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Abstract. The aim of this article is to investigate the well-posedness and stability problems of the

so-called Kawahara equation under the presence of an interior delayed damping. The system is shown to

be well-posed. Furthermore, we prove that the trivial solution is exponentially stable in spite of the delay

effect. Specifically, local and semi-global stability results are established according to the properties of

the spatial distribution of the delay term.
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1. Introduction and Preliminaries5

The main concern of this article is to deal with the well-posedness and stability of an initial-6

boundary-value problem related to a fifth order dispersive partial differential equation (PDE) with7

localized time-delayed damping8

(1.1)



∂tu(x, t) + ∂3
xu(x, t)− η∂5

xu(x, t) + u(x, t)∂xu(x, t) + α∂xu(x, t)

+a(x)u(x, t) + b(x)u(x, t− τ) = 0, (x, t) ∈ Ω× (0,∞),

u(0, t) = u(`, t) = ∂xu(0, t) = ∂xu(`, t) = ∂2
xu(`, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = z0(x, t), x ∈ Ω, t ∈ T ,

where u represents the amplitude of the dispersive wave, ` > 0, Ω = (0, `), α ≥ 0 and η > 0 are physical9

parameter of the dispersive equation. In turn, τ > 0 is the time-delay and T = (−τ, 0), while u0 and10

z0 are initial conditions. Finally, a(·) and b(·) are spatial distributions of the actuator and satisfy the11

following properties:12

A1: a(·) and b(·) are nonnegative functions of L∞(Ω) and b is positive on an open subset13

ω of Ω, that is, b(x) ≥ b0 a.e. in ω, for some positive constant b0. In turn, a is positive14

on an open subset ω̂.15

The PDE in (1.1) is known in literature as Kawahara equation and commonly used to model several16

physical phenomena [18, 19]. As a matter of fact, the equation is a special case of the well-known Benney-17

Lin equation derived by Benney [3] and later by Lin [22]. With regard to the physical interpretation18

of the model, Kawahara equation may model a one-dimensional propagation of small-amplitude long19

waves in various problems of plasma physics and fluid dynamics [2, 18, 19, 32].20

Concerning the mathematical endeavor, the Kawahara equation without delay has been the subject21

of numerous studies depending whether the spatial variable x belongs to the whole real line [9, 16] or22

half-line [10, 21] or a periodic domain [15, 17]. In addition of that, there exists a rich literature about23

the Kawahara equation in a non-periodic bounded domain [6, 10, 11, 12, 20, 21, 34], where the existence24
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and uniqueness of solutions to the equation (without delay) along with its asymptotic behavior are1

proven. We also note that the equation has been studied in some papers from the control theory point2

of view [8, 13, 37, 38], whereas its generalized form is analysed in [39].3

The novelty of this article is to take into account the time-delay phenomenon in the Kawahara4

system (1.1). To be more precise, the damping control proposed in [34] is supposed to have a delay.5

This idea is used for the Korteweg-de Vries equation [33]. Of course, the presence of a time-delay in the6

equation is motivated by the fact that in control systems, the sensors and actuators act under a delay.7

Thereby, it is crucial to study the impact of such a delay on the performance of the control proposed in8

[34] and attempt to eliminate or nullify any eventual negative effect of its presence.9

The main contribution of the current work is to show that the Kawahara equation remains stable10

despite the presence of a localized interior damping. Such a desirable outcome is shown under two11

different circumstances of the spatial distribution function b. This result improves that of [34], where12

no delay occurs in the equation and also that of [33], where the equation is of third order. More13

importantly, unlike [33], we manage to obtain our stability results (see Theorem 2 and Theorem 3)14

without any smallness condition on the length `.15

Now, we briefly describe the plan of the paper. In section 2, we evoke an additional assumption A216

and prove that the problem (1.1) is well-posed by combining semigroups theory and fixed point method.17

Then, two stability results are established. The first one is based on the energy method, while the18

second invokes an observability inequality and compactness arguments [29, 27]. Section 3 is devoted to19

the analysis of (1.1) with a sole assumption A1. Following a perturbation argument [26], well-posedness20

and stability findings are shown but at the expense of a condition on the parameters η and ` and the21

spatial distribution b of the delayed term.22

2. The problem (1.1) with ω ⊂ ω̂23

In addition of the assumption A1, we shall assume in this section that24

A2: There exists a positive constant k such that a(x) ≥ k + b(x) a.e. in ω.25

The energy of the system (1.1) takes the following form:26

(2.1) E(t) =

∫
Ω
u2(x, t) dx+ τ

∫
ω

∫ 1

0
ξ(x)(∂xu)2(x, t− τρ) dρdx,

where ξ is a nonnegative function of L∞(Ω), positive on ω and satisfies27

(2.2) b(x) + k ≤ ξ(x) ≤ 2a(x)− b(x)− k, a.e. in ω,

which is plausible thanks to A2.28

Throughout this paper, L2(D) denotes the Hilbert space of square integrable scalar functions on

an open set D of Rn, whose norm will be denoted by ‖ · ‖. Then, we consider the Hilbert spaces

H := L2(Ω)× L2(ω × (0, 1)), H := L2(Ω)× L2(ω × T ),

respectively equipped with the following inner product norms:29

(2.3)


‖(u, z)‖2H = ‖u‖2 + τ

∫
ω

∫ 1

0
ξ(x)z2(x, ρ) dρdx,

‖(u, z)‖2H = ‖u‖2 +

∫
Ω

∫
T
ξ(x)z2(x, s) dsdx.
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Obviously, the equivalence of the norms defined above and the standard ones is guaranteed by means1

of the assumptions A1-A2 and (2.2).2

In turn, we define, for T > 0, the Banach space

M = C
(

[0, T ]; L2(Ω)
)
∩ L2

(
0, T ; H2

0 (Ω)
)
,

endowed with the norm:

‖ · ‖2M = ‖ · ‖2C([0,T ];L2(Ω)) + ‖ · ‖2L2(0,T ;H2
0 (Ω)).

Now, we briefly present an overview of this paper. In Section 2.1, we consider the system (1.1)3

under the assumptions A1-A2. The well-posedness of the problem is established in H. The proof4

relies on the Fixed Point Theorem. Then, two exponential stability results of the trivial solution are5

obtained: the first one is local and its proof is based on the Lyapunov method, whereas the second one6

is semi-global and the proof invokes an observability result.7

The Wirtinger’s inequalities [14] (see also [Lemma 2.2 and Lemma 2.3, p. 838-839][35]):8

(2.4) ‖∂ixϕ‖ ≤ (`/π)‖∂i+1
x ϕ‖, ∀ϕ ∈ H i+1

0 (Ω), i = 0, 1.

2.1. Well-posedness of the problem (1.1). This subsection is devoted to the local well-posedness9

result of the dispersive system (1.1).10

2.1.1. The linearized problem. First, we consider the linear system associated to (1.1):11

(2.1)



∂tu(x, t) + ∂3
xu(x, t)− η∂5

xu(x, t) + α∂xu(x, t) + a(x)u(x, t)

+b(x)u(x, t− τ) = 0, (x, t) ∈ Ω× (0,∞),

u(0, t) = u(`, t) = ∂xu(0, t) = ∂xu(`, t) = ∂2
xu(`, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = z0(x, t), x ∈ Ω, t ∈ T .

