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aDipartimento di Matematica, Università Degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
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Abstract
This research paper is concerned with developing, analyzing, and implementing an adaptive optimized one-step block
Nyström method for solving second-order initial value problems of ODEs and time-dependent partial differential
equations. The new technique is developed through a collocation method with a new approach for selecting the
collocation points. An embedding-like procedure is used to estimate the error of the proposed optimized method. The
current approach has produced approximate solutions to real-world oscillatory, periodic and stiff application problems.
The numerical experiments demonstrate that the introduced error estimation and stepsize control strategy presented
in this manuscript has produced a good performance compared with some of the other existing numerical methods.

Keywords: Ordinary and time-dependent partial differential equations, optimized block Nyström method, variable
stepsize formulation, error estimation and control, collocation method.

1. Introduction

Second-order ordinary differential equations (ODEs) are widely used to model real-world problems in engineering,
control theory, physics, economics, physical and social sciences, etc. In this article, we consider problems of the form

y′′(x) = f (x, y(x), y′(x)), (1)
y(a) = y0, y′(a) = y′0, x ∈

[
a, b

]
⊂ R, y, f ∈ Rd,

where a = x0 stands for the initial point, b, y0, y′0 are given, and f is assumed to be a continuous function that fulfils
the Lipchitz’s condition that guarantees the existence and uniqueness theorem in [1]. It is noteworthy to mention that a
Vander Pol, Kepler’s, Bessel, highly stiff oscillatory, simple harmonic and critically damped motion, and other similar
problems can be written in the form of (1).
Many existing numerical methods for solving the class of problem in (1) have been analyzed; see for example [2] -
[12]. Those strategies include Runge-Kutta type, linear multistep, Numerov-type, P-stable Obrechkoff, or collocation
methods. One standard approach is to transform problem (1) to an equivalent system of first-order ODEs. Then the
resulting system of equations is solved using suitable methods for first-order ODEs (see [13] and [14]).
In order to enhance the previously mentioned techniques, scholars like Kalogiratou et al. [15], Areo and Rufai ([16]),
Ramos and Rufai [17], Amodio and Brugnano [18], and Ramos et al. [19] have derived and implemented block
methods for solving the IVP (1) directly. The advantage of block methods over the Runge-Kutta type and predictor-
corrector methods is that they can be less expensive regarding the number of functions evaluated and CPU time.
In this paper, we introduce a new optimized Runge-Kutta Nyström method (ORKNM) with an associated embedded
method for error estimation, which makes it suitable for a variable stepsize implementation. The obtained adaptive
form of the ORKNM is applied to solve directly problems defined in (1) and its special type in which the function f
does not depend on y′(x).
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2. Derivation of the method

Let h > 0 be the integration stepsize and x1 = x0 + h. Following the approach in [21], we assume that the exact
solution of the IVP in (1) on [x0, x1], is approximated by a polynomial u(x0 + sh), s ∈ [0, 1] of degree seven, satisfying
the collocation conditions u′′(x0 + c jh) = fc j , where c0 = 0 < c1 < c2 < c3 < c4 < c5 = 1, xc j = x0 + c jh, j = 1(1)4,
and fc j = f (xc j , u(xc j ), u

′(xc j )). In terms of the Lagrange basis polynomials L j(s) defined on the values x0 + c jh,
j = 0, . . . , 5, u′′(x0 + sh) reads

u′′(x0 + sh) =

5∑
j=0

fc j L j(s), (2)

Integrating (2) once and twice, respectively, and exploiting the initial conditions in s = 0 leads to the following
formulas

hy′(x0 + sh) ' hu′(x0 + sh) = hy′0 + h2
5∑

j=0

β j(s) fn+c j , (3)

y(x0 + sh) ' u(x0 + sh) = y0 + shy′0 + h2
5∑

j=0

α j(s) fn+c j , (4)

where α j(s) =
∫ s

0 (s − r)L j(r)dr and β j(s) =
∫ s

0 L j(r)dr. We then set y1 = u(x0 + h), y′1 = u′(x0 + h), and iterate the
above procedure on subintervals [xn, xn+1], n = 0, 1, . . . ,N − 1, of length h.
The proposed method is constructed by considering four intermediate points on [x0, x1]. A common procedure to
increase the order of a collocation method is to choose the intermediate points in order to have a higher truncation
error for the point x1. Here instead of looking for the higher possible truncation error, we choose the intermediate
points in order to rise by one the order of the local truncation error for y(x1), y′(x1) and y(xc3 ). For simplicity we fixed
c2 = 1

2 and we look for the values of c1, c3, c4. The truncation errors are obtained through the expansion in powers of
h utilizing the Taylor series, resulting in

L[y(x1), h] =
(−7c1c3c4 + c1 + c3 + c4 − 1)h8y(8) (x0)

604800
+ O(h9),

L[y(xc3 ), h] =
h8y(8) (x0) Pc3

604800
+ O(h9),

L[y′(x1), h] =

(
−6 − 7c3(−1 + c4) + 7c4 − 7c1(−1 + c3 + c4)

)
h7y(8) (x0)

604800
+ O(h8). (5)

with

Pc3 = c4
3

(
c3

(
−5c3

3 + (8c4 + 12) c2
3 − (21c4 + 7) c3 + 14c4

)
+ c1

(
8c3

3 − (14c4 + 21) c2
3 + (42c4 + 14) c3 − 35c4

))
.

