References
Aichner, B., Dubbert, D., Kiel, C., Kohnert, K., Ogashawara, I., Jechow, A., . . . Berger, S. A. (2021). Spatial and seasonal patterns of water isotopes in northeastern German lakes. Earth Syst. Sci. Data Discuss., 2021 , 1-24. doi:10.5194/essd-2021-315
Aichner, B., Hilt, S., Périllon, C., Gillefalk, M., & Sachse, D. (2017). Biosynthetic hydrogen isotopic fractionation factors during lipid synthesis in submerged aquatic macrophytes: effect of groundwater discharge and salinity. Organic Geochemistry, 113 , 10-16.
Aichner, B., Makhmudov, Z. M., Rajabov, I., Zhang, Q., Pausata, F. S. R., Werner, M., . . . Mischke, S. (2019). Hydroclimate in the Pamirs Was Driven by Changes in Precipitation Evaporation Seasonality Since the Last Glacial Period. Geophysical Research Letters, 46 , 13972-13983.
Aron, P. G., Levin, N. E., Beverly, E. J., Huth, T. E., Passey, B. H., Pelletier, E. M., . . . Yarian, D. A. (2021). Triple oxygen isotopes in the water cycle. Chemical Geology, 565 . doi:10.1016/j.chemgeo.2020.120026
Bachor, A. (2005). Nährstoff- und Schwermetallbilanzen der Küstengewässer Mecklenburg-Vorpommerns unter besonderer Berücksichtigung ihrer Sedimente. Landesamt für Umwelt, Naturschutz und Geologie. Greifswald.
Barrie, G. M., Worden, R. H., Barrie, C. D., & Boyce, A. J. (2015). Extensive evaporation in a modern temperate estuary: Stable isotopic and compositional evidence. Limnology and Oceanography, 60 (4), 1241-1250. doi:10.1002/lno.10091
Benetti, M., Reverdin, G., Aloisi, G., & Sveinbjornsdottir, A. (2017). Stable isotopes in surface waters of the Atlantic Ocean: Indicators of ocean-atmosphere water fluxes and oceanic mixing processes.Journal of Geophysical Research-Oceans, 122 (6), 4723-4742. doi:10.1002/2017jc012712
Birr, H.-D. Hydrographische Charakteristik und Umweltprobleme der mecklenburg-vorpommerschen Boddengewässer. Greifswalder Geographische Arbeiten 14 , 111-128.
Birr, H.-D. (1988). Zu den Strömungsverhältnissen des Strelasundes. .Beiträge zur Meereskunde, 58 , 3-8.
Bittar, T. B., Berger, S. A., Birsa, L. M., Walters, T. L., Thompson, M. E., Spencer, R. G. M., . . . Brandes, J. A. (2016). Seasonal dynamics of dissolved, particulate and microbial components of a tidal saltmarsh-dominated estuary under contrasting levels of freshwater discharge. Estuarine Coastal and Shelf Science, 182 , 72-85. doi:10.1016/j.ecss.2016.08.046
Bowen, G. J., & Revenaugh, J. (2003). Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research, 39 (10). doi:10.1029/2003wr002086
Brennan, S. R., Cline, T. J., & Schindler, D. E. (2019). Quantifying habitat use of migratory fish across riverscapes using space-time isotope models. Methods in Ecology and Evolution, 10 (7), 1036-1047. doi:10.1111/2041-210x.13191
Chamberlayne, B. K., Tyler, J. J., & Gillanders, B. M. (2021). Controls Over Oxygen Isotope Fractionation in the Waters and Bivalves (Arthritica helmsi) of an Estuarine Lagoon System. Geochemistry Geophysics Geosystems, 22 (6). doi:10.1029/2021GC009769
Chubarenko, B., Chubarenko, I., & Baudler, H. (2005). Comparison of Darss-Zingst Bodden Chain and Vistula Lagoon (Baltic Sea) in a view of hydrodynamic numerical modelling. Baltica, 18 .
Correns, M. (1977). Grundzüge von Hydrographie und Wasserhaushalt der Boddengewässer an der Küste der Deutschen Demokratischen Republik.Acta Hydrochimica Et Hydrobiologica, 5 , 517-526.
Correns, M., & Jäger, F. (1979). Beiträge zur Hydrographie der Nordrügenschen Bodden. I. Einführung in das Untersuchungsgebiet, Wasserstandsverhältnisse und Wasserhaushalt. Acta Hydrophysica 23 , 149-177.