Throughout this paper, we shall adopt the following notation: Given a function f (resp. g) on Ω12

(resp. ω), we denote by f̂ (resp. g̃) the restriction of f on ω (resp. the extension of g by zero outside13

ω).14

Whereupon, we define z(x, ρ, t) := û(x, t− τρ), for (x, ρ, t) ∈ ω× (0, 1)× (0,∞) [36] (see also [24]),15

which satisfies16

(2.2) τ∂tz(x, ρ, t) + ∂ρz(x, ρ, t) = 0, (x, ρ, t) ∈ ω × (0, 1)× (0,∞).

Then, the system (2.1) can be formulated in H as follows:17

(2.3)

{
Φt(t) = AΦ(t),

Φ(0) = Φ0,

in which Φ = (u, z), Φ0 =
(
u0, ẑ0(·, τ ·)

)
and A is the operator defined by:18

(2.4)

D(A) =
{

(u, z) ∈ H;u ∈ H5(Ω) ∩H2
0 (Ω), z ∈ L2

(
ω,H1(Ω)

)
; ∂2
xu(`) = 0, z(x, 0) = û(x) in ω

}
,

A(u, z) =

(
η∂5

xu− ∂3
xu− α∂xu− a(·)u− b(·)z̃(·, 1),−1

τ
∂ρz

)
, for any (u, z) ∈ D(A).

In the sequel, C denotes a positive constant that may depend on T , α, η, b0, k, ‖a‖∞ and ‖b‖∞ but19

independent of the initial data Φ0.20
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The well-posedness and regularity estimates related to (2.1) are stated below:1

Proposition 1. Assume that the conditions A1-A2 hold. Then, we have:2

(i) The linear operator A defined by (2.4) is densely defined in H and generates a C0-semigroup of3

contractions etA. Thereby, given Φ0 ∈ D(A), the system (2.3) has a unique classical solution Φ(·) ∈4

C((0,∞);D(A))∩C1((0,∞);H). In turn, the system (2.3) admits a mild solution Φ(·) ∈ C((0,∞);H),5

whenever Φ0 ∈ H.6

(ii) Given Φ0 ∈ H, we have the following estimates:7

(2.5)



‖z(·, 1, ·)‖2L2(ω×(0,T )) ≤ C‖Φ0‖2H ,

‖∂2
xu(0, ·)‖2L2(0,T ) + ‖

√
a(·)u‖2L2(0,T ;L2(Ω)) ≤ C‖Φ0‖2H ,

‖ẑ0(·,−τ ·)‖2L2(ω×(0,1)) ≤ C
(
‖z(·, ·, T )‖2L2(ω×(0,1)) + ‖z(·, 1, ·)‖2L2(ω×(0,T ))

)
,

‖∂2
xu‖2L2(0,T ;L2(Ω)) ≤ C‖Φ0‖2H ,

‖u0‖2 ≤ C
(
‖∂2

xu(0, ·)‖2L2(0,T ) + ‖u(·)‖2L2(0,T ;L2(Ω)) + ‖ẑ0(·,−τ ·)‖2L2(ω×(0,1))

)
.

(iii) The map

Υ : Φ0 ∈ H → Φ(·) = e·AΦ0 ∈M× C
(
[0, T ]; L2(ω × (0, 1))

)
is continuous.8

Proof. (i) Let Φ = (u, z) ∈ D(A). In light of (2.4) and simple integration by parts, we have:9

〈AΦ,Φ〉H = −
∫

Ω
a(x)u2(x) dx−

∫
ω
b(x)u(x)z(x, 1) dx− 1

2

∫
ω
ξ(x)u2(x) dx

+
1

2

∫
ω
ξ(x)z2(x, 1) dx− η

2
(∂2
xu)2(0).(2.6)

Thereafter, thanks to A1-A2 and Young’s inequality, we infer from (2.6) that10

(2.7) 〈AΦ,Φ〉H ≤
∫
ω

[
b(x) + ξ(x)

2
− a(x)

]
u2(x) dx+

1

2

∫
ω

(
b(x)− ξ(x)

)
z2(x, 1) dx− η

2
(∂2
xu)2(0).

Thenceforth, A is dissipative in light of (2.2).11

In turn, the reader can easily verify that the adjoint operator A∗ is given by12

(2.8)
D(A∗) =

{
(u, z) ∈ H; u ∈ H5(Ω) ∩H2

0 (Ω), z ∈ L2
(
ω,H1(Ω)

)
; ∂2

xu(0) = 0,

ξ(x)z(x, 1) + b(x)û(x) = 0 in ω

}
,

A∗(u, z) =

(
−η∂5

xu+ ∂3
xu+ α∂xu− a(·)u+ ξ(·)z̃(·, 0),

1

τ
∂ρz

)
, for any (u, z) ∈ D(A∗).

Then, using (2.8) and arguing as above, one can obtain:13

〈A∗Φ,Φ〉H ≤
∫
ω

(
ξ(x)

2
+
b2(x)

2ξ(x)
− a(x)

)
u2(x) dx− η

2
(∂2
xu)2(`).

The latter implies that A∗ is also dissipative thanks to (2.2). Finally, A being densely defined, the proof14

of the assertion (i) follows from semigroups theory [5, 28].15

(ii) Let Φ0 =
(
u0, ẑ0(·, τ ·)

)
∈ H. In view of the contraction of the semigroup etA, we have:16

(2.9) ‖(u(t), z(·, t, ·))‖2H = ‖u(t)‖2 + τ‖z(t)‖2L2(ω×(0,1)) ≤ ‖u0‖2 + ‖ẑ0(·,−τ ·)‖2L2(ω×(0,1)), ∀t ∈ [0, T ].
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Next, we multiply the first differential equation of (2.3) by u, integrate over Ω×[0, T ] and use integrations1

by parts along with the boundary and initial conditions of (2.3) to obtain:2

(2.10)
η

2
‖∂2

xu(0, ·)‖2L2(0,T ) + ‖
√
a(·)u‖2L2(0,T ;L2(Ω)) ≤

1

2
‖u0‖2 −

∫ T

0

∫
ω
b(x)u(x, t)u(x, t− τ) dxdt.

Thanks to Young’s inequality, we have3

(2.11)

∫ T

0

∫
ω
b(x)u(x, t)u(x, t− τ) dxdt ≤ ‖b‖∞

2

(
‖u‖2L2(ω×(0,1)) + ‖z(·, 1, ·)‖2L2(ω×(0,T ))

)
,

which, together with (2.9), leads to rewrite (2.10) as follows:4

η

2
‖∂2

xu(0, ·)‖2L2(0,T ) + ‖
√
a(·)u‖2L2(0,T ;L2(Ω)) ≤ C

(
‖u0‖2 + ‖ẑ0(·,−τ ·)‖2L2(ω×(0,1))

+‖z(·, 1, ·)‖2L2(ω×(0,T ))

)
.(2.12)

Now, we multiply the second differential equation of (2.3) (see (2.2)) by ρλ(s)z and λ(s)z respectively5

and then integrate by parts to obtain6 ∫ T

0

∫
ω
z2(x, 1, t) dxdt = τ

∫ 1

0

∫
ω
ρ
(
ẑ0

2(x,−ρτ)− z2(x, ρ, T )
)
dxdρ

+

∫ T

0

∫ 1

0

∫
ω
z2(x, ρ, t) dxdρdt,(2.13)

and7

(2.14) τ

∫ 1

0

∫
ω

(
z2(x, ρ, T )− ẑ0

2(x,−ρτ)
)
dxdρ+

∫ T

0

∫
ω

(
z2(x, 1, t)− u2(x, t)

)
dxdt = 0.

