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Summary

In this paper, we studied the existence and uniqueness result of solutions for bound-
ary value problems for Hilfer-Hadamard type fractional differential inclusions with
multi-point boundary conditions, in the first approach we deal with a non-convex val-
ued right hand side and in the second approach we consider the Carathéodory case.
Finally the compactness of solution sets is also obtained.
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1 INTRODUCTION AND STATEMENT OF THE PROBLEM

The fractional differential equations give proofs of the more appropriate models for various areas of engineering, physics, bio-
engineering and other applied sciences.
For some fundamental results in the theory of fractional calculus and fractional differential equations see Hedia et al.8,9,11,12 and
the papers2,7,13.
However, there are a few related works on Hilfer fractional derivatives, for the so-called Hilfer fractional derivatives, one can
see17. It seems that Hilfer et al.21,22 have initially proposed linear differential equations with the new fractional operator, Hilfer
fractional derivative and applied operational calculus to solve such simple fractional differential equations. Thereafter, Furati
et al.17 extended to study nonlinear problems and presented the existence, nonexistence and stability results for initial value
problems of nonlinear fractional differential equations with Hilfer fractional derivative in a suitable weighted space of continuous
functions. The fractional derivative due to Hadamard, introduced in 189219, differs from the aforementioned derivatives in the
sense that the kernel of the integral in the definition of Hadamard derivative contains logarithmic function of arbitrary exponent.
A detailed description of Hadamard fractional derivative and integral can be found in23. In the paper,4 the authors considered
the following problem,

HD
�,�y(t) + f (t, y(t)) = 0, t ∈ J ∶= [1, e], 1 ≤ � ≤ 2, 0 ≤ � ≤ 1 (1)

y(1 + �) = 0, HD1,1y(e) = � HD
1,1y(�). (2)

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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They used some theorems of fixed point for studying the results of existence and uniqueness for Hilfer-Hadamard-type fractional
differential equations. In the paper,5 the authors deal with the existence and uniqueness of nonlocal boundary conditions for
Hilfer Hadamard type fractional differential equation,

HD
�,�y(t) + f (t, y(t)) = 0, t ∈ J ∶= [1, e], 1 ≤ � ≤ 2, 0 ≤ � ≤ 1, (3)

y(1 + �) =
n−2
∑

1
�iy(�i), HD1,1y(e) =

n−2
∑

1
�i HD

1,1y(�i). (4)

where HD�,� is the Hilfer-Hadamard fractional derivative of order 1 < � ≤ 2 and type � ∈ [0, 1], f ∶ J × R → ℝ is
a continuous function, 0 < � < 1 , �i ∈ (1, e), �i ∈ (1, e) �i, �i ∈ ℝ, for all i = 1,… n − 2 , �1 < �2 < ... < �n − 2
and �1 < �2 < ... < �n − 2 HD1,1 = t d

dt
. In the paper1 the authors considered the following coupled system of implicit

Hilfer-Hadamard fractional differential equations:
{

HD
�,�
1 x1(t) = f1(t, x1(t), x2(t),H D

�,�
1 x1(t),H D

�,�
1 x2(t)),

HD
�,�
1 x2(t) = f2(t, x1(t), x2(t),H D

�,�
1 x1(t),H D

�,�
1 x2(t)), t ∈ I,

with the initial conditions
{ HI1−
x1(t) = �1,

HI1−
x2(t) = �2,
where I ∶= [1, T ], T > 1, � ∈ (0, 1), � ∈ [0, 1], 
 = �+� −��, �i, i = 1, 2 ∈ E and fi, i = 1, 2 are given continuous functions,
E is a real (or complex) Banach space with norm ‖.‖E and dual E∗, such that E is the dual of a weakly compactly generated
Banach space X, HI1−
 is the left-sided mixed Hadamard integral of order 1 − 
 , and HD

�,�
1 is the Hilfer-Hadamard fractional

derivative of order � and type �.
The authors proved the existence of weak solutions for a coupled system of implicit fractional differential equations of Hilfer-
Hadamard type. In the paper26 the authors considered the Hilfer-Hadamard-type IDE with nonlocal condition of the form :

