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On the hypercomplex numbers of all finite
dimensions: Beyond quaternions and octonians

Pushpendra Singh∗, Anubha Gupta, and Shiv Dutt Joshi

Abstract

In search of a real three-dimensional, normed, associative, division algebra, Hamilton discovered quaternions
that form a non-commutative division algebra of quadruples. Later works showed that there are only four real
division algebras with 1, 2, 4, or 8 dimensions. This work overcomes this limitation and introduces generalized
hypercomplex numbers of all dimensions that are extensions of the traditional complex numbers. The space of these
numbers forms non-distributive normed division algebra that is extendable to all finite dimensions. To obtain these
extensions, we defined a unified multiplication, designated as scaling and rotative multiplication, fully compatible
with the existing multiplication. Therefore, these numbers and the corresponding algebras reduce to distributive
normed algebras for dimensions 1 and 2. Thus, this work presents a generalization of C in higher dimensions
along with interesting insights into the geometry of the vectors in the corresponding spaces.

Index Terms

Generalized hypercomplex numbers; Real numbers; Complex numbers; Quaternions; Octonians; Scaling and
rotative multiplication (SRM); Non-distributive Field.

I. INTRODUCTION

Real numbers (R) form a field, wherein addition, subtraction, multiplication, and division are well
defined. Complex numbers (C) or imaginary numbers emerged in the quest of finding the solution of the
polynomial equation x2 + 1 = 0. While R is also a vector space of dimension ‘one’ over itself (i.e., over
the field of real numbers), C is a vector space of dimension ‘two’ defined over the field R. In particular,
C is an interesting space where one can deal with elements as complex or imaginary numbers (of the
form of a + ib) or work with them as in abstract algebra, and at the same time can also visualize the
elements in the 2-dimensional (2D) space as in traditional geometry with the notion of the length of
the vectors, the distance between vectors, and the angle between vectors. This beautiful connection of
complex numbers and 2D geometry inspired William Rowan Hamilton to look for a solution of a 3D
algebra with a similarly associated 3D geometry. In modern mathematical language, Hamilton was trying
for a 3D normed division algebra. In October 1843, Hamilton discovered quaternions (H), and in a very
famous act of scientific vandalism, he instantly carved the fundamental equations of quaternions into the
stone of the Brougham Bridge as: i2 = j2 = k2 = ijk = −1.

Now, it is well-established that a 3D normed division algebra does not exist. Frobenius [1] in 1878
obtained the classification of associative normed division algebras and proved that there are only three such
algebras R, C, and H. Hurwitz in 1898 [2] proved that there are only four normed division algebras,
namely R, C, H and O (octonions are also known as Cayley numbers) with a natural embedding as
R ⊂ C ⊂ H ⊂ O, where multiplication by a unit vector is distance-preserving. Likewise, Zorn in 1930
[3] had shown that if associativity condition is relaxed with alternativity, then there are only four normed
division algebras: R, C, H and O. The theorems of Adams (1958, 1960) [4], [5], Kervaire (1958) [6],
and Bott–Milnor (1958) [7] reveal that the finite-dimensional normed division algebra can have only 1,
2, 4, and 8 dimensions.
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The work of Hamilton was seminal because quaternions find applications in various areas such as
astronautics, robotics, computer graphics, and animation. They are found to be useful in modern physics,
particularly in the general theory of relativity, because they can express the Lorentz transform [8].
The quaternion calculus is useful in crystallography, the kinematics of rigid body motion, classical
electromagnetism, and quantum mechanics [8]. This is to note that Hamilton was searching for a real,
normed, three-dimensional, associative, division algebra that does not exist. In order to equate the
Euclidean length of the product of a pair of triples to the product of their lengths, he dropped the property
of commutative multiplication and also added a fourth dimension defined by k. Hence, he moved to a
4D hypercomplex number system while trying to define a space of a 3D hypercomplex number system.
Similarly, the space of octonions, i.e., the 8D hypercomplex number system, drops not only the property
of commutativity but also the additional property of associativity in multiplication. In these hypercomplex
number systems (4D and 8D), a polynomial of degree n can have infinitely many quaternion or octonion
roots, unlike the result of the fundamental theorem of algebra that guarantees that a polynomial of degree
n with complex coefficients has precisely n complex roots (counting multiplicity) for 2D complex number
system. Furthermore, only four real division algebras with 1, 2, 4, or 8 dimensions can exist, where this
existing framework cannot be extended to other finite dimensions.