Equating the principal terms in (5) to zero, we have
−7c1c3c4 + c1 + c3 + c4 − 1 = 0

Pc3 = 0

−6 − 7c3(−1 + c4) + 7c4 − 7c1(−1 + c3 + c4) = 0 .

(6)

The optimal coefficients derived by this procedure satisfying 0 < c1 < c3 < c4 < 1 are

c1 =

(
7 −
√

21
)

14
, c3 =

(
7 +
√

21
)

14
, c4 =

21 + 4
√

21
42

.

Substituting the values of the coefficients and evaluating the formulas in (3) and (4) at s = 1, we get the approximations
of y(x0 + h) and y′(x0 + h), given as follows
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y1 = y0 + hy′0 +
1

360
h2

(
18 f0 + 7

(√
21 + 7

)
fc1 + 64 fc2 − 7

(√
21 − 7

)
fc3

)
,

hy′1 = hy′0 +
1

180
h2

(
9 f0 + 49 fc1 + 64 fc2 + 49 fc3 + 9 f1

)
. (7)

In order to implement the proposed optimized Runge-Kutta Nyström method in block form, some additional
formulas must be considered. To do this, we take the values of u(x0 + sh) in (3) and hu′(x0 + sh) in (4) evaluated at
the collocation points s = c1, c2, c3, c4. In this way, we obtain a total of ten formulas that form the proposed optimized
block method.

3. Theoretical analysis

The obtained ORKNM can be formulated in matrix form as

R̄ V0 = h S̄ V ′0 + h2 T̄ F0, (8)

with R̄, S̄ , T̄ constant matrices containing the coefficients of the ORKNM, given by;

R̄ =



−1 1 0 0 0 0
−1 0 1 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 0
−1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


; S̄ =



1
14

(
7 −
√

21
)

0 0 0 0 0

1
2 0 0 0 0 0

1
14

(√
21 + 7

)
0 0 0 0 0

1
2 + 2

√
21

0 0 0 0 0

1 0 0 0 0 0
1 −1 0 0 0 0
1 0 −1 0 0 0
1 0 0 −1 0 0
1 0 0 0 −1 0
1 0 0 0 0 −1



; (9)

T̄ =



1111−171
√

21
41160

55
6174

2
(
419−98

√
21

)
15435

1709−343
√

21
17640 − 18

1715
12
√

21+41
20580

49
1920

7
(
8
√

21+35
)

5760
1
72 −

7
(
8
√

21−35
)

5760 0 1
1920

171
√

21+919
41160

2401
√

21+11003
123480

2
(
98
√

21+449
)

15435
1

882
18

1715
−12
√

21−55
20580

88612
√

21+426493
17781120

49
√

7
3

720 + 5545181
53343360

129361
1666980 + 16

45
√

21

7
√

7
3

720 + 112019
7620480

25
24696

−788
√

21−3607
3556224

1
20

7
360

(√
21 + 7

)
8
45

1
360 (−7)

(√
21 − 7

)
0 0

41
√

21+189
5880

49
360 −

23
840
√

21
8
45 −

106
105
√

21
343−29

√
21

2520 − 1
35

(
6
√

3
7

)
1
56 + 41

280
√

21

1
960

(
81 − 8

√
21

)
95
√

21+392
2880

√
7
3

48 + 8
45 −

7
(
25
√

21−56
)

2880
3
√

21
80

1
960

(
−8
√

21 − 33
)

23
√

21+189
5880

49
360 + 523

840
√

21
8
45 + 86

105
√

21
7

360

(√
21 + 7

)
− 1

35

(
6
√

3
7

)
1
56 + 23

280
√

21

3368
√

21+48027
1270080

49
360 + 113269

181440
√

21
8

45 + 36871
45360

√
21

49
360 + 16717

25920
√

21
− 65

336
√

21
737

60480 + 421
7560

√
21

1
20

49
180

16
45

49
180 0 1

20



, (10)
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and

V0 =
(
y0, yc1 , yc2 , yc3 , yc4 , y1

)>
,

V ′0 =
(
y′0, y

′
c1
, y′c2

, y′c3
, y′c4

, y′1
)>
,

F0 =
(

f0, fc1 , fc2 , fc3 , fc4 , f1
)>

.