By virtue of A1, (2.2), (2.9), it follows from (2.13) that:8 ∫ T

0

∫
ω
z2(x, 1, t) dxdt ≤ T

b0

(
‖u0‖2 + ‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1))

)
+
τ

b0
‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1)),

and hence9

(2.15) ‖z(·, 1, ·)‖2L2(ω×(0,T )) ≤ C‖Φ0‖2H ,

which is the estimate (2.5)1. Inserting (2.15) in (2.12) yields (2.5)2. In turn, (2.5)3 is a direct consequence10

of (2.14) since the latter gives11

(2.16) τ

∫ 1

0

∫
ω
ẑ0

2(x,−ρτ) dxdρ ≤ τ
∫ 1

0

∫
ω
z2(x, ρ, T ) dxdρ+

∫ T

0

∫
ω
z2(x, 1, t) dxdt.

Subsequently, we multiply the first differential equation of (2.3) by xu, integrate over Ω × [0, T ].12

Simple integrations by parts give:13

5η‖∂2
xu‖2L2(0,T );L2(Ω) + 3‖∂xu‖2L2(0,T ;L2(Ω)) =

∫
Ω
xu2

0(x) dx−
∫

Ω
xu2(x, T ) dx+ α‖u‖2L2(0,T ;L2(Ω))

−2

∫ T

0

∫
Ω
xa(x)u2(x, t) dxdt− 2

∫ T

0

∫
ω
xb(x)u(x, t)u(x, t− τ) dxdt.(2.17)

Thereby, it suffices to use (2.9) and incorporate (2.11) in (2.17) to get (2.5)4.14
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At last, we multiply the first differential equation in (2.3) by (T − t)u, integrate over Ω× [0, T ] and1

integrating by parts, a simple calculation yields:2

T‖u0‖2 =

∫ T

0
‖u(t)‖2 dt+ η

∫ T

0
(T − t)

(
∂2
xu
)2

(0, t) dt

+2

∫ T

0

∫ 1

0
(T − t)a(x)u2(x, t) dxdt+ 2

∫ T

0

∫ 1

0
(T − t)b(x)u(x, t)u(x, t− τ) dxdt.(2.18)

By virtue of (2.9), (2.5)2 and (2.11), the latter leads to the last estimate of (2.5). It is also noteworthy3

that the proof of the estimates remain valid for any initial data Φ0 ∈ H by means of a standard argument4

of density.5

(iii) Clearly, the proof of the continuity of Υ follows from (2.5)2 and (2.9). �6

2.1.2. Non-homogeneous linear system. As for numerous dispersive equations, consider the linear system7

(2.1) with a source term f(x, t):8

(2.19)

{
Φt(t) = AΦ(t) + (f(·, t), 0),

Φ(0) = Φ0,

in which Φ = (u, z) and Φ0 = (u0, ẑ0(·,−τ ·)). The proof of the next result resembles that of [30] for the9

Korteweg–de Vries equation (see also [29, 34]):10

Proposition 2. Suppose that the assumption A1-A2 are fulfilled. The, we have:11

(i) Given Φ0 ∈ H and f ∈ L1
(

0, T ;H1
0 (Ω)

)
, the system (2.19) is well-posed, that is, there exists a12

unique mild solution Φ = (u, z) ∈M× C
(

[0, T ];L2
(
ω × (0, 1)

))
of (2.19) such that:13

‖(u, z)‖C([0,T ];H) ≤ K
(
‖Φ0‖H + ‖f‖L1(0,T ;H1

0 (Ω))

)
,(2.20)

‖∂2
xu‖L2(0,T );L2(Ω) + ‖∂xu‖L2(0,T ;L2(Ω)) ≤ KT

(
‖Φ0‖H + ‖f‖L1(0,T ;H1

0 (Ω))

)
,(2.21)

where K > 0 (resp. KT > 0) is independent of T , Φ0 and f (resp. is independent of Φ0 and f but14

depends on T ).15

(ii) If u ∈M, then we have: u∂xu ∈ L1
(
0, T ;H1

0 (Ω)
)

and the map

Λ : u ∈M→ u∂xu ∈ L1
(
0, T ;H1

0 (Ω)
)

is continuous.16

Proof. (i) The well-posedness of (2.19) follows from the facts that A generates a C0-semigroup of con-17

tractions etA and f ∈ L1
(

0, T ;H1
0 (Ω)

)
[28] (see p. 106).18

With regard to (2.20), consider a strong solution Φ ∈ D(A) of (2.19) stemmed from Φ0 ∈ D(A).19

Next, recalling the energy E(t) defined by (2.1), one can retrace the proof of (2.7) to get:20

E′(t) ≤
∫
ω

(b(x) + ξ(x)− 2a(x))u2(x, t) dx+

∫
ω

(
b(x)− ξ(x)

)
z2(x, 1, t) dx− η(∂2

xu)2(0)

+2

∫
Ω
f(x, t)u(x, t) dx.(2.22)
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Using Cauchy-Schwarz, integrating over [0, t] and applying Young’s inequality, we obtain:1

max
t∈[0,T ]

‖Φ(t)‖2H ≤ ‖Φ0‖2H + 2δ max
t∈[0,T ]

‖Φ(t)‖2H +
1

2δ

∫ t

0
‖f(·, s)‖2 ds,(2.23)

for any δ > 0. Finally, choosing δ small, the desired estimate (2.20) follows.2

Analogously to (2.5)4, one can get (2.21). Indeed, multiplying the first differential equation of3

(2.19) by xu, we obtain similarly to (2.17)4

5η‖∂2
xu‖2L2(0,T );L2(Ω) + 3‖∂xu‖2L2(0,T ;L2(Ω)) =

∫
Ω
xu2

0(x) dx−
∫

Ω
xu2(x, T ) dx+ α‖u‖2L2(0,T ;L2(Ω))

−2

∫ T

0

∫
Ω
xa(x)u2(x, t) dxdt− 2

∫ T

0

∫
ω
xb(x)u(x, t)u(x, t− τ) dxdt+ 2

∫ T

0

∫
Ω
xu(x, t)f(x, t) dxdt

≤ `‖u0‖2 + αT‖u‖2C([0,T ];L2(Ω)) + `‖b‖∞T‖(u, z)‖2C([0,T ];H) + `2‖(u, z)‖2C([0,T ];H)

+‖f‖2L1(0,T ;L2(Ω)),(2.24)

where Young’s inequality and (2.11) are used. Clearly, (2.21) follows from (2.20) and (2.24). Note that5

(2.20)-(2.21) can be extended to the case when Φ0 belongs to H via a density argument.6