Intrigued by the above limitation and inspired by the works of Hamilton where he thought of an entirely
different out-of-the-box solution of those times, this work is an attempt to look for a different solution
that can work for all finite dimensions. Similar to the works on quaternions and octonions, we have also
dropped a property. In addition, we have defined a new multiplication operator. We have proposed a
solution with non-distributive normed division algebra along with the definition of a new multiplication
operation. The theory turns out to be interesting that is generalizable to all finite higher dimensions. In
sum, this work makes the below significant contributions:

1) This work introduces generalized hypercomplex numbers of all dimensions (SM) that are extensions
of the traditional complex numbers with a natural nesting as S ⊂ S2 ⊂ S3 · · · ⊂ SM ⊂ SM+1 · · · ,
where S = R, S2 = C and M ∈ Z+.

2) The space of the defined hypercomplex numbers forms non-distributive normed division algebra
that holds applicability and generalizability to all finite higher dimensions.

3) In order to be consistent with the traditional theory of the R and C spaces along with the geometry of
the vectors in the corresponding spaces, we introduced a new multiplication operation called scaling
and rotative (SR) multiplication that is a natural inhabitant of the Spherical Coordinate System
(SCS). Unlike the traditional multiplication over the Cartesian space that appears to be derived from
addition, the introduced SR multiplication is completely different from addition. As a consequence,
it does not follow the distributive property leading to non-distributive normed division algebra.

4) Unlike the quaternions and octonions, these generalized hypercomplex number systems do not have
infinite roots for polynomials of degree n, but have a minimum of n real roots and a maximum of
(M − 1)n complex roots, where M is the dimension of the number system. This is an interesting
result because it updates the fundamental theorem of algebra for hypercomplex number systems with
more than n but a finite number of roots, such that this theorem reduces to the original theorem for
dimensions 1 and 2.

5) These hypercomplex numbers and the corresponding algebras reduce to distributive normed algebras
for dimensions 1 and 2. Likewise, the updated fundamental theorem of algebra reduces to the original
theorem for dimensions 1 and 2. This shows backward compatibility. In other words, the introduced
concept appears to be a true generalization of C in higher dimensions.

II. PRELIMINARIES

A field is a set F with two binary operations on F called addition (+) and multiplication (·) where
binary operation on F is a mapping F × F → F such that it satisfies the following field axioms for all
z1, z2, z3 ∈ F
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1) Associativity of addition and multiplication: z1+(z2+z3) = (z1+z2)+z3, and z1·(z1·z2) = (z1·z2)·z3

2) Commutativity of addition and multiplication: z1 + z2 = z2 + z1 and z1 · z2 = z2 · z1

3) Additive and multiplicative identities: for every z ∈ F , there exist two different elements 0 and 1
in F such that z + 0 = z and z · 1 = z

4) Additive and multiplicative inverses: for every z ∈ F , ∃ − z ∈ F , called the additive inverse of z,
such that z + (−z) = 0; and for every z ∈ F , ∃ z−1 or 1/z in F , called the multiplicative inverse
of z, such that z · z−1 = 1

5) Distributivity of multiplication over addition:
z1 · (z2 + z3) = (z1 · z2) + (z1 · z3).

If multiplication is not commutative in a field, it is known as the skew field. Moreover, if multiplication
is not distributive over addition, we designate it as a non-distributive field (NDF).

III. PROPOSED GENERALIZED HYPERCOMPLEX NUMBER SYSTEM

In this section, first we define three dimensional (3D) numbers (denoted as set S3) as a true extension
of existing two dimensional numbers (C) that we denote as S2, i.e., C = S2.

