gradient transformation (18):

ou;, 1 9%
ox.0x, ¢ ot*’

Thus, (19) describes mechanical waves in a continuous medium, and equations (14, 15)
describe sound in a continuous medium. But sound, or distortion tensor waves, are not
mechanical waves, since the spectrum of sound waves has a minimal frequency and is differs
from the spectrum of mechanical waves.

Indeed, mechanical waves can occur at any low frequency, and sound waves exist only
when their frequency is higher than the minimal frequency. In this case, sound waves in a
continuous medium coincide with mechanical waves. Since there can be only one displacement
and one velocity in a continuous medium.

This, at first glance, unexpected effect is well known on the example of the low-symmetric
state of the electromagnetic field, when the gradient symmetry of Maxwell's equations is broken:

A =-57]; [11, 12]. In the superconducting state, the charge and electromagnetic field waves

propagate together, while the electromagnetic field waves having a gap or minimal frequency.
While charge waves can propagate with any arbitrarily small specified frequency.

(19)

5. The exact wave solution for the sound pressure in gases and liquids.

Consider the propagation of waves of the distortion tensor in a liquid or gas. In gases and
liquids the stress tensor has a symmetric diagonal form and depends on the pressure:

Ojj = —5ij P . Then AJ- = ﬂaij , where [ =1/,002 is the compressibility of the continuous
medium. Consequently, the distortion tensor in gases and liquids has a symmetric form:

Aj=—B5,P.



Note also that here the density o is a constant. In this model o is the constant equilibrium
density of the continuous medium, and the dependence of the density in the sound wave on the

coordinates, according to the construction, is given by the field Aij as an independent variable
describing deformation of continuous medium. The expression A; = —/£0;;P means that the
distortion tensor is diagonal A; and its diagonal elements A; = —0;; A are proportional to the
pressure: pC’A=P or A= [P . Then the value determines A the deviation of the density
from the equilibrium value: p" = pA. As is known, the deviation of pressure and density in the
sound wave are related by the ratio P = c? o' [14].

Substitute A; =—/0;P in (15), then get:
oo ol 10°

» P:(axax _c_zﬁp' (20)

Equation (20) has an exact wave solution for pressure: P =P, exp(iIZ)_(’ —iat).

Equation (20) has never been taken into account before when describing a continuous elastic
medium, since the equations of state for the distortion tensor (5, 6), as an independent variable
[6], describing the physical state, were not taken into account before.

Thus, for the first time an exact wave solution for sound pressure in a continuous elastic
medium with density o (20) is obtained from the equation of state (6,13,15) without any
approximations. These solutions are accurate and do not contain the dependence of the pressure
amplitude on the frequency, as solutions obtained from the Euler equations of hydrodynamics,
see pp. 351-354 [14].

On the other hand, the spectrum of wave solutions of equation (20) contains a minimal
frequency below which there are no sound waves. At first glance, this is an unexpected result. To
make sure that the wave solutions (20) describe sound waves, we calculate the energy density of
the sound waves for the solutions obtained from equation (20).

According to Lagrangian (9), the energy density of sound waves consists of the sum of the
mechanical energy density given by the first two terms of the Lagrangian and the energy density
of the distortion tensor tensions.

The energy density of mechanical waves is known and equal, see E = P ? [14].

The energy density of the strains of the distortion tensor has the form:
2

) 0]
E= %(C Zgijgij + 0;0;) and is equal to: E = pP° ~2-

2
Indeed, the centrally symmetric tension &;; (7) in a continuous medium has the form
ou, oP
&= _8_ _ﬂé‘ij ~
X; ot
and considering that the amplitude of pressure and velocity in a sound wave are related as
P = pCcuv [14], which follows from the continuity equation (10), we see that in the sound wave

. Substituting in this expression the wave solution for longitudinal waves,

centrally symmetric tension (7) identically equal to zero: &; = 0. Substituting wave solutions

into the expression: £ = %pijpij , and given that 7 = ,OC4 /605, we obtain an expression

2
w

E=pP E for the energy density of the distortion tensor in a continuous elastic medium.
0



Thus, the energy density of the sound wave is equal to the sum of the mechanical energy
and the energy density of the distortion tensor tensions:

0)2
E=pPt+ P —. (21)
2
The fact that the energy density of the sound wave (21) contains the energy density of
mechanical vibrations of a continuous medium is the expected result. The expected result is also
the dependence of the energy density of the distortion tensor on the square of the frequency,
since it is known that the energy density of electromagnetic waves, for example, depends on the
frequency squared. This follows from the fact that the Lagrangian (9) is a quadratic invariant
function of the tensions of the distortion tensor (7, 8).
A nontrivial result is the dependence of the energy density of the tensions of the distortion

tensor: &;;, 0, ina continuous medium on pressure. This is equivalent to the dependence of the

energy density of electromagnetic waves on the current density, which is observed only in the
superconducting state when the gradient symmetry of the equations of state is broken.

The dependence of the energy density of the distortion tensor on the pressure in a continuous
elastic medium makes it possible to compare the mechanical energy density and the energy
density of the tensions of the distortion tensor (21). Two conclusions follow from expression
(22).

Firstly, the minimal frequency in the expression for energy density (21) cannot be zero.
Indeed, in a continuous medium with density o, the minimal frequency (17) is always more

than zero.

Secondly, in the frequency range above the minimal frequency, for example by an order of
magnitude, the energy density of mechanical vibrations in the sound wave can be neglected (21).
This fact is reflected in the diagram equal volume Fletcher-Manson (F-M) [18], according to
which the sound volume is measured in decibels.

Indeed, when the frequency of sound waves increases, for example, by two orders of
magnitude from 20 Hz to 2 kHz, the energy density of sound waves increases by four orders of

magnitude, and the energy density of mechanical vibrations E = 8P - doesn’t change. This

explains the increase in sound volume by four orders of magnitude, or 40 dB for the same sound
pressure when switching from a frequency of 20 Hz to 2 kHz, according to the F-M diagram.
Whence it follows that the wave energy density of the distortion tensor (21) corresponds to the
volume of sound in the F-M diagram. This removes the existing contradiction between the
description of sound by mechanical waves and psychoacoustics, which is reflected in the F-M
diagram. A more detailed study of the F-M diagram is beyond the scope of this paper and is
given in the paper [19].

Thus, the energy density of the sound wave is equal to the sum of the energy density of the
mechanical wave and the energy density of the distortion tensor (21). The minimal frequency

: [z2 2 2 . .
(17) in the spectrum of the sound wave @ =C+/(" +C @, indicates that the sound is not

mechanical vibrations of a continuous medium. Since the spectrum of mechanical vibrations has
the form: @ = CQ . Mechanical vibrations are possible with any low frequency, and sound waves

occur only when the frequency of the sound source is higher than the minimal frequency (14, 15,
20).

The difference between sound waves and mechanical vibrations in a continuous medium is
the same as the difference between electromagnetic waves and charge density waves in a
superconductor. The sound waves (distortion tensor waves) and the mechanical waves in a
continuous medium, as the electromagnetic waves and the charge density waves in a
superconductor, propagate together at the same speed. Sound and mechanical waves can’t be
separated, just as it is impossible to separate momentum from velocity and the stress tensor from
the distortion tensor in a continuous elastic medium.



Note that this description of the sound is free from the disadvantages of describing the sound
using Euler's hydrodynamic equations [14].

Firstly, the equation of state (14, 15, 20) contain quadratic d'Alembert operator, unlike the
Euler equations. Therefore, the expressions for the amplitude of the sound pressure and the
velocity of the continuous medium in the sound wave do not depend on the frequency.

Secondly, in order to obtain an accurate wave solution, it is not necessary to neglect the
nonlinear terms in the equation of motion of a continuous medium [20]:

v, oP v, _b; 0P wvw, 0P v P

ot ox P4 ox; c*ot ¢ ox; ¢’ oox
since equation (22) for sound wave solutions is identical.

fV _Uil)i oP _UjUi oP

Indeed, the vortex force 'j = o2 8Xj c? ox

(22)

in (22) is identically zero for the

longitudinal sound wave.