(ii) Given u inM, we have ∂xu ∈ L2(0, T ;H1
0 (Ω)) and u(·, t)∂xu(·, t) ∈ H1

0 (Ω). In fact, ∂x(u∂xu)(x, t) =7

(∂xu(x, t))2 + u(x, t)∂2
xu(x, t), for any t ∈ (0, T ) [5]. This, together with [1, Theorem 4.39], implies that8

there exists a positive constant K9 ∫ T

0
‖(u∂xu)(·, t)‖H1

0 (Ω) dt ≤ K

∫ T

0
‖u(·, t)‖H2

0 (Ω) dt,(2.25)

and hence u∂xu ∈ L2(0, T ;H1
0 (Ω)).10

Subsequently, let u, v ∈ M. Invoking the triangle and Cauchy-Schwarz inequalities along with the11

Sobolev embedding H2
0 (Ω) ↪→ L∞(Ω), we have:12

‖Λ(u)− Λ(v)‖L1(0,T ;H1
0 (Ω)) ≤

∫ T

0

[
‖∂xu(t)(u(t)− v(t))‖H1

0 (Ω) + ‖v(t)(∂x(u(t)− v(t)))‖H1
0 (Ω)

]
dt

≤ C
(
‖u‖L2(0,T ;H2

0 (Ω))‖u− v‖L2(0,T ;H2
0 (Ω)) + ‖u− v‖L2(0,T ;H2

0 (Ω))‖v‖L2(0,T ;H2
0 (Ω))

)
≤ C

(
‖u‖L2(0,T ;H2

0 (Ω)) + ‖v‖L2(0,T ;H2
0 (Ω))

)
‖u− v‖M,(2.26)

for some positive constant C. Consequently, the mapping Λ is continuous with respect to the corre-13

sponding topologies.14

�15

2.1.3. Well-posedness of the problem (1.1). Our first main result is stated below:16

Theorem 1. Under the assumptions A1-A2 hold and given Φ0 ∈ H, the problem (1.1) has a unique17

global mild solution u ∈ C
(
0,∞;L2(Ω)

)
∩ L2

loc

(
0,∞;H2

0 (Ω)
)
.18

Proof. Let Φ0 = (u0, ẑ0(·,−τ ·)) ∈ H. Next, we define the map Θ : M → M as follows: Θ(u) = v,

where v is the mild solution of (2.19) with f = u∂xu. It follows from Proposition 2 that the map Θ is

well-defined and

‖Θ(u)−Θ(ũ)‖M ≤ C1

(
‖u∂xu− ũ∂xũ‖L1(0,T ;H1

0 (Ω))

)
.
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Analogously to (2.26), the latter gives:1

(2.27) ‖Θ(u)−Θ(ũ)‖M ≤ C2T
1/4 (‖u‖M + ‖ũ‖M) ‖u− ũ‖M, ∀u, ũ ∈M,

for some C2 > 0. Using once again Proposition 2 along with (2.27), we obtain:2

(2.28) ‖Θ(u)‖M ≤ C‖Φ0‖H + C2T
1/4‖u‖2M.

Restricting the mapping Θ on the closed ball

M =
{
u ∈M; ‖u‖M ≤ R := 2 max{C,C2}

}
,

and taking T and R so that 2C2T
1/4R < 1 and 4T 1/4 (max{C,C2})2 ‖Φ0‖H < 1, the mapping Θ is3

well-defined and contractive onM. Applying the Banach Fixed Point Theorem, we conclude that there4

exists a unique fixed point u of Θ, which is the unique solution of (1.1). Lastly, taking f = u∂xu in5

(2.22), we deduce that the system energy E(t) of the problem (1.1) is decreasing, that is, there exists a6

positive constant K7

E′(t) ≤ −K
(
η(∂2

xu)2(0) +

∫
Ω
a(x)u2(x, t) dx+

∫
ω
b(x)u2(x, t− τ) dx

)
≤ 0.(2.29)

and hence the solution u is global. �8

2.2. Exponential stability for the problem (1.1). This subsection is devoted to the proof of two9

stability results of the system (1.1). The first one is:10

Theorem 2. (Local stability) Assume that the conditions A1-A2 hold. Then, there exists a positive11

constant r > 0 such that for every initial data Φ0 = (u0, ẑ0(·,−τ ·)) ∈ H satisfying ‖Φ0‖H ≤ r, the12

trivial solution of the problem (1.1) is uniformly exponentially stable in H and hence the energy E(t)13

uniformly exponentially decays.14

Proof. First, consider u as the regular solution of (1.1) stemmed from Φ0 in D(A), with ‖Φ0‖H ≤ r.15

In order to simplify the notation, the variables x and t will be omitted whenever it is unnecessary.16

Subsequently, we define the modified energy17

(2.30)

E(t) = E(t) +λ1V1(t) +λ2V2(t), V1(t) :=

∫
Ω
eλxu2 dx, V2(t) := τ

∫
ω

∫ 1

0
ξ(x)e−δρτ (∂xu)2(x, t− τρ) dρdx,

where E(t) is defined by (2.1), λ1, λ2 and λ are positive constants to de determined and δ is an arbitrary18

positive constant. Then, one can readily verify that19

(2.31) E(t) ≤ E(t) ≤
(

1 + max

{
λ1e

λ`,
λ2

b0

})
E(t).



STABILITY OF THE KAWAHARA EQUATION WITH A TIME-DELAYED DAMPING 9

Next, differentiating (2.30), integrating by parts and using the same arguments as for (2.7), a lengthy1

computation permits to claim that for any γ > 0:2

E ′(t) + γE(t) ≤ −η(1 + λ1)(∂2
xu)2(0, t) +

∫
ω

(
b(x) + ξ(x)− 2a(x) + λ1b(x)eλx + λ2ξ(x)

)
u2 dx︸ ︷︷ ︸

B1

+

∫
ω

(
b(x)− ξ(x)− λ2e

−δτξ(x) + λ1e
λxb(x)

)
(∂xu)2(x, t− τ) dx︸ ︷︷ ︸

B2

+ γ

∫
Ω

(
1 + λ1e

λx
)
u2 dx− 5ηλλ1

∫
Ω
eλx(∂2

xu)2 dx︸ ︷︷ ︸
B3

+
2

3
λλ1

∫
Ω
eλxu3 dx︸ ︷︷ ︸
B4

+λ1

∫
ω
eλx
(
−2a(x) + αλ+ λ3 − ηλ5

)
u2 dx︸ ︷︷ ︸

B5

+λλ1

∫
Ω
eλx(5ηλ2 − 3)(∂xu)2 dx︸ ︷︷ ︸

B6

+τ

∫
ω

∫ 1

0
ξ(x)

(
γ(1 + λ2e

−δτρ)− λ2δe
−δτ
)

(∂xu)2(x, t− ρτ) dρdx︸ ︷︷ ︸
B7

+

∫
ω̂\ω

(
λ1e

λx
[
−2a(x) + αλ+ λ3 − ηλ5

]
− 2a(x)

)
u2 dx.(2.32)

The ultimate outcome is to choose, in (2.32), γ, λ1, λ2 and λ so that E ′(t) + γE(t) ≤, which implies the3

exponential stability of E(t) and hence that of E(t) by virtue of (2.31). To do so, it suffices to handle4

the bad terms B1 −B7.5

Thanks to (2.2), we know that b(x) + ξ(x)− 2a(x) < 0. This together with the fact that eλx ≤ eλ`,6

for any x ∈ ω, we can choose λ1 and λ2 as follows7

(2.33) λ1 <
k

eλ`‖b‖∞
, λ2 ≤ inf

x∈ω

{
2a(x)− b(x)− λ1e

λ`b(x)

ξ(x)

}
,

so that both of B1 and B2 are negative. With regard to B3, we infer from (2.4)8

(2.34) B3 ≤
(
γ
[
1 + λ1e

λ`
] `4
π4
− 5ηλλ1

)
‖∂2

xu‖2.