A. Proposed 3D Hypercomplex Number System
We consider 3D numbers from the set S3 as

z = a+ ib+ jc, (1)

such that i2 = −1 and a, b, c ∈ R. Here, we have assumed j2 = −1, the proof for which is provided later
before Remark 1. First, we write (1) in the spherical coordinate system (SCS) as

a = r cos(φ) cos(θ), b = r cos(φ) sin(θ), c = r sin(φ), (2)

r =
√
a2 + b2 + c2, θ = tan−1

(
b

a

)
, φ = tan−1

(
c√

a2 + b2

)
, (3)

where the azimuth angle θ ∈ (−π, π] and the elevation angle φ ∈ [−π/2, π/2] as shown in Fig. 1. This is
to note that the conventional notation of spherical coordinate system is not considered in this work1. The
elevation angle φ is measured from the x-y plane, i.e., if elevation φ = 0, the point is in the x-y plane,
and if elevation φ = π/2, then the point is on the positive z-axis. If φ ∈ (0, π/2], the point is above the
x-y plane, and if φ ∈ [−π/2, 0), the point is below the x-y plane.

To obtain the generalized multiplication of these numbers, we write (1) using SCS in triplet notations
as

z1 =
[ r1
θ1
φ1

]
, z2 =

[ r2
θ2
φ2

]
, and z3 =

[ r3
θ3
φ3

]
. (4)

Two special cases of (2) are (i) when z = jc, both a and b are zeros. In this case, θ is indeterminate.
However, since φ = π

2
in (3), any value of θ in (2) will lead to a = b = 0, and we consider θ = 0 to

make it unique. (ii) when z = a+ jc, then θ = 0 if a > 0, and θ = π if a < 0.
Further, we define a new multiplication operation, named hereby the scaling and rotative (SR) multi-

plication (SRM), as

z1z2 =
[ r1r2
θ1+θ2
φ1+φ2

]
, z1z3 =

[ r1r3
θ1+θ3
φ1+φ3

]
, z2z3 =

[ r2r3
θ2+θ3
φ2+φ3

]
, (5)

1One can also use the conventional notation of spherical coordinate system with z = c + ia + jb where a = r cos(θ) sin(φ), b =
r sin(θ) sin(φ), c = r cos(φ), r =

√
a2 + b2 + c2, θ = tan−1(b/a), φ = tan−1(

√
a2 + b2/c), and φ ∈ [0, π] is the angle from the c

coordinate axis (or the real axis). This will also lead to the above 3D hypercomplex number system, but any arbitrary choice of system will
not yield the desired results.
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Fig. 1. A point P = 1 + i + j in the considered spherical co-ordinate system where radius (r =
√
3), azimuth angle (θ = π/4 rad) and

elevation angle (φ = arctan
(
1/
√
2
)
= 0.615479709 rad) are shown.

and likewise, SR division (SRD) as

z1/z2 =

[
r1/r2
θ1−θ2
φ1−φ2

]
, z1/z3 =

[
r1/r3
θ1−θ3
φ1−φ3

]
, z2/z3 =

[
r2/r3
θ2−θ3
φ2−φ3

]
, (6)

where we have assumed that r2, r3 6= 0 in (6). The multiplication operation defined in (2) consists of
scaling and rotation operations such that ‖z1z2‖ = ‖z1‖‖z2‖. The defined SRM operation reduces to the
traditional multiplication when we move from 3D to 2D by considering c = 0 in (1).

The complex conjugate of (1) is defined as z̄ = a− ib− jc. This can be written in the triplet notation
as

z̄ =
[ r
−θ
−φ

]
, (7)

such that ‖zz̄‖ = ‖z‖2 = r2 =⇒ ‖z‖ = r. Similarly, the multiplicative inverse of (1) is defined as
z−1 = z̄

zz̄
. This can be written in the triplet notation as

z−1 =

[
1/r
−θ
−φ

]
, (8)

where this result can also be obtained from (6).
Addition of two complex numbers (e.g., z2 + z3) can be written as

z2 + z3 = (a2 + a3) + i(b2 + b3) + j(c2 + c3) =
[ r2
θ2
φ2

]
+
[ r3
θ2
φ3

]
=
[
r
θ
φ

]
,

where r =
√
r2

2 + r2
3 + 2r2r3 [cos(φ2) cos(φ3) cos(θ2 − θ3) + sin(φ2) sin(φ3)], (9)

θ = tan−1

(
r2 cos(φ2) sin(θ2) + r3 cos(φ3) sin(θ3)

r2 cos(φ2) cos(θ2) + r3 cos(φ3) cos(θ3)

)
,

and φ = tan−1

(
r2 sin(φ2) + r3 sin(φ3)

r2
2 cos2(φ2) + r2

3 cos2(φ3) + 2r2r3 cos(φ2) cos(φ3) cos(θ2 − θ3)

)
.



