References
Allainguillaume, J., Alexander, M., Bullock, J. M., Saunders, M., Allender, C. J. G., King, C. S. F., & Wilkinson, M. J. (2010). Fitness of hybrids between rapeseed (Brassica napus ) and wildBrassica rapa in natural habitats. Molecular Ecology ,15 (4), 1175-1184. https://doi.org/10.1111/j.1365294X.2006.02856.x
Burke, J. M., & Rieseberg, L. H. (2003). Fitness effects of transgenic disease resistance in sunflowers. Science , 300 (5623), 1250.
Devos, Y., Ortiz-García, S., Hokanson, K. E., & Raybould, A. (2018). Teosinte and maize × teosinte hybrid plants in Europe-Environmental risk assessment and management implications for genetically modified maize. Agriculture Ecosystems and Environment , 259 (1), 19-27. https://doi.org/10.1016/j.agee.2018.02.032
Ellstrand, N. C., & Holfman, C. A. (1990). Hybridization as an avenue of escape for engineered genes. BioScience , 40 (6), 438-442. https://doi.org/10.2307/1311390
Fehr, W. R., Caviness, C. E., Burmood, D. T., & Pennington, J. S. (1971). Stage of development description for soybeans, Glycine max (L.) Merrill. Crop Science , 11 , 929-931. https://doi.org/10.2135/cropsci1971.0011183X001100060051x
Graeber, K., Nakabayashi, K., Miatton, E., Leubner-Metzger, G., & Soppe, W. J. J. (2012). Molecular mechanisms of seed dormancy.Plant Cell and Environment , 35 , 1769-1786. https://doi.org/10.1111/j.13653040.2012.02542.x
Guan, Z. J., Zhang, P. F., Wei, W., Mi, X. C., Kang, D. M., & Liu, B. (2015). Performance of hybrid progeny formed between genetically modified herbicide-tolerant soybean and its wild ancestor. Aob Plants 7, plv121. https://doi.org/10.1093/aobpla/plv121
Hails, R. S., & Morley, K. (2005). Genes invading new populations: a risk assessment perspective. Trends in Ecology and Evolution ,20 (5), 245-252. https://doi.org/10.1016/j.tree.2005.02.006
Halfhill, M. D., Sutherland, J. P., Moon, H. S., Poppy, G. M., Warwick, S. I., Weissinger, A. K., Rufty, T. W., Raymer, P. L., & Stewart, C. N. (2005). Growth, productivity, and competitiveness of introgressed weedyBrassica rapa hybrids selected for the presence of Btcry1AC and gfp transgenes. Molecular Ecology ,14 (10), 3177-3189. https://doi.org/10.1111/j.1365-294X.2005.02649.x
ISAAA (The International Service for the Acquisition of Agribiotech Applications). (2019). Global status of commercialized biotech/GM crops: 2018. China Biotechnology , 39 (8), 1-6.
Kamthan, A., Chaudhuri, A., Kamthan, M., & Datta, A. (2016). Genetically modified (GM) crops: milestones and new advances in crop improvement. Theoretical and Applied Genetics , 129 (9), 1639-1655. https://doi.org/10.1007/s00122-016-2747-6
Kan, G. Z., Tong, Z. F., Hu, Z. B., Ma, D. Y., Zhang, G. Z., & Yu, D. Y. (2015). Fitness of hybrids between wild soybeans (Glycine soja) and the glyphosate-resistant transgenic soybean (Glycine max). Soybean Science , 034 (2), 177-184.
Kubo, A., Aono, M., Nakajima, N., Nishizawa, T., Tamaoki, M., & Saji, H. (2013). Characterization of hybrids between wild and genetically modified glyphosate-tolerant soybeans. Plant Biotechnology ,30 (4), 335-345. https://doi.org/10.5511/plantbiotechnology.13.0314a
Langevin, S. A., Clay, K., & Grace, J. B. (1990). The incidence and effects of hybridization between cultivated rice and its related weed red rice (Oryza sativa L.). Evolution , 44 (4), 1000-1008. https://doi.org/10.1111/j.1558-5646.1990.tb03820.x
Lazebnik, J., Dicke, M., Braak, C. T., & Loon-Van, J. J. A. (2017). Biodiversity analyses for risk assessment of genetically modified potato. Agriculture Ecosystems and Environment , 249 , 196-205. https://doi.org/10.1016/j.agee.2017.08.017
Liu, B., Xue, K., Liu, L. P., Shen, W. J., & Guo, H. (2020). Research on the gene flow from transgenic EPSPS+PAT soybean S4003.14 to non-transgenic soybeans. Journal of Ecology and Rural Environment , 36 (7), 367-373.
Lu, B. R. (2008). Transgene escape from GM crops and potential biosafety consequences: an environmental perspective. International Centre for Genetic Engineering and Biotechnology, Collection of Biosafety Reviews 4, 66-141.
Lu, B. R., & Snow, A. A. (2005). Gene flow from genetically modified rice and its environmental consequences. Bioscience 55 (8), 669-678. https://doi.org/10.1641/00063568(2005) 055[0669: GFFFGMR]2.0.CO;2
Lu, B. R., & Xia, H. (2011). Environmental biosafety of transgenic plants: research and assessment of transgene escape and its potential ecological impacts. Chinese Science Bulletin , 23 (2), 186-194.