The term B4 can be handled by using standard arguments. Indeed, since H1
0 (I) embeds into L∞(I),9

that is, ‖u‖2L∞(I) ≤ `‖∂xu‖
2 and using Cauchy-Schwarz inequality as well as (2.4), we have:10

B4 ≤ 2

3
λλ1‖u‖2L∞(I)

∫
Ω
eλx|u| dx ≤

√
2λλ1`

3eλ`

3π2
‖∂2

xu‖2‖u‖ ≤ r
√

2λλ1`
3eλ`

3π2
‖∂2

xu‖2,(2.35)

where the dissipation property of the E(t) allowed us to write ‖u‖ ≤ ‖(u, z)‖H ≤ ‖(u0, z0)‖H . Combining11

(2.34) and (2.35) yields:12

(2.36) B3 +B4 ≤

(
γ
[
1 + λ1e

λ`
] `4
π4
− 5ηλλ1 + r

√
2λλ1`

3eλ`

3π2

)
‖∂2

xu‖2.
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Concerning B5, we first have from A1-A2 that a(x) ≥ b0 + k and hence

−2a(x) + αλ+ λ3 − ηλ5 < ∆(λ) =: −2k + αλ+ λ3 − ηλ5.

Obviously, ∆ is continuous on (0,∞) and limλ→0+ ∆(λ) = −2k < 0. Therefore, one can claim that ∆

remains negative on (0, λ∗) for some λ∗ > 0 (for instance one can choose λ∗ =
√

3+
√

9+20αη
5η so that ∆ is

even decreasing). Thereafter, we choose λ < min{λ∗,
√

3/(5η)} so as B5 and B6 are negative. This also

implies that the last term of the right-hand side in (2.32) is also negative. Finally, we choose γ small

enough so that B7 and B3 +B4 are negative. More precisely, we first choose r sufficiently small so that

r <
15π2η

√
λ√

2`3
e−λ`

and then choose1

(2.37) γ < min

{
π4λ1

`4(1 + λ1eλ`)

[
5ηλ− r

√
2λ`3eλ`

3π2

]
, (1 + λ2e

−δτρ)− λ2δe
−δτ ,

λ2δe
−δτ

1 + λ2

}
.

Whereupon, we reach the desired result2

(2.38) E ′(t) + γE(t) < 0.

Note that a density argument allows to extend the stability result to Φ0 ∈ H.3

�4

Remark 1. (i) A careful look at the proof of Theorem 2 leads us to claim that the choice of the constants5

λ, λ1, λ2 and γ should be in the following order: first, we choose λ small enough so that B5 and B6 are6

negative. Next, we choose λ1 and λ2 small satisfying (2.33) to ensure that B1 and B2 are negative.7

Finally, we choose γ as in (2.37) so that B3 +B4 and B7 are negative.8

(ii) It is worth mentioning that, contrary to [33] for the KdV equation, the stability result stated in9

Theorem 2 does not require any smallness condition on the length `. This is expectable since the equation10

has a damping term.11

(iii) The condition A2 plays an important role in the previous study. We shall show later that such a12

requirement can be relaxed by means a perturbation argument but at the expense of a condition on the13

parameters η and ` and the spatial distribution b of the delayed term.14

Before stating our second stability result, we have the following estimate:15

Proposition 3. Suppose that the assumptions A1-A2 hold. Then, the unique global solution u of (1.1)16

stemmed from Φ0 ∈ H satisfies17

(2.39) ‖u‖L2(0,T ;H2
0 (Ω)) ≤ C‖Φ0‖H (1 + ‖Φ0‖H) ,

for some positive constant C.18



STABILITY OF THE KAWAHARA EQUATION WITH A TIME-DELAYED DAMPING 11

Proof. Multiplying (1.1) by eλxu and integrating the resulting equation over Ω× [0, T ], we obtain1

5ηλλ1

∫ T

0

∫
Ω
eλx(∂2

xu)2 dxdt = −η
∫ T

0
(∂2
xu)2(0, t) dt+ (5ηλ2 − 3)

∫ T

0

∫
Ω
eλx(∂xu)2 dxdt

+

∫
Ω
eλx
(
αλ+ λ3 − ηλ5 − 2a(x)

)
u2 dxdt

+

∫
Ω
eλx
(
u2

0(x)− u2(x, T )
)
dx+

2

3
λ

∫ T

0

∫
Ω
eλxu3 dx

−2

∫ T

0

∫
ω
eλxb(x)u∂xu(x, t− τ) dxdt.(2.40)

Owing to the embedding H1
0 (I)→ L∞(I), Cauchy-Schwarz inequality, (2.4) and the fact that the energy2

E(t) is decreasing (see (2.29), we have3

2

3
λ

∫ T

0

∫
Ω
eλxu3 dx ≤ 2

√
`

3
λeλ`

∫ T

0
‖u‖2‖∂xu‖ dt

≤ 2
√
`

3
λeλ`

(
‖u0‖2 + ‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1))

)∫ T

0
‖∂xu‖ dt

≤ 2
√
Tλ`3/2eλ`

3π

(
‖u0‖2 + ‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1))

)
‖∂2

xu‖L2(0,T ;H2
0 (Ω)).(2.41)

In turn, by virtue of Young’s inequality and (2.29), we get4

(2.42) −2

∫ T

0

∫
ω
eλxb(x)u∂xu(x, t− τ) dxdt ≤ eλ`‖b‖∞T

(
‖u0‖2 + ‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1))

)
.

Inserting (2.41) and (2.42) in (2.40) and choosing λ small as for B5 and B6 (see (2.32)), it follows5

5ηλλ1e
λ`‖∂2

xu‖2L2(0,T ;H2
0 (Ω)) ≤ C1T

(
‖u0‖2 + ‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1))

)
+C2

√
T
(
‖u0‖2 + ‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1))

)
‖∂2

xu‖L2(0,T ;H2
0 (Ω)).(2.43)

Now, it suffices to use Young’s inequality to get6

C2

√
T
(
‖u0‖2 + ‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1))

)
‖∂2

xu‖L2(0,T ;H2
0 (Ω)) ≤

C2
2T

2θ

(
‖u0‖2 + ‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1))

)2

7

+
θ

2
‖∂2

xu‖2L2(0,T ;H2
0 (Ω)),

for any positive constant θ. Combining the latter with (2.43) yields8

5ηλλ1e
λ`‖∂2

xu‖2L2(0,T ;H2
0 (Ω)) ≤ C1T

(
‖u0‖2 + ‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1))

)
+
C2

2T

2θ

(
‖u0‖2 + ‖ẑ0

2(·,−τ ·)‖2L2(ω×(0,1))

)2
+
θ

2
‖∂2

xu‖2L2(0,T ;H2
0 (Ω)),(2.44)

which leads to the desired estimate (2.39) provided that θ is chosen sufficiently. �9

Following the arguments of [27] and [29], we shall prove our second stability result:10

Theorem 3. (Semi-global stability) Assume that the conditions A1-A2 hold. Then, for any positive11

constant R > 0, there exist two positive constant M and κ depending on R such that the energy E(t),12
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along any solution of (1.1) stemmed from an initial data Φ0 = (u0, ẑ0(·,−τ ·)) ∈ H with ‖Φ0‖H ≤ R,1

satisfies2

E(t) ≤Me−κtE(0), for any t > 0.