We define the operator Γ related to the ORKNM in (8), assuming that y(x) has enough derivatives, as

Γ[y(x); h] =
∑
j∈I

[
Θ jy

(
x + jh

)
− hθ jy′

(
x + jh

)
− h2ϑ jy′′

(
x + jh

)]
, (11)

where Θ j, θ j, and ϑ j are respectively vector columns of R̄, S̄ and T̄ , and I = {0, c1, c2, c3, c4, 1}.
Expanding y

(
x0 + jh

)
, y′

(
x0 + jh

)
and y′′

(
x0 + jh

)
in Taylor series about x0 we have

Γ[y(x); h] = C0y(x) + C1hy′(x) + C2h2y′′(x) + · · · + Cqhqyq(x) + . . . , (12)

where

Cq =
1
q!

∑
j∈I

jqΘ j − q
∑
j∈I

jq−1θ j − q(q − 1)
∑
j∈I

jq−2ϑ j

 , (13)

and q = 0, 1, 2, 3, 4, . . . . The order of the local truncation error is determined by the first non-null vector Cq.
We note that the resulting scheme is a Runge-Kutta Nyström method based on direct collocation. According to [21],
if

y(x1) − y1 = O
(
hp1+1

)
, y′(x1) − y′1 = O

(
hp2+1

)
,

then the order of accuracy is defined as p = min{p1, p2}.
By Theorem 3.2 of [21] we know that the method has global step point order of at least p = 6 and locally, the order
of the y component is 7 and the order of the y′ component is one lower. We have increased the global step point order
with the special choice of the collocation points. Since Theorem 3.4 of [21] is satisfied with p = s + q = 6 + 2 = 8,
then the ORKNM has global step point order p = 8.
By substituting the elements of the matrices defined in (9) and (10) we get the orders and LTEs for each of the formulas
in (8), as given in Table 1.

Table 1: Order(p) and local truncation errors (LTEs) for the formulas in (8)

Formula Order local truncation errors

yc1 7 −
h8y(8)(x0)
36303120 + O(h9)

yc2 7 −
h8y(8)(x0)
30965760 + O(h9)

yc3 7
(
523
√

21+2401
)
h9y(9)(x0)

853849382400 + O(h10)

yc4 7 −
125h8y(8)(x0)

1204450394112 + O(h9)

y1 8 h9y(9)(x0)
177811200 + O(h10)

y′c1
6 −

11h7y(8)(x0)
8297856

√
21

+ O(h8)

y′c2
6 h7y(8)(x0)

967680
√

21
+ O(h8)

y′c3
6 −

h7y(8)(x0)
41489280

√
21

+ O(h8)

y′c4
6 25h7y(8)(x0)

1792336896
√

21
+ O(h8)

y′1 8 −
h9y(10)(x0)

1422489600 + O(h10)
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The stability properties of the method are studied by applying formula (8) to the following standard test equations

y′′(x) = −ν2 y(x), η > 0, (14)

y′′(x) = −2νy′(x) − ν2y(x), η > 0, (15)

where ν stands for a complex parameter and the above equations have bounded solutions that go to zero as x tends to
infinity. Applying the ORKNM in (8) on (15) we have

P



yc1

yc2

yc3

yc4

y1

y′c1

y′c2

y′c3

y′c4

y′1



= Q



yc1−1

yc2−1

yc3−1

yc4−1

y0

y′c1−1

y′c2−1

y′c3−1

y′c4−1

y′0



,

where P and Q are square matrices of dimension ten whose entries are obtained by the coefficients of the formulas
given in (8). By letting z = νh, we study the stability of the proposed ORKNM through the eigenvalues of the
amplification matrix (M(z) = P−1Q). Figures 1 - 2 display the stability regions of the proposed ORKNM using the
above test equations.

0 2 4 6 8

-0.2

-0.1

0.0

0.1

0.2

0 5 10 15 20 25 30 35

-6

-4

-2

0

2

4

6

Figure 1: Stability region in the complex z-plane using (14).
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Figure 2: Stability region in the complex z-plane using (15).

4. Error estimation and mesh selection

From a practical point of view, it might be unreasonable to solve the IVP with a constant stepsize, especially when
the true solution changes at very different rates in portions of the integration interval [x0, xN]. Thus, for the numerical
method (8) to be reliable and, of course, efficient, it must be suitable for a variable stepsize (VSS) implementation.
The approach of VSS is also known as adaptive since it adjusts the number and position of the steps utilized in the
numerical solution to ensure that the truncation error is kept inside a predefined bound. To achieve a robust estimation
of the local truncation error (LTE), we adopted a similar strategy as in Shampine, and Gordon [22].