HD
�,�
1 x(t) = f (t, x(t),H D�,�

1 x(t)), 0 < � < 1, 0 ≤ � ≤ 1, t ∈ J = [1, b]. (5)

HI1−
x1(t) =
∑

cix(�i), � ≤ 
 = � + � − �� ≤ 1, �i ∈ [1, b], (6)

where HD
�,�
1 is the Hilfer-Hadamard fractional derivative of order � and type �. X be a Banach space, ∶ J × X × X → X is

a given continuous function and HI1−
 is the left-sided mixed Hadamard integral of order 1 − 
 . They make use SchaeferŠs
fixed-point theorem to investigate the existence of solutions to nonlocal initial value problems for implicit differential equations
with Hilfer-Hadamard fractional derivative. Then the Ulam stability result is obtained by using Banach contraction principle.
In20 the author deal with a class of semi-linear Hilfer fractional differential equation with nonlocal conditions,

D�,�
0+ x(t) = Ax(t) + f (t, x(t)), t ∈ (0, b], (7)

I1−
0+ x(t) =
m
∑

i=1
�ix(�i), � ≤ 
 = � + � − ��, �i ∈ (0, b], (8)

where the two parameter family of fractional derivative D�,� denote the left-sided Hilfer fractional derivative introduced in21,
0 < � ≤ 1, 0 ≤ � ≤ 1. the state x(.) takes value in a Banach space E with norm ‖.‖, A is the infinitesimal generator of
semigroup of bounded linear operators (i.e. C0 semigroup) T (t)t≥0 in Banach space E. The operator I

1−

0+ denotes the left-sided

Riemann-Liouville fractional integral, f ∶ (0, b] × E → E will be specified in later sections. �i, i = 1, 2,… , m are pre-fixed
points satisfying 0 < �1 ≤ ⋯ ≤ �m < b and Γ(
) ≠

∑m
i=1 �i�i where Γ(
) = ∫ +∞

0 x1−
e−xdx. The author has given a new
result concerning the existence of solution of (7)-(8) by using measure of non-compactness combined with condensing map in
Banach space. In 1890, Peano25 proved that the Cauchy problem for ordinary differential equations has local solutions although
the uniqueness property does not hold in general. For the case where the uniqueness does not hold, Kneser24 proved in 1923 that
the solution set is a continuum, i.e. closed and connected. In 1942, Aronszajn6 improved this result for differential inclusions
in the sense that he showed that the solution set is compact and acyclic, and he specified this continuum to be an R�-set. An
analogous result has been obtained for differential inclusions with u.s.c. convex valued nonlinearities by DeBelasi and Myjak16.
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Very recently, Topological structure of the solution set for ordinary differential equations and inclusions is developed recently
by Browder and Gupta in14. We bearing in the mind that the application of nonlocal condition

HD
1,1y(e) =

n
∑

i=1
�i HD

1,1y(�i),

in physical problems yields better effect than the initial condition

I1−
0+ x(1) = y0.

To the best of our knowledge, the study of the structure of the solution set for fractional differential inclusions with Hilfer-
Hadamard-Type derivative is untreated problem, and this fact, is the main motivation of this paper. Our aim is to study the
existence and uniqueness result of solutions and topological structure of solution sets for boundary value problems with Hilfer-
Hadamard-Type fractional differential inclusions of the form:

HD
�,�y(t) ∈ F (t, y(t)), t ∈ J ∶= [1, e], 1 ≤ � ≤ 2, 0 ≤ � ≤ 1 (9)

y(1 + �) = 0, HD1,1y(e) =
n
∑

i=1
�i HD

1,1y(�i), (10)

where HD�,� is the Hilfer-Hadamard fractional derivative of order 1 ≤ � ≤ 2,
0 ≤ � ≤ 1, �i ∈ (1, e), 0 < � < 1 HD1,1 = t d

dt
, J = [1, e] F ∶ J × R→ P (R) is a multivalued map (multimap for short).