Mercer, K. L., Andow, D. A., Wyse, D. L., & Shaw, R. G. (2007). Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower. Ecology Letters , 10 (5), 383-393. https://doi.org/10.1111/j.1461-0248.2007.01029.x
Mizuguti, A., Yoshimura, Y., & Matsuo, K. (2009). Flowering phenologies and natural hybridization of genetically modified and wild soybeans under field conditions. Weed Biology and Management , 9(1), 93-96. https://doi.org/10.1111/j.1445-6664.2008.00324.x
Moon, H. S., Halfhill, M. D., Good, L. L., Raymer, P. L., & Stewart, C. N. (2007). Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac andgfp genes. Plant Cell Reports , 26 (7), 1001-1010. https://doi.org/10.1007/s00299-007-0328-5
Nakayama, Y., & Yamaguchi, H. (2002). Natural hybridization in wild soybean (Glycine max ssp. soja) by pollen flow from cultivated soybean (Glycine max ssp. max) in a designed population.Weed Biology and Management , 2 (1), 25-30. https://doi.org/10.1046/j.1445-6664.2002.00043.x
Peng, C., Yan, K., Shao, H., & Zhao, S. J. (2013). Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja ) from yellow river delta, China: photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS One , 8 , e83227. http://dx.doi.org/10.1371/journal.pone.0083227
Romeis, J., Bartsch, D., Bigler, F., Candolfi, M. P., Gielkens, M. M. C., Hartley, S. E., Hellmich, R. L., Huesing, J. E., Jepson, P. C., & Layton. R. (2008). Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nature Biotechnology , 26 , 203-208. http://dx.doi.org/10.1038/nbt1381
Snow, A. A. (2002). Transgenic crops-why gene flow matters. Nature Biotechnology , 20 , 542.
Snow, A. A., Moran-Palma, P., Rieseberg, L. H., Wszelaki, A., & Seiler, G. J. (1998). Fecundity, phenology, and seed dormancy of F1 wild-crop hybrids in sunflower (Helianthus annuus , Asteraceae). American Journal of Botany , 85 (6), 794-801. https://doi.org/10.2307/2446414
Snow, A. A., Pilson, D., Rieseberg, L. H., Paulsen, M. J., Pleskac, N., Reagon, M., Wolf, D. E., & Selbo, S. M. (2003). A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers.Ecological Applications , 13 (2), 279-286. https://doi.org/10.1890/10510761(2003)013[0279: ABTRHA]2.0.CO;2
Song, X. L., Wei, Z. H., Zuo, J., Huangfu, C. H., & Qiang, S. H. (2010). Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B. juncea var. gracilis.Theoretical and Applied Genetics , 120 (8), 1501-1510. https://doi.org/10.1007/s00122-010-1271-3
Song, Z. P., Lu, B. R., Bin, W., & Chen, J. K. (2004). Fitness estimation through performance comparison of F1 hybrids with their parental species Oryza rufipogon and O. sativa . Annals of Botany, 3 , 311-316. https://doi.org/10.1093/aob/mch036
Stewart, C., All, J. N., Raymer, P. L., & Ramachandran, S. (2010). Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Molecular Ecology , 6 (8), 773-779. https://doi.org/10.1046/j.1365-294X.1997.00239.x
Sumarji, & Suparno. (2017). Detektion soybean (Glycine Max L Merrill) transgenic GTS 40-3-2 herbiside resistant active based glyphosate PCR using. International Journal of Applied Environmental Sciences , 12 (4), 563-576.
Wang, K. J., & Li, X. H. (2011). Inter specific gene flow and the origin of semi-wild soybean revealed by capturing the natural occurrence of introgression between wild and cultivated soybean populations.Plant Breeding , 130 (2), 117-127. https://doi.org/10.1111/j.1439-0523.2010.01815.x
Wang, K. J., & Li, X. H. (2012). Fundamental strategies and methods for collection of wild soybean germplasm resources in China. Journal of Plant genetic resources , 013 (3), 325-334.
Weis, A. E. (2005). Assessing the ecological fitness of recipients. In G. M. Poppy & M. J. Wilkinson (eds), Gene flow from GM plants (pp. 143-168). Oxford, Blackwell Publishing.
Yang, X., Xia, H., Wang, W., Wang, F., Su, J., Snow, A. A., & Lu, B. R. (2011). Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced-generations of crop-weed hybrids of rice.Evolutionary Applications , 4 , 672-684. https://doi.org/10.1111/j.1752-4571.2011.00190.x
Yook, M. J., Park, H. R., Zhang, C. J., Lim, S. H., & Kim, D. S. (2020). Environmental risk assessment of glufosinate-resistant soybean by pollen-mediated gene flow under field conditions in the region of the genetic origin. Science of the Total Environment , 762 (2), 143073. https://doi.org/10.1016/j.scitotenv.2020.143073
Zhu, B., Lawrence, J. R., Warwick, S. I., Mason, P., & Stewart, C.N. (2004). Stable Bacillus thuringiensis (Bt) toxin content in inter specific F1 and backcross populations of wildBrassica rapa after Bt gene transfer. Molecular Ecology , 13 (1), 237-241. https://doi.org/10.1046/j.1365-294X.2004.02018.x