The choice of a formula of a higher order that could be used for error estimation is not so simple. We use a strategy
that requires two more function evaluations in this work. Following the procedure described in [25] but starting from
the Hermite-Obreschkoff methods presented in [26], we use a central finite difference approach to get the coefficients
for computing an approximation y∗ to y(x1). The derivatives of the Hermite-Obreschkoff method of order 10 are
approximated using a stencil of eight points with the previous computed function values fci , i = 0, . . . , 5 and two
additional function evaluation at the points c6 = 1

2 −
2
√

21
and c7 = 3

2 −
2
√

21
. The approximation of yc j , y

′
c j
, j = 6, 7

needed for the evaluation of f are computed evaluating the collocation polynomial, requiring a linear combination of
the function values. The following multistep formula of order p = 9 is then obtained

y∗1 = y0 + hy′0 + h2


(
2343 − 16

√
21

)
f0

51900
−

(
4
√

21 + 21
)

f1
375

+

(
573
√

21 + 3731
)

fc1

29880


+h2


(
2
√

21 + 565
)

fc2

3060
+

(
197 − 43

√
21

)
fc3

1800


+h2

 3
(
4
√

21 + 21
)

fc4

1000
+

3 fc6

200
+

3
(
30854

√
21 + 141421

)
fc7

30512875

 , (16)

with local truncation error LT E = 4
√

21−63
59744563200 h10y(10) (x0) + O

(
h11

)
.

The obtained error estimate provides the basis for choosing the stepsize for the next step. The mesh selection is
now made by computing an estimation of the relative mixed error as follows

ES T =

∥∥∥y∗1 − y1
∥∥∥(

ATOL
RTOL +

∥∥∥y1
∥∥∥) ,

where y∗1 and y1 are the values obtained by the formula in (16) and the method in (8), respectively, and ATOL and
RTOL are the user’s predefined tolerances. If EST ≤ RTOL, then we accept the results and take the next step as
hnew = 2 × hold, that is, we double the stepsize to save the time and proceed the integration process with this hnew
provided that hmin ≤ hnew ≤ hmax, where hmin and hmax are the minimum and maximum stepsizes allowed respectively.
If EST > RTOL, then we reject the obtained results, decrease stepsize and repeat the calculations with the following
new step
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hnew = hold

(
RTOL
ES T

)1/p

. (17)

According to Stoer and Bulirsch [27], page 491, many researchers recommend the inclusion of a safety factor µ in
(17) as follows:

hnew = µ × hold

(
RTOL
ES T

)1/p

, (18)

where 0 < µ < 1 is a suitable adjustment factor. In the numerical experiments section, we have used µ = 0.95.
For comparison purposes, the implicit Lobatto III-A Runge-Kutta method of order eight has been implemented as

an embedded Runge-Kutta method in variable stepsize mode. The following multistep formula of order (p = 10)

y∗1 = y0 +

h
(
182475 f0 + 2064384 f 1

4
+ 2064384 f 3

4
+ 2097152 f 1

8
+ 2097152 f 7

8

)
5953500

+
h
(
−2067261 fc1 + 1400000 fc2 − 2067261 fc3 + 182475 f1

)
5953500

,

with the local truncation error LT E = − 17
90128941056000 h11y(11) (x0) + O

(
h12

)
has been used to estimate the local error

at each step and a similar strategy for mesh selection as given in (18) with p = 10 has also been utilized with the
Runge-Kutta method.

5. Computational details

The new ORKNM is implemented in a step by step mode. We denote the obtained system from (8) as F(y) = 0
where the unknowns are

Ỹ = (yc1 , y
′
c1
, yc2 , y

′
c2
, yc3 , y

′
c3
, yc4 , y

′
c4
, y1, y′1) .

Since the ORKNM is an implicit scheme, we use a Modified Newton’s method (MNM) to solve the obtained systems.
The i-th iteration of the MNM is given by

Ji
0

(
Ỹi+1 − Ỹi

)
= −Fi,

where Ji
0 represents the frozen jacobian matrix of F at the starting value. The starting values to be used by MNM for

solving the system on each iteration are taken as

yn+ j = yn + ( jh)y′n +
( jh)2

2
fn, y′n+ j = y′n + ( jh) fn, n = 0, 1, 2, . . . ,N − 1, j = c1, c2, c3, c4, 1.