5

The additive inverse of an element z2 is given by

−z2 = −a2 − ib2 − jc2 =
[ r2
θ2+π
−φ2

]
=
[ r2
θ2
φ2

][
1
π
π

]
= z2(−1). (10)

Thus, we conclude that (φ ± π) is same as −φ due to related geometry as shown in Fig. 2. This
operation is captured with the help of a new modulo operation as shown in Fig. 3 defined on angle φ
as (φ ± π) modc π = −φ. Because the above defined SR multiplication is not derived from addition, it
does not follow the distributive property, and thus, in general, z1(z2 + z3) 6= z1z2 + z1z3. This is a desired
property of the defined SRM because, geometrically, the operation on the left side is different from that
on the right side.

Fig. 2. A point P = 1

2
√

2
(
√
3 + i

√
3 + j

√
2) in the considered spherical co-ordinate system where radius r = 1, azimuth angle θ = π/4

and elevation angle φ = π/6 are shown, and point −P with r = 1, θ = 5π/4 and elevation angle φ = −π/6 are also shown.

Result 1. The distributive property of the defined SR multiplication over addition (i.e., z1(z2 + z3) =
z1z2 + z1z3) can be guaranteed if z1 ∈ R.

Here, it is interesting to observe that, i2 = −1 =
[

1
π/2
0

][
1
π/2
0

]
=
[

1
π
0

]
and j2 = −1 =

[
1
π/2
π/2

][
1
π/2
π/2

]
=[

1
π
π

]
=
[

1
π
0

]
due to modulo π operation on the elevation angle φ and following the geometry of

multiplication, and thus, −1 =
[

1
π
0

]
=
[

1
π
π

]
.

Further, if z1 = cos(φ1) + j sin(φ1) and z2 = cos(φ2) + j sin(φ2), then z1z2 =
[

1
0
φ1

][
1
0
φ2

]
=
[

1
0

φ1+φ2

]
,

and, in general, zm1 z
n
2 =

[
1
0

mφ1+nφ2

]
= cos(mφ1 + nφ2) + j sin(mφ1 + nφ2). In fact, the new imaginary

number j can be written as j =
[

1
θ
π/2

]
for any θ ∈ [0, 2π) which implies j2 =

[
1
2θ
0

]
, and thus, it can have

infinite number of representations. For examples (i) j2 = 1 when θ = 0, (ii) j2 = −1 when θ = π/2,
(iii) j2 = i when θ = π/4, (iv) j2 = −i when θ = 3π/4, and (v) in general j2 = cos(2θ) + i sin(2θ)
for θ ∈ [0, 2π). However, to obtain uniqueness in the presentation, one may consider θ = π/2, i.e.,

j =

[
1
π/2
π/2

]
, which provides j2 = −1, and −j =

[
1
−π/2
−π/2

]
that leads to j(−j) = 1.



6

-3 -5 /2 -2 -3 /2 - - /2 0 /2 3 /2 2 5 /2 3

Elevation angle ( )

- /2

0

/2

(
) 

m
o
d

c
(

)

Fig. 3. Elevation phase angle (φ) and corresponding defined modulo operation.

Remark 1. By not considering the units, the traditional multiplication can be considered as a repetitive
addition up to rational numbers. In all practical applications, we always consider real numbers up
to a finite precision only. Thus, in practice, real numbers are used as rational numbers. Therefore, the
traditional multiplication works as if derived from addition. This leads to the distributivity of multiplication
over addition. Thus, one can observe that of the two binary operations (i.e., + and ·), one seems redundant.

It is pertinent to note that the defined SR multiplication is backward compatible with the traditional
(existing) multiplication for the complex number system. In fact, it is a generalization of the traditional
multiplication to higher dimensional hypercomplex number systems. To demonstrate this, we present the
following results.

Theorem 1. A non-distributive normed division (ND2) algebra, as defined in (1)–(10), is a number system
where one can add, subtract, multiply and divide, and satisfy the norm ‖z1z2‖ = ‖z1‖‖z2‖. Further, this
algebra is of dimension M = 3, and becomes distributive when M ∈ [1, 2].