This paper is organized as follows; In section 2 we introduce some preliminary results needed in the following sections. In section
3 we present an existence results for the problem (9)-(10) when the right hand side is nonconvex as well as convex valued. The
first result relies on the fixed point theorem for contraction multivalued maps due to Covitz and Nadler , while the second result
is based upon the nonlinear alternative of Leray-Schauder type. Section 4 we present the topological structure of solution sets.

2 PRELIMINARIES

In this section, we introduce notations, definitions and preliminary facts that will be used in the remainder of this paper.
Let C(J ,ℝ) be a Banach space of all continuous functions from J into ℝ with the norm

‖y‖∞ = sup{|y(t)|; t ∈ J}.

L1(J ,ℝ) denote the Banach space of functions y ∶ J → ℝ that are Lebesgue integrable with norm

‖y‖L1 = ∫
J

|y(t)|dt.

AC(J ,ℝ) is the space of function y ∶ J → ℝ which are absolutely continuous.
L∞(J ) be the Banach space of measurable function y ∶ J → ℝ which are essentially bounded equipped with the norm

‖y‖L∞ = inf{c > 0, |y(t)| ≤ c; a.e t ∈ J}.

Let (X; ‖.‖) be a Banach space.
Pcl(X) = {Y ∈ P (X) ∶ Y is closed}; Pb(X) = {Y ∈ P (X) ∶ Y is bounded}; Pcp(X) = {Y ∈ P (X) ∶ Y is compact};
Pcp,c(X) = {Y ∈ P (X) ∶ Y is compact and convex}.
A multivalued map G ∶ X → P (X) is convex (closed) valued if G(X) is convex (closed) for all x ∈ X. G is bounded on
bounded sets if G(B) = ∪X⊂BG(X) is bounded in X for all B ⊂ Pb(X) (i.e, supx∈B{sup{|y|; y ∈ G(x)}} <∞).
G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and for
each open set N of X containing G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊂ N . G is said to be
completely continuous if G(B) is relatively compact for every B ∈⊂ Pb(X).
If the multivalued map G is completely continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed
graph (i.e., xn → x⋆, yn → y⋆, yn ∈ G(xn) imply y⋆ ∈ G(x⋆)). G has a fixed point if there is x ∈ X such that x ∈ G(x). The
fixed point set of the multivalued operator G will be denoted by F ixG.
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Let (X, d) be a metric space induced from the normed space (X, ‖.‖). ConsiderHd ∶ P (X) × P (X)→ ℝ+ ∪ {∞}, given by

Hd(A,B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)
}

,

where d(A, b) = infa∈A d(a, b), d(a, B) = inf b∈B d(a, b). Then (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a generalized
(complete) metric space. A multivalued map G ∶ J → Pcl(ℝ) is said to be measurable if for every y ∈ ℝ, the function,

t→ d(y, G(t)) = inf{|y − z| ∶ z ∈ G(t)},

is measurable.

Definition 1. A multivalued operator G ∶ X → Pcl(X) is called

a) 
−Lipschitz if there exists 
 > 0 such that

Hd(G(x), G(y)) ≤ 
d(x, y) for each x, y ∈ X

b) a contraction if it is 
−Lipschitz with 
 < 1.

Definition 2. The multivalued map F ∶ J ×X → P (X) is said to be L1Carathéodory if

i) t→ F (t, u) is measurable for each u ∈ X,

ii) u→ F (t, u) is upper semicontinuous on X for almost all t ∈ J ;

iii) for each � > 0, there exists '� ∈ L1(J ,ℝ+) such that

‖F (t, u)‖P (X) = sup {|v| ∶ v ∈ F (t, u)} ≤ '�(t) ∀‖u‖ ≤ � and for a.e. t ∈ J .

Theorem 1. (Covitz-Nadler)
Let (X, d) be a complete metric space. If G ∶ X → Pcl(X) is a contraction, then F ixG ≠ ∅.

Proposition 1. 15

If Π1 and Π2 are compact valued measurable multifunctions then the multifunction t → Π1(t) ∩ Π2(t) is measurable. If (Πn) is
a sequence of compact valued measurable multifunctions then t → ∩Πn(t) is measurable, and if ∪Πn(t) is compact, t → ∪Πn(t)
is measurable.