We can apply the ORKNM to solve systems of second-order IVPs by considering the following system of m equations:

y′′ = f(x, y>, y′>) , y(a) = y0 , y′(a) = ẏ0 , a = x0 ≤ x ≤ b = x0,

where y = (y1, . . . , yd)>, y′ = (y′1, . . . , y
′
d)>,

f(x, y>, y′>) = ( f1(x, y>, y′T ), . . . , fd(x, y>, y′>))>,

and y0 = (y1,0, . . . , yd,0)>, y′0 = (ẏ1,0, . . . , ẏd,0)>. In the case of d-dimensional IVPs, we get the algebraic system of 10d
equations, and we solved the obtained non-linear system using MNM, as in the scalar one-dimensional IVPs. The
stopping criterion and the maximum number of iterations used while executing the MNM are 2 × RTOL and 100,
respectively.
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6. Numerical Experiments

Here, we report the numerical performance of the proposed ORKNM on the class of second-order problems of
the form (1). We note that the effectiveness and efficiency of the proposed strategy will rely on the VSS technique
presented in section 4. The criteria utilized as a measure of the accuracy are the maximum absolute error (MAE) and
the maximum relative error (MRE) on the integration interval, given respectively by the formulas

MAE = max
j=0,...,N

∥∥∥y(x j) − y j

∥∥∥
∞
,

MRE = max
j=0,...,N


∥∥∥y(x j) − y j

∥∥∥(
ATOL
RTOL +

∥∥∥y(x j)
∥∥∥)

 ,
ROC = − log2

(
MAEh

MAE2h

)
,

where y(x j) is the exact solution, and y j is the computed result at each point x j of the discrete grid. The following
abbreviations are utilized in Tables:

• ORKNM: The new optimized Runge-Kutta Nyström method developed in this paper.

• FM8P: The Falkner method of order eight (see [23]).

• FDM8P: The finite difference method of order eight (see [24, 28]).

• FDM9P-GFD: The finite difference method of order nine with generalized backward difference (see [24, 28]).

• FDM9P-GBD: The finite difference method of order nine with generalized forward difference (see [24, 28]).

• LOB-IIIA8P: The implicit Lobatto III-A Runge-Kutta method of order eight formulated in variable stepsize
(see [29]).

• NS : Number of steps.

• MP : Mesh points.

• NRS : Number of rejected steps.

• NNI : Number of Newton iterations.

• NJAC : Number of Jacobian evaluations.

• ABE y(x) : Absolute error of the solution.

• ABE y′(x) : Absolute error of the first derivative solution.

• TNFE : Total number of function evaluations.

• hini : Initial stepsize.

• hmin : Minimum stepsize allowed.

• hmax : Maximum stepsize allowed.

• ATOL : Absolute Tolerance.

• RTOL : Relative Tolerance.

• CPU : Computational time in seconds.
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6.1. Numerical Experiment 1
To determine the numerical rate of convergence of the proposed ORKNM, we first consider the following Bessel

problem using fixed stepsize

x2y′′(x) + xy′(x) + (x2 − 0.25)y(x) = 0 , (19)

y(1) =

√
2
π

sin(1), y′(1) =
2cos(1) − sin(1)

√
2π

, 1 ≤ x ≤ 8,

whose exact solution is

y(x) =

√
2
πx

sin(x).

Table 2: MAEs and order of convergence for test Problem (19)

h Method MAE ROC
1

10 ORKNM 1.88947 × 10−8

1
20 ORKNM 1.13901 × 10−10 7.37

1
40 ORKNM 5.26579 × 10−13 7.76

1
80 ORKNM 2.27596 × 10−15 7.85

Table 3: Comparison of the numerical results for Problem (19) with hini = 10−1

ATOL = RTOL Method NS TFE MP MAE y(x) MAE y′(x)

10−6 ORKNM 6 48 49 5.75220 × 10−6 2.68700 × 10−8

FM8P 65 74 66 4.58467 × 10−7 6.34613 × 10−7

10−7 ORKNM 7 56 56 3.46870 × 10−7 5.61510 × 10−9

FM8P 82 91 83 5.00841 × 10−8 2.047023 × 10−7

10−8 ORKNM 8 64 63 5.64580 × 10−8 2.89620 × 10−9

FM8P 97 106 98 6.93047 × 10−9 9.26095 × 10−9

In Table 2, we have included the numerical rate of convergence (ROC) to (19) which confirmed the order of
convergence of the method.

In Table 3, we present the maximum absolute errors for the solution and its first-derivative solution obtained at the
final point of the integration interval for (19). We observe that the error terms are similar, but the proposed ORKNM
uses a small NS, which shows the good performance of the proposed method.

6.2. Numerical Experiment 2
Consider the non-linear homogeneous problem [24]

(y(x) + 1)y′′(x) − 3(y′(x))2 = 0 , (20)

y(1) = 0, y′(1) = −
1
2
, 1 ≤ x ≤ 10,
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whose exact solution is
y(x) =

1
√

x
− 1.