Proof. To prove the theorem, we have to prove that the 3D numbers given in (1)–(10) satisfy the axioms
of non-distributive field for all z1, z2, z3 ∈ S3:

1) Associativity of addition and multiplication: z1 + (z2 + z3) = (z1 + z2) + z3 = (a1 +a2 +a3) + i(b1 +

b2 + b3) + j(c1 + c2 + c3) and z1 · (z2 · z3) = (z1 · z2) · z3 =
[ r1r2r3
θ1+θ2+θ3
φ1+φ2+φ3

]
2) Commutativity of addition and multiplication: z1 + z2 = z2 + z1 = (a1 + a2) + i(b1 + b2) + j(c1 + c2)

and z1 · z2 = z2 · z1 =
[ r1r2
θ1+θ2
φ1+φ2

]
3) Additive and multiplicative identities: For every z ∈ S3, there exist two different elements 0 and 1

in S3 such that z + 0 = z and z · 1 = z.
4) Additive and multiplicative inverses: For every z ∈ F , ∃ − z ∈ F called the additive inverse of z

such that z + (−z) = 0; and for every z ∈ F , ∃ z−1 or 1/z in F called the multiplicative inverse of
z such that z · z−1 = 1

5) Distributivity of multiplication over addition: In general, this is not true because
z1 · (z2 + z3) 6= (z1 · z2) + (z1 · z3)



7[ r1
θ1
φ1

]
·
([ r2

θ2
φ2

]
+
[ r3
θ3
φ3

])
6=
[ r1r2
θ1+θ2
φ1+φ2

]
+
[ r1r3
θ1+θ3
φ1+φ3

]
.

Thus, 3D numbers given in (1)–(10) satisfy the axioms of non-distributive field, which completes the
proof.

Result 2. Now, we present two important results of using j2 = ±1⇔ j3 = ±j and j2 = ±1 =⇒ j4 = 1
as follows:

ejφ = 1 +
jφ

1!
+

(jφ)2

2!
+

(jφ)3

3!
+

(jφ)4

4!
+

(jφ)5

5!
+ · · ·+ (jφ)n

n!
+ · · · (11)

On using j2 = −1, j3 = −j and j4 = 1, one can easily obtain Euler identity as

ejφ =

[
1− φ2

2!
+
φ4

4!
− φ6

6!
+ · · ·

]
+ j

[
φ

1!
− φ3

3!
+
φ5

5!
− φ7

7!
+ · · ·

]
, (12)

= cos(φ) + j sin(φ). (13)

Interestingly, on using j2 = 1, j3 = j and j4 = 1, we obtain hyperbolic Euler type identity as

ejφ =

[
1 +

φ2

2!
+
φ4

4!
+
φ6

6!
+ · · ·

]
+ j

[
φ

1!
+
φ3

3!
+
φ5

5!
+
φ7

7!
+ · · ·

]
, (14)

= cosh(φ) + j sinh(φ). (15)

Unless otherwise stated, j2 = −1 is considered in the theory presented in this work.

Example. Now, we consider an interesting example that will be useful in obtaining next result as follows:
Let z1 = r1[cos(θ) + i sin(θ)] = r1e

iθ =⇒ z1 =
[
r1
θ
0

]
and z2 = r2[cos(φ) + j sin(φ)] = r2e

jφ =⇒ z1 =[ r2
0
φ

]
, where r1, r2 > 0. Using new multiplication defined in (5) we obtain z1z2 =

[
r1
θ
0

][ r1
0
φ

]
=
[ r1r2

θ
φ

]
.

Using (1) to (4), this can be written as z1z2 = r1r2e
iθejφ = r1r2[cos(φ) cos(θ)+i cos(φ) sin(θ)+j sin(φ)],

and thus,

reiθejφ = r[cos(φ) cos(θ) + i cos(φ) sin(θ) + j sin(φ)]. (16)

Result 3. We observe that if z = a+ib+jc, then ez = eaeibejc = ea(cos(b)+i sin(b))(cos(c)+j sin(c)) =[
ea
0
0

][
1
b
0

][
1
0
c

]
=
[
ea

b
c

]
. Thus, log(ez) = z =⇒ log

([
ea

b
c

])
= a+ ib+jc. Therefore, if we consider any 3D

hypercomplex number z = a+ ib+ jc =⇒ z =
[
r
θ
φ

]
, then log(z) = log(r) + iθ + jφ =⇒ z = reiθejφ,

and it will reduce to the traditional 2D complex number system if c = 0 and hence, φ = 0.