al)i Uj oP

c
The centrally symmetric force fj =—pPU, — —— —~ isalso annulled, since, as shown
OXx; ¢ ot
_ _ ov, oP .
above, the centrally symmetric tension: &; =——— B0; — , is zero.
OX; ot
ov; 0P
The continuity equation (10) for the gas or liquid is as follows: p_ﬁt = __8X Jtis

j
performed identically, since in the sound wave the pressure and velocity amplitudes are related

by the ratio: P = pcv [14].
Thus, the equations of motion of a continuous elastic medium (22) [20] are fulfilled
identically for a sound wave. The same can’t be said about Euler's hydrodynamic equations,

since in Euler's equations the potential force — O, 5Ui/5Xj isn’t zero.
The nonlinear terms are not annulled in the Euler equations because there is no force
component —C_zuj oP/ct (22) in the Euler equations. This force is related to the gradient

invariance (18) of the centrally symmetric tension (7) in the highly symmetric state. Being in a
low-symmetric state of a continuous elastic medium, where there is no gradient symmetry, it is
impossible to justify a centrally symmetric force or tension (7), and, consequently, it is
impossible to construct correct equations of motion.

A critique of the derivation of Euler's hydrodynamics equations is given in [21]. Obviously,

it is impossible to neglect the potential force — PU; 5Ui/8Xj in the Euler's equation, which is
associated with a change in the Kinetic energy of a continuous medium, which is clearly seen, for
example, from Bernoulli's equation: ,002/2+ P =const .

Note that although in a sound wave the vortex force in (22) is zero, the vortex tension p;; is
not zero. It is the vortex tension that gives the main contribution to the energy density of the

sound wave E = %pijpij (21), which is reflected in the F-M diagram.

However, the description of the sound is not the aim of this paper. A more detailed
description of the sound and the F-M diagram is given in [19]. The aim of this paper is to
describe the gap of minimal interaction induced by the translation subgroup [6, 9].



6. The gap as an indicator of the phase transition to a low-symmetric state.

As it is known, the gap is observed in the low-symmetric state of the compensating
interaction field. For the first time, the phase transition to the low-symmetric state of the
compensating interaction field was described by Higgs in 1964 [22]. He associated this phase
transition with the break of the gauge symmetry of the minimal interaction when the
compensating field becomes observable. We show that the gap is a consequence of such a phase
transition and that it occurs when the gradient symmetry of the equations of state for the
distortion tensor is broken.

The gap or minimal frequency characterizes the low-symmetric state of the compensating
interaction field. The appearance of a gap of a strong fundamental interaction is associated with
the appearance of a mass. Everyone knows the phrase Higgs Boson, which has already become
household name. According to the expression (12) for the minimal frequency of the "massive”

wave of the distortion tensor: @, =C \/,0/7/ , this is indeed the case in a continuous elastic

medium. Since the minimal frequency or gap exists only in the presence of a non-zero density
P of the continuous medium. However, in this paper we will not study this very interesting

question of the appearance of the mass of a continuous medium in the low-symmetric state of the
compensating field of the distortion tensor.

The fact is that the minimal frequency of the compensating field in the low-symmetric state
carries very important information. It is an indicator of the phase transition. In our opinion, this
is the main function of the gap. We will focus on this function of the gap or the minimal
frequency of the waves of the compensating field in the low-symmetric state in more detail.

It is possible that this is not the case for the Higgs phase transition, since during the Higgs
phase transition [22] the minimal frequency for compensating Yang-Muills fields in the low-
symmetric state was not obtained, due to their self-action. Therefore, the gap of strong
fundamental interaction is still being sought, according to the CMI Millennium problem.

In our opinion, it is necessary to separate two concepts: the Yang-Mills field and the gap of
the strong fundamental interaction. It is also necessary to determine what is meant by the Higgs
phase transition. A specific phase transition described in [22], or a phase transition associated
with the break of the gauge symmetry of the interaction field when unobservable interaction
fields become observable.

In the future, the Higgs transition will be understood as the phase transition in which the
minimal interaction disappears, the gauge or gradient symmetry is broken and the compensating
field becomes observable.

At the moment, only one phase transition with a gap in the low-symmetric state has been
described. This is the phase transition to a superconducting state with the Meissner effect. In the
monograph [11] such a superconducting phase transition is called the Higgs transition. Note that
during this phase transition, the compensating fields become not just observable, but
proportional to the conjugate observable fields. This is due to the breach of the gauge symmetry
of the minimal interaction. For superconductivity, this is due to a break of the gauge symmetry
of the Ginzburg-Landau potential [23] or the gradient symmetry of the Maxwell equations.