Craig, H. (1961). Isotopic Variations in Meteoric Waters. Science, 133 (346), 1702-&. doi:DOI 10.1126/science.133.3465.1702
Craig, H., & Gordon, L. I. (1965). Deuterium and oxygen 18 variations in the ocean and marine atmosphere . In: Proceedings of a conference on stable isotopes in oceanographic studies and palaeo temperatures. Spoleto Italy, pp 9–130.
Cyberski, J., Wróblewski, A., & Stewart, J. (2000). Riverine water inflows and the Baltic Sea water volume 1901-1990. Hydrol. Earth Syst. Sci., 4 (1), 1-11. doi:10.5194/hess-4-1-2000
Dansgaard, W. (1964). Stable Isotopes in Precipitation. Tellus, 16 (4), 436-468.
Dietzel, M., Tang, J., Leis, A., & Köhler, S. J. (2009). Oxygen isotopic fractionation during inorganic calcite precipitation ― Effects of temperature, precipitation rate and pH. Chemical Geology, 268 (1), 107-115. https://doi.org/10.1016/j.chemgeo.2009.07.015
Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J., & Lohmann, K. C. (2005). Spatial distribution and seasonal variation in O-18/O-16 of modern precipitation and river water across the conterminous USA.Hydrological Processes, 19 (20), 4121-4146. doi:10.1002/hyp.5876
Ehhalt, D. H. (1969). On the deuterium-salinity relationship in the Baltic Sea. Tellus A, 21 , 429-435.
Frew, R. D., Dennis, P. F., Heywood, K. J., Meredith, M. P., & Boswell, S. M. (2000). The oxygen isotope composition of water masses in the northern North Atlantic. Deep-Sea Research Part I-Oceanographic Research Papers, 47 (12), 2265-2286. doi:10.1016/S0967-0637(00)00023-6
Frohlich, K., Grabczak, J., Rôwski, K. (1988). Deuterium and oxygen-18 in the baltic sea. Chemical Geology: Isotope Geoscience Section, 72 , 77-83.
Funkel, C. (2004). Jeschke, Lebrecht; Lenschow, Uwe; Zimmermann, Horst (Red.): Die Naturschutzgebiete in Mecklenburg-Vorpommern.Naturschutz im Land Sachsen-Anhalt, 41 (1), 60-62.
Gat, J. R., Gonfiantini, R., & (Eds). (1981). Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. (Vol. 210). Vieanna: IAEA.
Gocke, K., Rheinheimer, G., & Schramm, W. (2003).Hydrographische, chemische und mikrobiologische Untersuchungen im Längsprofil der Schlei . Schriften des Naturwissenschaftlichen Vereins für Schleswig-Holstein, 68, 31 - 62.
Grupe, G., Heinrich, D., & Peters, J. (2009). A brackish water aquatic foodweb: trophic levels and salinity gradients in the Schlei fjord, Northern Germany, in Viking and medieval times. Journal of Archaeological Science, 36 , 2125-2144. doi:10.1016/j.jas.2009.05.011
Häggi, C., Chiessi, C. M., & Schefuß, E. (2015). Testing the D / H ratio of alkenones and palmitic acid as salinity proxies in the Amazon Plume. Biogeosciences, 12 , 7239-7249.
Halder, J., Terzer, S., Wassenaar, L. I., Araguas-Araguas, L. J., & Aggarwal, P. K. (2015). The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research. Hydrology and Earth System Sciences, 19 (8), 3419-3431. doi:10.5194/hess-19-3419-2015
Harwood, A. J. P., Dennis, P. F., Marca, A., Pilling, G. M., & Millner, R. S. (2008). The oxygen isotope composition of water masses within the North Sea. Estuarine Coastal and Shelf Science, 78 , 353-359.
He, D., Nemiah Ladd, S., Saunders, C. J., Mead, R. N., & Jaffé, R. (2020). Distribution of n-alkanes and their δ2H and δ13C values in typical plants along a terrestrial-coastal-oceanic gradient.Geochimica Et Cosmochimica Acta .
Hübel, H., & Dahlke, S. (1999). Die Nordrügenschen Boddengewässer-Entwicklung in Vergangenheit. Gegenwart und Zukunft.Bodden, 7 , 137-156.
Hübel, H., Wolff, C., & Meyer-Reil, L.-A. (1998). Salinity, Inorganic Nutrients, and Primary Production in a Shallow Coastal Inlet in the Southern Baltic Sea (Nordrügenschen Bodden) Results from Long-Term Observations (1960–1989). International Review of Hydrobiology, 83 (5-6), 479-499. https://doi.org/10.1002/iroh.19980830516
Ingram, B. L., Conrad, M. E., & Ingle, J. C. (1996). Stable isotope and salinity systematics in estuarine waters and carbonates: San Francisco Bay. Geochimica Et Cosmochimica Acta, 60 (3), 455-467. doi:10.1016/0016-7037(95)00398-3
Jasechko, S., Kirchner, J. W., Welker, J. M., & McDonnell, J. J. (2016). Substantial proportion of global streamflow less than three months old. Nature Geoscience, 9 (2), 126-129. doi:10.1038/ngeo2636
Jefanova, O., Mazeika, J., Petrpaius, R., Skuratovj , Paskauskas, R., Martma, T., . . . Ezhova, E. (2020). Baltic Sea water tritium and stable isotopes in 2016-2017. Isotopes in Environmental and Health Studies, 56 , 193 - 204.