Table 4: Comparison of the numerical results on (20) with hini = 8 × 10−2

ATOL = RTOL Method NS NRS NNI TFE NJ MP MRE

10−6 ORKNM 7 0 30 56 7 50 2.13206 × 10−7

FDM8P 6 0 68 49 40 68 9.56000 × 10−7

FDM9P-GFD 5 0 34 16 11 67 5.89000 × 10−7

FDM9P-GBD 5 0 34 16 11 67 5.74000 × 10−7

10−7 ORKNM 8 0 38 64 8 57 4.05649 × 10−8

FDM8P 7 0 77 54 44 79 1.24000 × 10−7

FDM9P-GFD 6 0 67 47 38 80 8.14000 × 10−8

FDM9P-GBD 6 0 67 47 38 80 7.57000 × 10−8

10−8 ORKNM 10 0 45 80 10 71 7.56256 × 10−9

FDM8P 9 0 102 71 58 101 1.98000 × 10−8

FDM9P-GFD 7 0 77 53 43 93 8.77000 × 10−9

FDM9P-GBD 7 0 77 53 43 93 8.18000 × 10−9

Table 4 presents the comparison of maximum relative errors on the integration interval and the number of steps
for different methods, evincing the good performance of the proposed ORKNM.

6.3. Numerical Experiment 3
Consider the Vander Pol problem that arises from electronics and illustrates the behaviour of non-linear vacuum

tube circuits [30]

y′′(x) = ν(1 − y(x)2)y′(x) − y(x) , (21)
y(0) = 2, y′(0) = 0, 0 ≤ x ≤ 2000,

whose exact solution is unknown.

Table 5: Comparison of the numerical results on (21) with hini = 10−1, ν = 1000

ATOL = RTOL Method NS NRS NNI TFE NJ CPU MRE

10−7 ORKNM 317 94 1249 2536 411 2.57627 3.81286 × 10−9

LOB-IIIA8P 733 64 2004 5864 797 3.75841 3.16765 × 10−7

10−8 ORKNM 321 112 1280 2568 433 2.74884 2.50932 × 10−11

LOB-IIIA8P 754 73 2218 6032 827 4.12364 8.73680 × 10−8

10−9 ORKNM 345 115 1355 2760 460 2.97702 2.64965 × 10−13

LOB-IIIA8P 801 82 2633 6408 883 4.63263 3.17442 × 10−8
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Figure 3: Discrete solution for (21) with ATOL = RTOL = 10−9, hini = 10−3.
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Figure 4: Limit cycle for the numerical experiment (21) with ATOL = RTOL = 10−9, hini = 10−3.

In order to compare the MRE for problem (21), the following reference solution at the final point xN = 2000 given
in [30] has been used,

y(xN) = 1.706167732170469, y′(xN) = −0.0008928097010248125.

The comparison of the results for the proposed ORKNM and LOB-IIIA8P presented in Table 5 were obtained
using hmin = 10−9 and hmax = 10, respectively.

The data in Table 5 clearly show that the best performance corresponds to the ORKNM. In addition, these data
are used to obtain the efficiency curves in Figure 3, which shows the good performance of the proposed method. The
behavior of the approximate solution and the corresponding limit cycle are shown in Figures 4 and 5, respectively.

6.4. Numerical Experiment 4
In the fourth experiment, we solve the Kepler’s problem (KP) [31]

y′′1 (x) = −
y1(x)(

y2
1(x) + y2

2(x)
) 3

2

, y1(0) = 1 − ε, y′1(0) = 0,

y′′2 (x) = −
y2(x)(

y2
1(x) + y2

2(x)
) 3

2

, y2(0) = 0, y′2(0) =

√
1 + ε

1 − ε
, 0 ≤ x ≤ 20π. (22)

The theoretical solution of the KP is

y1(x) = cos(v) − ε, y2(x) =
√

1 − ε2 sin(v),
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where v is the solution of the Kepler’s equation, v − εsin(v) − x = 0.

Table 6: Comparison of the numerical results on (22) with hini = 10−2, ε = 0.9

ATOL = RTOL Method NS NRS NNI TFE NJ CPU MRE

10−10 ORKNM 470 223 2127 3760 693 6.93321 1.53986 × 10−4

LOB-IIIA8P 527 226 3195 4216 753 14.05239 5.83114 × 10−5

10−12 ORKNM 745 337 3247 59960 1082 10.50988 3.55175 × 10−6

LOB-IIIA8P 847 364 4939 6776 1211 22.40475 2.76875 × 10−6

10−14 ORKNM 1210 525 5206 9680 1735 17.01310 4.53147 × 10−9

LOB-IIIA8P 1380 566 8216 11040 1946 36.44788 9.28509 × 10−9

-1.5 -1.0 -0.5 0.0

-0.4

-0.2

0.0

0.2

0.4

Figure 5: Discrete solutions for Problem (22) with ATOL = RTOL = 10−14, hini = 10−2.