Theorem 2. (nonlinear alternative18)
LetX be a Banach space withC ⊂ X closed and convex. AssumeU is a relatively open subset ofC with 0 ∈ C andG ∶ U → C
is upper semicontinuous and completely continuous multivalued map. Then either,

i) G has a fixed point in U or

ii) there is a point u ∈ )U and � ∈ (0, 1) with u ∈ �G(u).

For further reading and details onmultivalued analysis, we refer the reader to the books10,15. We introduce now some notations
and definitions of fractional calculus and present preliminary results needed in our proofs later.

Definition 3. 23 Let ℎ ∈ L1([a, b],ℝ) . The Riemann-Liouville fractional integral of order � > 0 of the function ℎ is defined
almost everywhere in [a, b] by

RLI�a ℎ(t) =

t

∫
a

(t − s)�−1

Γ(�)
ℎ(s)ds,

where Γ is the gamma function. When a = 0, we write RLI�ℎ(t) = [ℎ ∗ '�](t), where '�(t) =
t�−1

Γ(�)
for t > 0 and '�(t) = 0 for

t ≤ 0. the equality holds everywhere if ℎ ∈ C ([a, b];ℝ).

Definition 4. 23 Let � > 0 and n be the smallest integer greater than or equal to � and ℎ ∶ [a, b] → ℝ be a function such
that RLIn−�a ℎ ∈ ACn([a, b],ℝ). Then the Riemann-Liouville fractional derivative of order � of the function ℎ is defined almost
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every where in [a, b] by

RLD�
a+ℎ(t) =

dn

dtn
RL
In−�a+ ℎ(t)

= 1
Γ(n − �)

dn

dtn

t

∫
a

(t − s)n−�−1ℎ(s)ds.

Definition 5. 23 Let t ∈ [0,+∞) and � > 0. The Hadamard fractional integral of order �, applied to the function ℎ ∈ Lp[a, b],
1 ≤ p < +∞, 0 < a < b <∞, for t ∈ [a, b], is defined as

HI
�ℎ(t) = 1

Γ(�)

t

∫
1

(

log t
�

)�−1 ℎ(�)
�
d�, t > 1,

where log(.) = loge(.).

Definition 6. (Hadamard fractional integral)
Let � = t d

dt
, � > 0 and n = [�] + 1, where [�] is the integer part of �. The Hadamard fractional derivative of order a applied to

the function ℎ ∈ ACn
� [a, b], 0 = a < b < ∞, is defined as

HD
�ℎ(t) = 1

Γ(n − �)
(t d
dt
)n

t

∫
a

(ln t
�
)n−�−1

ℎ(�)
�
d� = �n(HIn−�ℎ)(t)

Property 1. If Re(�), Re(�) > 0, and 0 < a < b <∞, then
(

HI
�
a+

(

log �
a

)�−1
)

(t) =
Γ(�)

Γ(� + �)

(

log t
a

)�+�−1

(

HD
�
a+

(

log �
a

)�−1
)

(t) =
Γ(�)

Γ(� − �)

(

log t
a

)�−�−1

Property 2. 23(page 114) Let � ∈ ℂ and � ∈ ℂ be such that Re(�) > Re(�) > 0

∙ If 0 < a < b < ∞ and 1 ≤ p ≤∞, then for ' ∈ Lp(a, b)

HD
�
a+ HI

�
a+' = HI

�−�
a+ ' and HD

�
b− HI

�
b−' = HI

�−�
b− '

∙ In Particular if � = m ∈ ℕ, then

HD
m
a+ HI

�
a+' = HI

�−m
a+ ' and HD

m
b− HI

�
b−' = HI

�−m
b− '.