Ladd, S. N., & Sachs, J. P. (2015). Hydrogen isotope response to changing salinity and rainfall in Australian mangroves. Plant, cell & environment, 38 12 , 2674-2687.
Ladd, S. N., & Sachs, J. P. (2017). 2 H/ 1 H fractionation in lipids of the mangrove Bruguiera gymnorhiza increases with salinity in marine lakes of Palau. Geochimica Et Cosmochimica Acta, 204 , 300-312.
Lampe, R. (1999). The Odra Estuary as a filter and transformation area.Acta Hydrochimica Et Hydrobiologica, 27 , 292-297.
Leduc, G., Sachs, J. P., Kawka, O. E., & Schneider, R. R. (2011). Holocene changes in eastern equatorial Atlantic salinity as estimated by water isotopologues. Earth and Planetary Science Letters, 362 , 151-162.
Li, H., Liu, X., Tripati, A., Feng, S., Elliott, B., Whicker, C., . . . Kelley, A. M. (2020). Factors controlling the oxygen isotopic composition of lacustrine authigenic carbonates in Western China: implications for paleoclimate reconstructions. Scientific Reports, 10 (1), 16370. doi:10.1038/s41598-020-73422-4
LLUR. (2022). Discharge data Füsinger Au 2019-2021 . Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein, Flintbek. Retrieved from: https://opendata.schleswig-holstein.de/dataset/abfluss-pegel-fusing-fusinger-au
LLUR. (2001). Ergebnisse langjähriger Wasserunteruntersuchungen in der Schlei. Eine Informations- und Planungsgrundlage. Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein, Flintbek.
Maloszewski, P., Rauert, W., Trimborn, P., Herrmann, A., & Rau, R. (1992). Isotope Hydrological Study of Mean Transit Times in an Alpine Basin (Wimbachtal, Germany). Journal of Hydrology, 140 (1-4), 343-360. doi:10.1016/0022-1694(92)90247-S
Matta, M. E., Black, B. A., & Wilderbuer, T. K. (2010). Climate-driven synchrony in otolith growth-increment chronologies for three Bering Sea flatfish species. Marine Ecology Progress Series, 413 , 137-145. doi:10.3354/meps08689
McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M., & Seibert, J. (2005). The role of topography on catchment-scale water residence time. Water Resources Research, 41 (5). doi:10.1029/2004wr003657
Meer, M. T. J., Baas, M., Rijpstra, W. I. C., Marino, G., Rohling, E. J., Damsté, J. S. S., & Schouten, S. (2007). Hydrogen isotopic compositions of long-chain alkenones record freshwater flooding of the Eastern Mediterranean at the onset of sapropel deposition. Earth and Planetary Science Letters, 262 , 594-600.
Mohan, J. A., & Walther, B. D. (2015). Spatiotemporal Variation of Trace Elements and Stable Isotopes in Subtropical Estuaries: II. Regional, Local, and Seasonal Salinity-Element Relationships.Estuaries and Coasts, 38 (3), 769-781. doi:10.1007/s12237-014-9876-4
Mohrholz, V. (2018). Baltic saline barotropic inflows (SBI) 1887 - 2018. dataset 2019-2021. doi: 10.12754/data-2018-0004
Mohrholz, V. (2018). Major Baltic Inflow Statistics - Revised.Frontiers in Marine Science . 5 , 384. doi: 10.3389/fmars.2018.00384
Ogrinc, N., Kanduc, T., Stichler, W., & Vreca, P. (2008). Spatial and seasonal variations in delta O-18 and delta D values in the River Sava in Slovenia. Journal of Hydrology, 359 (3-4), 303-312. doi:10.1016/j.jhydrol.2008.07.010
Orlowski, N., Kraft, P., Pferdmenges, J., & Breuer, L. (2016). Exploring water cycle dynamics by sampling multiple stable water isotope pools in a developed landscape in Germany. Hydrology and Earth System Sciences, 20 (9), 3873-3894. doi:10.5194/hess-20-3873-2016
Patterson, W. P., Smith, G. R., & Lohmann, K. C. (1993). Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. GMS, 78 , 191-202.