Indeed, in the London equation, the electromagnetic potential is proportional to the current

density: A = —5' Ji . As it is shown above, a similar situation occurs when in a continuous
medium the distortion tensor becomes proportional to the conjugate stress tensor: (16). In
essence, expression Oj; = ,OCZAU- (16) is a generalization of Hooke's law for the distortion

tensor.
In this connection, the question arises, which interaction describes the quantum momentum
as a charge and the distortion tensor as a compensating field of minimal interaction.



In our opinion this is a strong fundamental interaction, because above we managed to
describe a gap in a continuous elastic medium with nonzero density © (17). After all, in

addition to the gap associated with sound (14, 15, 20), and the superconducting gap [11], there
are no other gaps due to the symmetry of space-time.

In fact, what to call the minimal interaction induced by the subgroup of spatial translations
(1-4) is not important. This interaction can be called the phonon interaction in accordance with
the electron-phonon interaction introduced in the BCS theory [10], since the waves of the
distortion tensor describe sound in a continuous medium [19]. This interaction can be called
quantum interaction, since the quantum momentum is the charge of this interaction [9]. This
interaction can be called strong, since at short distances a quantum momentum, as a charge, sets
a very strong interaction.

From the practical point of view, the most important is not the name of this interaction and
not the description of the gap (17) in the low-symmetric state of the distortion tensor, but the
interaction itself and the equations of state (5,6) for the tensions of the distortion tensor (7,8).

After all, the minimal interaction (1, 3) induced by the translation subgroup with the tensor
compensating field has not been previously studied in the field theory [2,4]. Since only vector
compensating fields have been studied in gauge field theory so far. This is clearly stated in the
introduction to the monograph [2], see [6].

After all, the minimal interaction (1, 3) induced by a translation subgroup with a tensor
compensating field has not been previously studied in field theory [2,4]. Since only vector
compensating fields have been studied in gauge field theory so far. This is clearly stated in the
introduction in the monograph [2]: "numerous attempts to link compensating fields with the
symmetry of space-time itself have never been successful”, see [6].

But if there is the low-symmetric state, then there is also the "normal™ high-symmetric state of
the distortion tensor. There is the complete analogy with the “normal” state of the
electromagnetic field and the superconducting state with the Meissner effect.

In the low-symmetric state twelve equations of state (5, 6) or (12, 13) is degenerate into the
same «massive» wave equation (14, 15). In this case, the minimal interaction (1-4) disappears

and the momentum becomes proportional to the velocity: P; = oU; , and the distortion tensor

becomes proportional to the stress tensor O;; = ,OCZAU- (16), and elasticity appears.

To investigate the high-symmetric state of the distortion tensor, it is necessary to destroy the
low-symmetric state of the continuous medium. Then the momentum will "separate” from the
velocity and become the quantum momentum, and the distortion tensor will "separate™ from the
stress tensor and plastic deformations with dislocations will occur. In this case, elasticity
disappears and plastic deformations occur, which are described by the distortion tensor [7].

The following paper will be devoted to the description of the phase transition of the
destruction of a continuous elastic medium as a low-symmetric state of the distortion tensor. But
it is already clear that being in the low-symmetric state — in the continuous elastic medium, it is
impossible to understand how the tensions (7, 8) will behave in a high-symmetric state. Because
there is no minimal interaction in a continuous elastic medium, since there is no gradient
symmetry in a continuous medium.

Moreover, the vortex tension of the distortion tensor ©;; (8) is pushed out of the continuous
medium in the same way as the magnetic field is pushed out of the superconductor.
Indeed, the vortex tension ©;; in a solid state is the linear defect (8) [7]. The elastic

continuous medium does not allow dislocation density (8) to pass into itself, since there is no
emptiness in the continuous medium. There are no dislocations in a continuous medium. As it is
known, dislocations lead to cracks or linear defects, as a result of which the continuous medium
is destroyed.



This situation is well known in the science of the resistance of materials. However, the
destruction of materials was not previously described as a phase transition. In the next paper, it
will be shown that when the destruction of solid-state as a continuous elastic medium, linear
defects are formed in the form of dislocations and cracks, and when the destruction of gas as a
continuous elastic medium, an explosion occurs and a high-temperature plasma is formed.