Thus, the proposed 3D hypercomplex number system is a true generalization of the existing 2D
complex number system. To obtain the multiplication of two numbers, we can use Result 3 as follows:
log(z1) = log(r1) + iθ1 + jφ1 and log(z2) = log(r2) + iθ2 + jφ2 and thus, log(z1) + log(z2) = log(z1z2) =

log(r1r2) + i(θ1 + θ2) + j(φ1 + φ2) =⇒ z1z2 =
[ r1r2
θ1+θ2
φ1+φ2

]
. Therefore, we conclude that the addition of

hypercomplex numbers is naturally defined in the Cartesian coordinates and multiplication is naturally
defined in the spherical coordinates through the natural logarithmic addition.

B. Examples of the Proposed 3D Hypercomplex Numbers
Example 1: For a quadratic equation (QE), ax2 +bx+c = 0, a, b, c ∈ R, a 6= 0, there are either two real

roots x = (−b±
√
b2 − 4ac)/2a when (b2−4ac) ≥ 0, or four 3D complex roots, corresponding to the case

((b2−4ac) < 0), which are x = α±iβ and x = α±jβ, where α, β ∈ R and (x−(α+iβ))(x−(α−iβ)) = 0.
Thus, one can obtain x2 + x(−2α) + α2 + β2 = 0, which provides four 3D complex roots of the QE
where α = −b/2a and α2 + β2 = (c/a) =⇒ β2 = (4ac− b2)/4a2 =⇒ β = ±

√
(4ac− b2)/2a.

For example, let us consider the QE x2 + 1 = 0. If x ∈ R, then there are no real roots. If x ∈ S2

(traditionally, x ∈ C), then there are two roots x = ±i where i2 = −1. If x ∈ S3, then there are four roots
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x = ±i,±j as α = 0 and β2 = 1 =⇒ β = ±1. This can be generalized as follows: if x ∈ SM , then there
are 2(M − 1) roots, two in each of the jm imaginary axis, i.e., x = ±j2

m = −1 for m = 1, 2, · · · ,M − 1.
We can conclude the above observation as follows:

Result 4. A quadratic equation can have either two real roots that are minimum or 2(M − 1) complex
roots for x ∈ SM .

Next, we present the fundamental theorem of algebra for reference, and provide its extension for MD
complex numbers.

Theorem 2. (Fundamental Theorem of Algebra). Let p(z) be a polynomial with real coefficients of degree
n ≥ 1. Then, p(z) has n roots.

Since the complex roots of the polynomial p(z) are always in pairs, let us assume that r out of n roots
are real. Then, (n− r) roots are complex such that (n− r) ≥ 0 is an even number. Using this, we can
easily extend the fundamental theorem of algebra as follows:

Theorem 3. (Updated Fundamental Theorem of Algebra). Let p(z) be a polynomial with real coefficients
of degree n ≥ 2, where z ∈ SM with M ≥ 2. Then, p(z) has r real roots and (M − 1)(n− r) complex
roots such that (n−r) ≥ 0 is an even number. Thus, there are a minimum of n real roots, and a maximum
of (M − 1)n complex roots.

Example 2: In this example, we demonstrate that the SR multiplication does not distribute over addition
in this generalized hypercomplex number system. Let us consider z1 = 1, z2 = i, z3 = j, which can be
written using (3), (4), and (9) as

z1 =
[

1
0
0

]
, z2 =

[
1
π/2
0

]
, z3 =

[
1
π/2
π/2

]
=⇒ z1 + z2 =

[ √
2

π/4
0

]
, z1 + z3 =

[ √
2

0
π/4

]
, z2 + z3 =

[ √
2

π/2
π/4

]
.

Therefore, using (5) and (9), one can compute

z1z2 =
[

1
π/2
0

]
, z1z3 =

[
1
π/2
π/2

]
, z2z3 =

[
1
π
π/2

]
, z3(z1 + z2) =

[ √
2

3π/4
π/2

]
, z1z3 + z2z3 =

[
2
π/2
π/2

]
,

and thus, z3(z1 + z2) 6= z1z3 + z2z3.