Price, R. M., Skrzypek, G., Grierson, P. F., Swart, P. K., & Fourqurean, J. W. (2012). The use of stable isotopes of oxygen and hydrogen to identify water sources in two hypersaline estuaries with different hydrologic regimes. Marine and Freshwater Research, 63 (11), 952-966. doi:10.1071/Mf12042
Quay, P. D., Wilbur, D., Richey, J. E., Devol, A. H., Benner, R., & Forsberg, B. R. (1995). The 18O:16O of dissolved oxygen in rivers and lakes in the Amazon Basin: Determining the ratio of respiration to photosynthesis rates in freshwaters. Limnology and Oceanography, 40 (4), 718-729. https://doi.org/10.4319/lo.1995.40.4.0718
Reckerth, A., Stichler, W., Schmidt, A., & Stumpp, C. (2017). Long-term data set analysis of stable isotopic composition in German rivers.Journal of Hydrology, 552 , 718-731. doi:10.1016/j.jhydrol.2017.07.022
Richter, W. v., & Kowski, P. (1990). Deuterium and Oxygen-18 in Surface Waters of GDR draining to the Baltic Sea. Isotopes in Environmental and Health Studies, 26 , 569-573.
Rodgers, P., Soulsby, C., Waldron, S., & Tetzlaff, D. (2005). Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment.Hydrology and Earth System Sciences, 9 (3), 139-155. doi:10.5194/hess-9-139-2005
Sachs, J. P., & Schwab, V. F. (2011). Hydrogen isotopes in dinosterol from the Chesapeake Bay estuary. Geochimica Et Cosmochimica Acta, 75 , 444-459.
Schiewer, U. (2008). Ecology of Baltic coastal waters . Ecological Studies 147. Springer, Berlin.
Schiewer, U., & Gocke, K. (1996). Ökologie der Bodden und Förden. In G. Rheinheimer (Ed.), Meereskunde der Ostsee. (pp. 216-221.): Springer, Berlin.
Schouten, S., Ossebaar, J., Schreiber, K., Kienhuis, M. V. M., Langer, G., Benthien, A., & Bijma, J. (2006). The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica. Biogeosciences, 3 , 113-119.
Schulz, H. (1979). Ein numerisches Modell des Wasserhaushalts und der Wasserbeschaffenheit in der Ostseebucht Schlei. Senckenbergiana maritima, 11 , 175-192.
Schumann, R., Baudler, H., Glass, Ä., Dümcke, K., & Karsten, U. (2006). Long-term observations on salinity dynamics in a tideless shallow coastal lagoon of the Southern Baltic Sea coast and their biological relevance. Journal of Marine Systems, 60 , 330-344.
Schwarzer, K., Ricklefs, K., Bartholomä, A., & Zeiler, M. (2008). Geological development of the North Sea and the Baltic Sea. Die Küste, 74 , 1-17.
Seiß, G. (2014). Impact of Sea Level Change on Inner Coastal Waters of the Baltic Sea. Bundesanstalt für Wasserbau, Karlsruhe.
Sklash, M. G., Farvolden, R. N., & Fritz, P. (1976). Conceptual-Model of Watershed Response to Rainfall, Developed through Use of Oxygen-18 as a Natural Tracer. Canadian Journal of Earth Sciences, 13 (2), 271-283. doi:10.1139/e76-029
STALU. (2022). Discharge rates of Mecklenburg-Vorpommern rivers 2019-2021. Staatliche Ämter für Landwirtschaft und Umwelt Mecklenburg-Vorpommern, Stralsund .
Swart, P. K., & Price, R. (2002). Origin of salinity variations in Florida Bay. Limnology and Oceanography, 47 (4), 1234-1241. doi:10.4319/lo.2002.47.4.1234
Torniainen, J., Lensu, A., Vuorinen, P. J., Sonninen, E., Keinänen, M., Jones, R. I., . . . Kiljunen, M. (2017). Oxygen and carbon isoscapes for the Baltic Sea: Testing their applicability in fish migration studies.Ecology and Evolution, 7 , 2255 - 2267.
Trueman, C. N., Mackenzie, K. M., & Palmer, M. R. (2012). Identifying migrations in marine fishes through stable-isotope analysis.Journal of fish biology, 81 (2), 826-847. doi:10.1111/j.1095-8649.2012.03361.x
WSV. (2022). Baltic Sea water level data. Wasserstraßen und Schifffahrtsverwaltung des Bundes. Lübeck.
Zanden, H. B. V., Soto, D. X., Bowen, G. J., & Hobson, K. A. (2016). Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies. Frontiers in Ecology and Evolution, 4 .