Proof. Using once again a density arguments, it suffices to prove the result for an initial condition3

Φ0 = (u0, ẑ0(·,−τ ·)) in D(A) with ‖Φ0‖H ≤ R. Thereafter, consider the energy E(t), defined by (2.1),4

along the solution u of (1.1). In view of (2.29), we have:5

(2.45)

η
∥∥(∂2

xu)2(0, ·)
∥∥
L2(0,T )

+

∫ T

0

(∫
Ω
a(x)u2(x, t) dx+

∫
ω
b(x)u2(x, t− τ) dx

)
dt ≤ 1

K
(E(0)− E(T )) .

In light of (2.29) and (2.45), we have6

E(T ) ≤ (1−KM1)E(0),

provided that there exists a positive constant M1 depending on R and T such that the following ob-7

servability inequality holds:8

(2.46) η
∥∥(∂2

xu)2(0, ·)
∥∥
L2(0,T )

+

∫ T

0

(∫
Ω
a(x)u2(x, t) dx+

∫
ω
b(x)u2(x, t− τ) dx

)
dt ≥M1E(0).

Clearly, the desired result, namely, the exponential stability of E(t) is a direct consequence of (2.29)9

and the semigroup property. Therefore, it amounts to proving (2.46). First, multiplying (1.1) by u and10

arguing as before, one can show that there exists a positive constant C(T ) such that11

T‖u0‖2 ≤ ‖u‖2L2(Ω×(0,T )) + ηT‖∂2
xu(0, ·)‖2L2(0,T )

+C(T )

(∫ T

0

∫
Ω
a(x)u2(x, t) dxdt+

∫ T

0

∫
ω
b(x)u2(x, t− τ) dxdt

)
.(2.47)

Second, integrating (2.16) over [0, T ], we get12

T

∫ 1

0

∫
ω
ẑ0

2(x,−ρτ) dxdρ ≤
∫ T

0

∫ 1

0

∫
ω
u2(x, t− ρτ) dxdρdt+

T

τ

∫ T

0

∫
ω
u2(x, 1, t− τ) dxdt.

In turn, we know that there exists a positive constant C(T ) such that [33]13 ∫ T

0

∫ 1

0

∫
ω
u2(x, t− ρτ) dxdρdt ≤ C(T )

∫ T

0

(∫
Ω
a(x)u2(x, t) dx+

∫
ω
b(x)u2(x, t− τ) dx

)
dt,

for T > τ . Combining the last two estimates and invoking A1-A2, we deduce the existence of another14

positive constant C(T ) such that15

(2.48)

∫ 1

0

∫
ω
ẑ0

2(x,−ρτ) dxdρ ≤ C(T )

∫ T

0

(∫
Ω
a(x)u2(x, t) dxdt+

∫
ω
b(x)u2(x, t− τ) dx

)
dt.

Amalgamating (2.47) and (2.48), it follows that (2.46) holds whenever there exists a positive constant16

M1 depending on R and T such that the solutions of (1.1) stemmed from Φ0 with ‖Φ0‖H ≤ R satisfy17

(2.49)

η
∥∥(∂2

xu)2(0, ·)
∥∥
L2(0,T )

+

∫ T

0

∫
Ω
a(x)u2(x, t) dxdt+

∫ T

0

∫
ω
b(x)u2(x, t− τ) dxdt ≥M1‖u‖2L2(Ω×(0,T )).
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The proof will be done by contradiction. In fact, if (2.49) were not true, then there exists a sequence1

of solutions of (1.1) (un)n in M stemmed from the initial condition Φn
0 = (un0 , ẑ0

n(·,−τ ·)) ∈ H with2

‖Φn
0‖H ≤ R such that3

lim
n→∞

‖un‖2L2(Ω×(0,T ))

η ‖(∂2
xun)2(0, ·)‖L2(0,T ) +

∫ T
0

∫
Ω a(x)|un(x, t)|2 dxdt+

∫ T
0

∫
ω b(x)|un(x, t− τ)|2 dxdt

=∞.

Let λn = ‖un‖L2(Ω×(0,T )), which is bounded thanks to (2.29) and the boundedness property ‖Φn
0‖H ≤ R.4

Moreover, let vn = un
λn

, which satisfies5

∂tvn(x, t) + ∂3
xvn(x, t)− η∂5

xvn(x, t) + λnvn(x, t)∂xvn(x, t) + α∂xvn(x, t) + a(x)vn(x, t)

+b(x)vn(x, t− τ) = 0, (x, t) ∈ Ω× (0, T ),(2.50)

vn(0, t) = vn(`, t) = ∂xvn(0, t) = ∂xvn(`, t) = ∂2
xvn(`, t) = 0, t > 0,(2.51)

‖vn‖L2(Ω×(0,T )) = 1,(2.52)

lim
n→∞

{
η
∥∥(∂2

xun)2(0, ·)
∥∥
L2(0,T )

+

∫ T

0

∫
Ω
a(x)2|un(x, t)|2 dxdt+

∫ T

0

∫
ω
b(x)|un(x, t− τ)|2 dxdt

}
= 0.(2.53)

Multiplying (2.50) by (T − t)vn, we obtain analogously to (2.18) (see also (2.5)5), we get6

‖vn(·, 0)‖L2(Ω) ≤ C(T )
(
‖vn‖0,T ;L2(Ω) +

∥∥(∂2
xvn)2(0, ·)

∥∥
L2(0,T )

+ ‖vn(·,−τ ·)‖L2(ω×(0,1))

)
.(2.54)

In view of a simple computation together with A1, one can readily verify that7

‖vn(·,−τ ·)‖2L2(ω×(0,1)) ≤ τC
∫ T

0

∫
ω
b(x)|un(x, t− τ)|2 dxdt, for T > τ,

which, together with (2.54) and (2.52)-(2.53), implies that
(
‖vn(·, 0)‖L2(Ω)

)
n

is a bounded sequence.8

Keeping this fact in mind and since (un)n are solutions of (1.1), ‖Φn
0‖H ≤ R and owing to (2.39), it9

follows that there exists a positive constant C independent of n such10

(2.55) ‖vn‖L2(0,T ;H2
0 (Ω)) ≤ C.