The comparison of the results for the proposed ORKNM and LOB-IIIA8P presented in Table 6 were obtained
using hmin = 10−9 and hmax = 5, respectively.

The numerical results for the proposed ORKNM and LOB-IIIA8P reported in Table 6 were obtained taking hmin =

10−12 and hmax = 5. Again, the MRE are similar, and the proposed ORKNM has smaller NS, CPU-times, NNI, TFE,
and NJ, implying that the ORKNM is accurate for integrating the Kepler problem directly. The discrete solution in
the phase plane is shown in Figure 6.

6.5. Numerical Experiment 5
Consider the time dependent semi-discretization of the problem given in [21]

∂2y
∂t2 =

y2

(1 + 2x − 2x2)
∂2y
∂x2 + y

(
4 cos2(x) − 1

)
, (23)

0 ≤ t ≤ 2π, 0 ≤ x ≤ 1,

with initial and Dirichlet boundary conditions so that the exact solution is

y(x, t) = (1 + 2x − 2x2) cos(x).

We solved (23) by discretizing the second-order spatial derivative, leaving the time variable continuous, and then
applying the ORKNM, following a procedure as in the method of lines. The ∂2y

∂x2 in (23) is discretized by

∂2y
∂x2 (xi, t) '

y(xi+1, t) − 2y(xi, t) + y(xi−1, t)
δx2 , (24)
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where δx =
(xN+1 − x0)

N + 1
, N is the internal number of spatial nodes, x1 = x0 + δx, . . . , xN = x0 + Nδx, xN+1 =

x0 + (N + 1)δx. Taking N = 19 and using (24) on the grid points xi = i
20 , i = 1, . . . ,N, we get y1, y2, y3, . . . , yN by

solving the following system of differential equations after replacing ∂2y
∂x2 (xi, t) in (24) into (23),

y′′i =
y2

i

1 + 2xi − 2x2
i

yi+1 − 2yi + yi−1

δx2 + yi(4 cos2(x) − 1), i = 1, . . . ,N. (25)

Table 7: Comparison of the numerical results on (23) with hini = 10−2,N = 19

ATOL = RTOL Method NS NRS NNI TFE NJ CPU MRE

10−2 ORKNM 33 32 91 264 65 32.23438 3.6880 × 10−7

LOB-IIIA8P 65 16 171 520 81 77.82813 4.3822 × 10−8

10−3 ORKNM 69 69 248 552 138 74.68750 1.4969 × 10−9

LOB-IIIA8P 182 15 398 1456 197 201.28125 2.1512 × 10−10

10−4 ORKNM 147 149 583 1176 296 166.6410 1.3113 × 10−12

LOB-IIIA8P 556 13 1140 4448 569 571.45313 2.4563 × 10−12

Figure 6: Exact and discrete solution (red points) for (21) with ATOL = RTOL = 10−4, hini = 10−2.

Table 7 presents the numerical results we obtained using hmin = 10−4 and hmax = 1. Data in Table 7 and Figure 8
also ascertain the viability and effectiveness of the proposed ORKNM. Exact and approximate solution of the ORKNM
for the (23) utilizing hmin = 10−4 and hmax = 1 are plotted in Figure 9.

7. Conclusions

A new superconvergent collocation Runge Kutta Nyström method has been developed for the solution of second-
order initial value problems. In particular, an accurate way to estimate the local truncation error allow us to implement
an effective mesh selection strategy. The numerical results show that this method can be competitive with other
existing numerical techniques.

13



Acknowledgements

The authors thank Giuseppina Settanni for providing the results of example (20) and Felice Iavernaro for useful
discussions during the preparation of the paper. The first two authors are members of the INdAM Research group
GNCS.

References

[1] P. Henrici, Discrete Variable Methods in ODEs. New York: John Wiley,1962
[2] L. Brugnano and D. Trigiante, Solving differential problems by multistep initial and boundary value methods, Gorden and Breach Science

Publishers, (1998) 280-299
[3] J.C. Butcher, G. Hojjati, Second derivative methods fifth Runge-Kutta stability. Numer. Algorithms 40 (2005) 415-429
[4] J. Franco, Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. Comput Phys Comm 147 (2002)

770-787
[5] F. Mazzia, A. Sestini and D. Trigiante, B-Spline linear multistep methods and their continuous extensions, SIAM J. Numer Anal. 44(5)

(2006) 1954-1973
[6] C. Manni, F. Mazzia, A. Sestini, H. Speleers, BS2 methods for semi-linear second order boundary value problems, Journal of Applied