C. Geometrical Insights into the Generalized Hypercomplex Number System
We note that algebraically, the additional imaginary axis j considered in SM behaves similar to i. For

example, i2 = −1 and j2 = −1. Similarly, one can also show that (1+j)2 = 2j and (1−j)2 = −2j. Similar
identities are satisfied by i. Moreover, this j axis geometrically plays interestingly on the hypercomplex
numbers. If there is a point P = a+ib in the complex x-y plane and if it is multiplied by i, then that point
will rotate counterclockwise by π/2, i.e., new point Q = (a + ib)i = rei(θ+π/2) =

[ r
θ+π/2

0

]
. Similarly,

P = a+ ib =⇒ P =
[
r
θ
0

]
and Q = (a+ ib)j =⇒ Q =

[ r
θ
π/2

]
. Thus in the proposed 3D hypercomplex

number system, one can rotate a point in both θ and φ directions with desired angles.
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D. Generalized (MD) Hypercomplex Number System
The 3D hypercomplex number system can be generalized to the MD hypercomplex number SM system

by using the generalized MD spherical coordinate system as

d0 = r cos(θ3) cos(θ2) cos(θ1),

d1 = r cos(θ3) cos(θ2) sin(θ1), θ1 ∈ (−π, π],

d2 = r cos(θ3) sin(θ2), θ2 ∈ [−π/2, π/2],

d3 = r sin(θ3), θ3 ∈ [−π/2, π/2], (17)

θ1 = tan−1

(
d1

d0

)
, θ2 = tan−1

(
d2√
d2

0 + d2
1

)
, θ3 = tan−1

(
d3√

d2
0 + d2

1 + d2
2

)
,

r =
√
d2

0 + d2
1 + d2

2 + d2
3,

and, in general,

d0 = r cos(θM−1) cos(θM−2) · · · cos(θ2) cos(θ1),

d1 = r cos(θM−1) cos(θM−2) · · · cos(θ2) sin(θ1), θ1 ∈ (−π, π],

d2 = r cos(θM−1) cos(θM−2) · · · sin(θ2), θ2 ∈ [−π/2, π/2],
... (18)

dM−3 = r cos(θM−1) cos(θM−2) sin(θM−3), θM−3 ∈ [−π/2, π/2],

dM−2 = r cos(θM−1) sin(θM−2), θM−2 ∈ [−π/2, π/2],

dM−1 = r sin(θM−1), θM−1 ∈ [−π/2, π/2],

θ1 = tan−1

(
d1

d0

)
, θ2 = tan−1

(
d2√
d2

0 + d2
1

)
, · · · ,

θM−1 = tan−1

(
dM−1√

d2
0 + d2

1 + · · ·+ d2
M−2

)
,

r =
√
d2

0 + d2
1 + · · ·+ d2

M−2 + d2
M−1, (19)

and thus, we write MD hypercomplex number as

z = d0 + j1d1 + · · ·+ jM−2dM−2 + jM−1dM−1, (20)

where j2
m = −1 for m = 1, 2, · · · ,M − 1, and M -tuple representations are

1 =


1
0
0
0
...
0

, j1 =


1
π/2
0
0
...
0

, j2 =


1
π/2
π/2
0
...
0

, j3 =


1
π/2
π/2
π/2

...
0

, · · · , jM−1 =


1
π/2
π/2
π/2

...
π/2

, −1 =


1
π
π
π
...
π

. (21)

To obtain the generalized multiplication of these numbers we write (19) and (20) using SCS in M -tuple
notations as

z1 =


r1
θ1,1
θ2,1

...
θM−1,1

, z2 =


r2
θ1,2
θ2,2

...
θM−1,2

, z3 =


r3
θ1,3
θ2,3

...
θM−1,3

 (22)

and hereby define the scaling and rotative (SR) multiplication (SRM) as

z1z2 =


r1r2

θ1,1+θ1,2
θ2,1+θ2,2

...
θM−1,1+θM−1,2

. (23)
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IV. CONCLUSION

In this work, we have introduced generalized hypercomplex numbers and the associated algebra that
exist for all finite higher dimensions. Interestingly, this framework reduces to the traditional theory of R
and C spaces along with the geometry of the vectors in the corresponding spaces. In order to ensure this
generalizability, an out-of-the-box solution is proposed with 1) non-distributive normed division algebra,
2) a new multiplication operation defined in the spherical coordinate system, which is also backward
compatible to the multiplication operation of numbers in C, and 3) an update on the fundamental theorem
of algebra.
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