On the other hand, using (2.55) and the fact that vn belongs to L∞(0, T ;L2(Ω))∩L2(0, T ;H2
0 (Ω)), one

can deduce that

‖vn∂xvn‖L2(ω×(0,1)) ≤ C,

for some positive constant C. Amalgamating the above properties of vn and λn, one can claim from11

(2.50) that (∂tvn)n is bounded in L2(0, T ;H−3(Ω)). This together with (2.55) and the compactness of12

the embedding H2
0 (Ω) ↪→ L2(Ω), we conclude that (vn)n is relatively compact in L2(0, T ;L2(Ω)) and13

hence we can extract a subsequence, still denoted by (vn)n, such that14

(2.56)

{
vn → v strongly inL2(0, T ;L2(Ω)),

‖v‖L2(0,T ;Ω) = 1,
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and1

0 = lim inf
n→∞

{
η
∥∥(∂2

xvn)2(0, ·)
∥∥
L2(0,T )

+

∫ T

0

∫
Ω
a(x)|vn(x, t)|2 dxdt+

∫ T

0

∫
ω
b(x)|vn(x, t− τ)|2 dxdt

}
≥ η

∥∥(∂2
xv)2(0, ·)

∥∥
L2(0,T )

+

∫ T

0

∫
Ω
a(x)|v(x, t)|2 dxdt+

∫ T

0

∫
ω
b(x)|v(x, t− τ)|2 dxdt.

Clearly, the latter yields a(x)v ≡ 0 on Ω × (0, T ), b(x)v(x, t − τ) ≡ 0 on ω × (0, T ) and ∂2
xv(0, ·) ≡ 02

on (0, T ), that is, v ≡ 0 on ω × (−τ, T ) and ∂2
xv(0, t) on (0, T ). In turn, (λn)n being bounded, one can3

extract a subsequence, also denoted by (λn)n, such that λn → λ ≥ 0. Whereupon, the limit v belongs4

to L2(0, T ;H2
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) and satisfies5

(2.57)


∂tv(x, t) + ∂3

xv(x, t)− η∂5
xv(x, t) + λv(x, t)∂xv(x, t) + α∂xv(x, t) = 0, (x, t) ∈ Ω× (0, T ),

v(0, t) = v(`, t) = ∂xv(0, t) = ∂xv(`, t) = ∂2
xv(0, t) = ∂2

xv(`, t) = 0, t > 0,

‖v‖L2(Ω×(0,T )) = 1,

v(x, t) = 0, (x, t) ∈ ω × (−τ, T ).

Following the arguments in [27], a gain of regularity result is established in [34] (see Proposition 3.2,6

p. 112), which permits to use the Unique Continuation Principle [31] and conclude that v vanishes in7

Ω× (0, T ). This contradicts ‖v‖L2(Ω×(0,T )) = 1. �8

3. The problem (1.1) with ω * ω̂9

We turn now to the interesting case, where a and b satisfy only the assumption A1 but ω * ω̂10

and hence the assumption A2 does not hold. This implies that the dissipation property (2.29) of the11

system’s energy is lost. To overcome this difficulty, we shall adopt, as in [33], a perturbation argument12

developed in [26] by considering the following auxiliary problem13

(3.1)

∂tu(x, t) + ∂3
xu(x, t)− η∂5

xu(x, t) + u(x, t)∂xu(x, t) + α∂xu(x, t)

+(a(x) + ξb(x))u(x, t) + b(x)u(x, t− τ) = 0, (x, t) ∈ Ω× (0,∞),

u(0, t) = u(`, t) = ∂xu(0, t) = ∂xu(`, t) = ∂2
xu(`, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = z0(x, t), x ∈ Ω, t ∈ T ,

where ξ is a positive constant. Then, we define the energy corresponding to (3.1) by14

(3.2) F (t) =

∫
Ω
u2(x, t) dx+ τξ

∫
ω

∫ 1

0
b(x)(∂xu)2(x, t− τρ) dρdx.

Then, a formal computation shows that for any positive constant δ, we have:15

(3.3)

F ′(t) ≤ −η(∂2
xu)2(0)− 2

∫
ω̂
a(x)u2(x, t) dx+

(
1

δ

∫
ω
b(x)u2(x, t) dx− ξ

)
+ (δ − ξ)

∫
ω
b(x)u2(x, t− τ) dx,

which is nonnegative provided that ξ > max{δ, 1/δ}. For sake of simplicity, we take δ = 1 and hence16

ξ > 1.17
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As in the previous section, the state space is H := L2(Ω) × L2(ω × (0, 1)), which will be endowed1

with the inner product norm2

(3.4) ‖(u, z)‖2H = ‖u‖2 + τξ

∫
ω

∫ 1

0
b(x)z2(x, ρ) dρdx,

where ξ > 1.3

3.1. A linearized system associated to (3.1). Let us first deal with the following linearized system4

(3.5)



∂tu(x, t) + ∂3
xu(x, t)− η∂5

xu(x, t) + α∂xu(x, t)

+(a(x) + ξb(x))u(x, t) + b(x)u(x, t− τ) = 0, (x, t) ∈ Ω× (0,∞),

u(0, t) = u(`, t) = ∂xu(0, t) = ∂xu(`, t) = ∂2
xu(`, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = z0(x, t), x ∈ Ω, t ∈ T .

Taking z(x, ρ, t) := û(x, t− τρ), for (x, ρ, t) ∈ ω × (0, 1)× (0,∞), the problem (3.5) takes the following5

form6

(3.6)

{
Φt(t) = BΦ(t),

Φ(0) = Φ0,

in which Φ = (u, z), Φ0 =
(
u0, ẑ0(·, τ ·)

)
and B is the linear operator defined by:7

(3.7)

D(B) =
{

(u, z) ∈ H;u ∈ H5(Ω) ∩H2
0 (Ω), z ∈ L2

(
ω,H1(Ω)

)
; ∂2
xu(`) = 0, z(x, 0) = û(x) in ω

}
,

B(u, z) =

(
η∂5

xu− ∂3
xu− α∂xu− (a(·) + ξb(·))u− b(·)z̃(·, 1),−1

τ
∂ρz

)
, for any (u, z) ∈ D(B).

Thereafter, it is easy to verify that the operator B satisfies8

〈BΦ,Φ〉H ≤
1− ξ

2

∫
ω̂
a(x)u2(x) dx+

1− ξ
2

∫
ω
b(x)z2(x, 1) dx− η

2
(∂2
xu)2(0) ≤ 0,

for any Φ in D(B) and hence B is dissipative in H. Additionally, the adjoint operator B∗ is given by9

D(B∗) =

{
(u, z) ∈ H; u ∈ H5(Ω) ∩H2

0 (Ω), z ∈ L2
(
ω,H1(Ω)

)
; ∂2

xu(0) = 0,

ξz(x, 1) + û(x) = 0 in ω

}
,

B∗(u, z) =

(
−η∂5

xu+ ∂3
xu+ α∂xu− (a(·) + ξb(·))u+ ξb(·)z̃(·, 0),

1

τ
∂ρz

)
, for any (u, z) ∈ D(B∗),

and also satisfies the dissipativity10

〈B∗Φ,Φ〉H ≤ −
∫
ω̂
a(x)u2(x) dx+

1

2

(
1

ξ
− ξ
)∫

ω
b(x)u2(x) dx− η

2
(∂2
xu)2(`) ≤ 0,

for any Φ in D(B∗). Following the same lines as in Section 2.1.1, the operator B generates a C0-semigroup11

of contractions etB and the linear problem (3.6) is well-posed in the sense of semigroups theory [28].12

In order to prove the exponential stability of the linearized system (3.5), we first recall that F (t) is13

defined by (3.2) and then consider the following functional14

(3.8)