Mathematics and Computation 255 (2015) 147-156
[7] F. Mazzia and A.M. Nagy, A new mesh selection strategy with stiffness detection for explicit Runge-Kutta methods, Journal of Applied

Mathematics and Computation 255 (15) (2015) 125-134
[8] D.B. Berg, T.E. Simos, Ch. Tsitouras, Trigonometric fitted, eight-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41(5),

(2018) 1845–1854
[9] S.N. Jator and J. Li, A self starting linear multistep method for the direct solution of the general second order initial value problems,

International Journal of Computer Mathematics, 86 (5) (2009) 817-836
[10] X. You, R. Zhang, T. Huang, Symmetric collocation ERKN methods for general second-order oscillators. Calcolo 56, 52 (2019).

https://doi.org/10.1007/s10092-019-0344-1
[11] M. M. Khalsaraei, A. Shokri, An explicit six-step singularly P-stable Obrechkoff method for the numerical solution of second-order oscilla-

tory initial value problems. Numer Algor 84, (2020) 871–886
[12] T.E. Simos, Ch. Tsitouras, A new family of 7 stages, eight-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40(18), (2017)

7876–7878
[13] J. D. Lambert, Numerical Methods for Ordinary Differential Systems. John Wiley, New York (1991)
[14] E. Hairer and G. Wanner Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems. Second Revised Edition,

Springer-Series in Computational Mathematics, 14 (1996) 75-77
[15] H. Ramos, Z. Kalogiratou, Th. Monovasilis, T. E. Simos, An optimized two-step hybrid block method for solving general second order

initial-value problems, Numerical Algorithms 72 (2016) 1089-1102
[16] M.A. Rufai, E.A. Areo, An efficient one-eight step hybrid block method for solving second order initial value problems of ODEs, Interna-

tional Journal of Differential Equations and Applications, 15(2) (2016) 117-139
[17] H. Ramos and M.A. Rufai, Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-

value problems, Journal of Applied Mathematics and Computation, 333 (2018) 231-245
[18] P. Amodio and L. Brugnano, Parallel implementation of block boundary value methods for ODEs, Journal of Computational and Applied

Mathematics, vol. 78 (2) (1997) 197-211
[19] H. Ramos, S. Mehta, J. Vigo-Aguiar, A unified approach for the development of k-step block Falkner-type methods for solving general

second-order initial-value problems in ODEs. Journal of Computational and Applied Mathematics 318 (2017) 550-564
[20] M.A. Rufai, H. Ramos, Numerical solution of second-order singular problems arising in astrophysics by combining a pair of one-step hybrid

block Nyström methods Astrophysics and Space Science volume 365, Article number: 96 (2020)
[21] P.J. Van der Houwen, B.P. Sommeijer, and H. C. Nguyen, Stability of collocation-based Runge-Kutta-Nyström methods. BIT 31, 469–481

(1991)
[22] L.F. Shampine, M.K. Gordon, Computer Solutions of Ordinary differential Equations: The Initial Value Problem, Freeman, San Francisco,

CA1975
[23] J. Vigo-Aguiar and H. Ramos, Variable stepsize implementation of multistep methods for y′′ = f

(
x, y, y′

)
J. Comput. Appl. Math. 192

(2006), 114-131
[24] P. Amodio and G. Settanni, High order finite difference schemes for the solution of second order initial value problems, JNAIAM J. Numer.

Anal. Ind. Appl. Math. 5 (2010), 3–16
[25] F. Iavernaro, F., Mazzia, A fourth order symplectic and conjugate-symplectic extension of the midpoint and trapezoidal methods Mathemat-

ics, 9 (10), art. no. 1103 (2021)
[26] F. Mazzia, A. Sestini, On a class of conjugate symplectic Hermite-Obreshkov one-step methods with continuous spline extension, Axioms,

7 (3), art. no. 58 (2018)
[27] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer, (2002)
[28] P. Amodio, C.J. Budd, O. Koch, G. Settanni, and E.B. Weinmüller, Asymptotical computations for a model of flow in satured porous media,

Appl. Math. Comput. 237 (2014), 155-167
[29] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley and Sons, (2008)
[30] F. Mazzia and F. Iavernaro, Test set for initial value problems solvers, Department of Mathematics, University of Bari, (2003)
[31] P. Amodio, F. Iavernaro, Symmetric Boundary Value Methods for Second Order Initial and Boundary Value Problems. MedJM 3, (2006)

383–398

14


	Introduction
	Derivation of the method
	Theoretical analysis
	Error estimation and mesh selection
	Computational details
	Numerical Experiments
	Numerical Experiment 1
	Numerical Experiment 2
	Numerical Experiment 3
	Numerical Experiment 4
	Numerical Experiment 5

	Conclusions