All these phenomena are associated with the manifestation of force tensions &;;, 0;; (7,8)
the distortion tensor, which are similar to the electric and magnetic fields in electrodynamics [6].
In a continuous elastic medium, these tensions are either absent, for example, &; = 0 inasound

wave, or limited ©;; and manifest themselves in the form of sound. According to (15), the vortex

tension pO;; penetrates into a continuous elastic medium only to the certain penetration depth,
just like the magnetic field in the superconductor.

Therefore, the study of the force tensions of the distortion tensor &;;, ©;; in the "normal”
high-symmetric state is the main task of this theory. Note that the centrally-symmetric tension of
the distortion tensor &;; (7) has never been studied before, and the vortex tension p;; (8) has
been studied, but only in the solid state [7, 15, 16]. In the solid state the Peach-Kohler force is

associated with the vortex tension ©;; [24], which has the form: f i =€jnmPinOim [15, 16].

The expression "continuous distribution of dislocations™ is taken in quotation marks due to
the fact that there is no continuous distribution of dislocations since dislocation is a discrete

concept. This topic was discussed in detail in the methodological article [6]. Of course ©;; this is

the force characteristic of the minimal interaction (1) - vortex tension (8), similar to the magnetic
field in electrodynamics. For example, in [6, 20] it was shown that in a continuous medium the

force f; =€;,,PVn0;, is proportional to the pressure gradient f; =€, €0V, C20P/ox, .

In the presence of minimal interaction (1), the vortex tension flux ©;; is quantized and sets

the Burgers vector [6], just as the magnetic field flux in the Abrikosov vortices is quantized [8]
for the Ginzburg-Landau interaction [23]. But this does not mean that the vortex tension of the
compensating interaction field is always quantized, which is well known by the example of the
magnetic field.

7. Conclusion

Thus, sound waves in the continuous medium (14, 15, 20) are not associated with the
electromagnetic interaction, as previously thought [10], but are associated with the minimal
interaction (1, 3) induced by the translation subgroup (2, 4). In this paper, sound waves were
obtained as "massive" waves of the distortion tensor and pressure in a continuous elastic medium
(14, 20).

In this case, the wave spectrum of the distortion tensor in a continuous medium (14, 15, 20)

has a minimal frequency @, = CZ\/,O/jf (17). This means that the distortion tensor, as an

interaction field, has the gap in the low-symmetric state.

In addition, the quantum momentum, as a charge [9], describes a very strong interaction at
short distances Indeed, the smaller the particle size, the greater of the quantum momentum and
the stronger the interaction.



In [9] it was proved that the attraction of oppositely directed quantum momenta leads to the
formation of Cooper pairs in the superconducting state. It is known that the shorter the coherence
length of paired electrons is the higher the phase transition temperature in HTSC [25]. Therefore,
there is a reason to believe that this gap corresponds to the gap of strong fundamental interaction,
which is consistent with to the Millennium problem announced by CMI in 2000.

It does not matter how to call the interaction — the strong interaction, as it is formulated in
the CMI problem, the phonon interaction, according to the theory of BCS [10], or the quantum
interaction, according to the charge - quantum momentum [9]. It is important that the gap is an
indicator of the phase transition to the low-symmetric state. In this paper, it is shown that the
continuous medium is the low-symmetric state of the distortion tensor. In the continuous
medium, the distortion tensor is elastic and describes the sound.

But if there is a low-symmetric state, then there must be a high-symmetric state. The
following work is devoted to the description of the phase transition of destruction of a
continuous elastic medium as a low-symmetric state of the distortion tensor.

There are only four fundamental interactions in nature. Two of them have a gap: the
electromagnetic interaction and the strong interaction. There are also two Abelian models
associated with translational space-time symmetry. The first model is related to the Lagrangian
invariance with respect to time translations and leads to electromagnetic interaction [13]. The
second model is related to the Lagrangian invariance with respect to spatial translations and
leads to a minimal interaction (1-4) induced by the quantum momentum as the charge and the
tensor compensating interaction field. Most likely, this model describes a strong fundamental
interaction.

In the next paper, the tensions of the distortion tensor: &;;, p;; (7,8), similar to the electric
and magnetic tensions of the electromagnetic field will be investigated. It will be shown that the

critical vortex stress 0;; (8) destroys the continuous elastic medium, and the centrally symmetric

stress &;; (7) transforms gas into high-temperature plasma.
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