F(t) = F (t)+σ1V3(t)+σ2V4(t), V3(t) :=

∫
Ω
eσxu2 dx, V4(t) := τ

∫
ω

∫ 1

0
b(x)e−δρτ (∂xu)2(x, t− τρ) dρdx,
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where σ1, σ2 and σ are positive constants to de determined and δ is an arbitrary positive constant.1

Using integrations by parts, Young’s inequality as well as (2.4) and (3.3), we obtain, similarly to (2.32),2

that for any ν > 0:3

F ′(t) + νF(t) ≤ −η(1 + σ1)(∂2
xu)2(0, t) +

∫
ω
b(x)

(
1− ξ + σ1e

σ` + σ2 − 2σ1ξe
σx
)
u2 dx︸ ︷︷ ︸

I1

+

∫
ω
b(x)

(
1− ξ + σ1e

σ` + σ2 − σ2e
−δτ
)

(∂xu)2(x, t− τ) dx︸ ︷︷ ︸
I2

+σσ1

(
`4

π4

[
α+ σ2 − ησ4

]
eσ` − 5η

)
‖∂2

xu‖2︸ ︷︷ ︸
I3

+

(
σσ1(5ησ2 − 3) + ν

`2

π2

[
1 + σ1e

σ`
])
‖∂xu‖2︸ ︷︷ ︸

I4

+τ

∫
ω

∫ 1

0
b(x)

(
ν(ξ + σ2)− σ2δe

−δτ
)

(∂xu)2(x, t− ρτ) dρdx︸ ︷︷ ︸
I5

−2

∫
ω̂
a(x) (1 + σ1e

σx)u2 dx,(3.9)

where we picked up σ small so that α+σ2− ησ4 > 0, that is, σ <
√

1+
√

1+4αη
2η . This allows us to claim,4

on one hand, that α + σ2 − ησ4 ≤ α + β
4η , for any β > 1. On the other hand, the coefficient of I3 (see5

(3.9)) can be made negative by taking6

σ <
1

`
ln

(
5ηπ4

`4(α+ β/(4η))

)
,

provided that7

(3.10) `4
(
α+

β

4η

)
< 5ηπ4,

where β > 1 is any arbitrary number.8

With regard to the other terms of (3.9), we proceed as follows: we choose σ so that 5ησ2 − 3 < 0

and hence based on the above discussion we assume that

σ < min


√

3

5η
,
1

`
ln

(
5ηπ4

`4(α+ β/(4η))

)
,

√
1 +
√

1 + 4αη

2η

 .

Next, we take σ1 < (ξ − 1)e−σ` and σ2 < ξ − 1− σ1e
−σ` and finally ν is chosen9

ν < min

{
σ2δe

−δτ

ξ + σ2
,
π2σσ1(3− 5ησ2)

`2 (1 + σ1eσ`)

}
.

Thereby, all the terms I1− I5 are negative and hence (3.9) gives the exponential stability of F , which in10

turn implies the exponential stability of F (t). This result is summarized in the following proposition:11
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Proposition 4. Assume that the spatial distributions a and b satisfy A1 while the parameters η and1

` fulfill the condition (3.10). Then, for every initial data Φ0 = (u0, ẑ0(·,−τ ·)) ∈ H, the trivial solu-2

tion of the problem (3.1) is uniformly exponentially stable in H and hence the energy F (t) uniformly3

exponentially decays.4

Now, we are able to state our third exponential stability5

Theorem 4. Assume that the conditions A1 and (3.10) hold. Moreover, we assume that there exists a6

positive constant µ such that ‖b‖∞ ≤ µ. Then, there exists a positive constant r > 0 such that for every7

initial data Φ0 = (u0, ẑ0(·,−τ ·)) ∈ H satisfying ‖Φ0‖H ≤ r, the trivial solution of the problem (1.1) is8

uniformly exponentially stable in H and hence the corresponding energy F (t) uniformly exponentially9

decays.10

Proof. We proceed by following several steps:11

Step 1: First, we consider the linearized system (2.1) corresponding to (1.1), which can be written as12

a perturbation of the problem (3.1)13

(3.11)

{
Φt(t) = (B + P) Φ(t),

Φ(0) = Φ0,

where Φ = (u, z) and B, defined by (3.7), generates a C0-semigroup of contractions etB, whereas P is a14

bounded linear operator on H defined by15

PΦ(t) = (ξb(·)u, 0), for any Φ ∈ H.

In light of Proposition (4), there exist positive constants ς and ϑ such that
∥∥etB∥∥L(H)

≤ ςe−ϑt, for any16

t > 0. These facts permit to use [28, Theorem 1.1, p. 76] and conclude that B + P is also a generator17

of a C0-semigroup of contractions et(B+P) on H satisfying
∥∥et(B+P)

∥∥
L(H)

≤ ςe(ςξ‖b‖∞−ϑ)t, for any t > 0.18

Taking ‖b‖∞ < µ := ϑ
ςξ to get the exponential stability of the linearized system (2.1).19

Step 2: In view of the outcomes of step 1 and arguing as in Sections 2, we can show that for each20

Φ0 ∈ H, the problem (1.1) has a unique global mild solution u ∈ C
(
0,∞;L2(Ω)

)
∩ L2

loc

(
0,∞;H2

0 (Ω)
)

21

such that ‖u‖L2(0,T ;H2
0 (Ω)) ≤ C‖Φ0‖2H

(
1 + ‖Φ0‖2H

)
(see (2.44)).22

Step 3: Now, consider an initial data Φ0 = (u0, ẑ0(·,−τ ·)) ∈ H with ‖Φ0‖H ≤ r, where r is to be23

chosen later. Then, we argue as [29] (see also [7]) by writing the solution u of (1.1) as u = u1 + u2,24

where u1 is solution of (2.1), while u2 is solution of (2.19) with a source term f(x, t) = −u(x, t)∂xu(x, t)25

and initial data Φ0 = (0, 0). By virtue of the facts obtained in the previous steps, there exists a positive26

constant $ < 1 such that27

‖(u(T ), z(T ))‖H ≤ ‖(u1(T ), z1(T ))‖H + ‖(u2(T ), z2(T ))‖H
≤ $ ‖Φ0‖H + C‖u∂xu‖L1(0,T ;H1

0 (Ω))

≤ $ ‖Φ0‖H + C‖u‖2L2(0,T ;H2
0 (Ω)) ≤ ‖Φ0‖H

(
$ + Cr(1 + r3)

)
.(3.12)

Given $ < 1, we choose r so that r(1+r3) < 1−$
2C and hence (3.12) yields ‖(u(T ), z(T ))‖H ≤ 1+$

2 ‖Φ0‖H .28

Repeating this argument on [nT, (n+ 1)T ], n = 0, 1, · · · , the exponential stability follows. �29
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4. Concluding Remarks1

This article was concerned with the investigation of the well-posedness and stability of a nonlinear2

Kawahara equation subject to the effect of a localized interior delay damping. After showing the well-3

posedness of the problem, two stability results are show.4

In a future work, it would be desirable to study the effect on the stability property of delay in the5

nonlinearity. We also aspire to investigate the impact of a memory term on the stability of Kawahara6

equation.7
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