Theorem 3. 23(page 116) Let Re(�) > 0, n = [�] + 1 and 0 < a < b < ∞. Also let
(

HIn−�a+ '
)

(t) be the Hadamard type
fractional integral of the form

(

HI
n−�
a+ '

)

(t) = 1
Γ(n − �)

t

∫
a

(

log t
�

)n−�−1 '(�)
�
d�, 0 < a < t < b <∞

If '(t) ∈ L(a, b) and
(

HIn−�a+ '
)

(t) ∈ ACn
� [a, b] where

ACn
� [a, b] =

{

' ∶ [a, b]→ ℂ ∶ �n−1' ∈ AC[a, b], � = t d
dt

}

then
(

HI
�
a+ HD

�
a+'

)

(t) = '(t) −
n
∑

k=1

(

�n−k
(

HIn−�a+ '
))

(a)
Γ(� − k + 1)

(

log t
a

)�−k
.
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Definition 7. (Hilfer fractional derivative)
Let n − 1 < � < n, 0 ≤ � ≤ 1, ' ∈ L1(a, b). The Hilfer fractional derivative D�,� of order � and type � of ' is defined as

(D�,�')(t) =
(

I�(n−�)
( d
dt

)n
I (n−�)(1−�)'

)

(t)

=
(

I�(n−�)
( d
dt

)n
In−
'

)

(t), 
 = n� + � − ��

=
(

I�(n−�)D
'
)

(t),

where I (.) and D(.) is the Riemann-Liouvill fractional integral and derivative respectively.

Definition 8. (Hilfer-Hadamard fractional derivative)4
Let n − 1 < � < n, 0 ≤ � ≤ 1, ' ∈ L1(a, b). The Hilfer-Hadamard fractional derivative HD�,� of order � and type � of ' is
defined as

( HD�,�')(t) =
(

HI
�(n−�)�n HI

(n−�)(1−�)'
)

(t)
=

(

HI
�(n−�)�n HI

n−
'
)

(t), 
 = n� + � − ��
=

(

HI
�(n−�)

HD

'

)

(t),

where HI (.), HD(.) is the Hadamard fractional integral and derivative respectively.

3 EXISTENCE RESULTS

Recall that C(J ,ℝ) is a Banach space of all continuous functions from J into ℝ endowed with the norm

‖y‖ = sup
t∈J ]

|y(t)|.

Definition 9. A function y ∈ AC2(J ,ℝ) is said to be a solution of (9)-(10) if there exists a function v ∈ L1(J ,ℝ) with
v(t) ∈ F (t, y(t)) for a.e t ∈ J such that HD�,�y(t) = v(t); 1 ≤ � ≤ 2, 0 ≤ � ≤ 1 a.e t ∈ J and y(1 + �) = 0; HD1,1y(e) =
∑n
i=1 �i HD

1,1y(�i).

To prove the existence of solutions to (9)-(10), we need the following auxiliary lemmas.

Lemma 1. 3 Let � > 0 and y ∈ C[1,+∞) ∩ L1[1,+∞). Then the solution of Hadamard fractional differential equation
(

HD�y(t)
)

= 0 is given by

y(t) =
n
∑

i=1
ci (ln t)�−i,

where ci ∈ ℝ, i = 1,… , n are arbitrary constants and n − 1 < � < n.

Lemma 2. Let Re(�) > 0, 0 ≤ � ≤ 1, 
 = � + n� − �� then n − 1 < 
 ≤ n, n = [Re(�)] + 1, 0 < a < b < ∞ if ' ∈ L1(a, b)
and

(

HIn−
'
)

(t) ∈ ACn
� [a, b] then

HI
�
a+

(

HD
�,�
a+ '

)

(t) = HI
�
a+
(

HI
�(n−�)

HD

'

)

(t)

=
(

HI
�+�n−��

HD

'

)

(t)
=

(

HI


HD


'
)

(t)

= '(t) −
n−1
∑

k=0

(

�n−k−1
(

HI
n−

a+ '

))

(a)
Γ(
 − k)

(

log t
a

)

.
−k−1

As a consequence of Lemma (1) and Lemma (2) we have the following result which is useful in what follows.

Lemma 3. For 1 < � ≤ 2, 0 ≤ � ≤ 1 and ℎ ∈ C(J ,ℝ), 
 = � + 2� − �� ⇒ 
 ∈ (1, 2]. The problem

HD
�,�y(t) = '(t), t ∈ J ∶= J , 1 ≤ � ≤ 2, 0 ≤ � ≤ 1 (11)
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y(1 + �) = 0, HD1,1y(e) =
n
∑

i=1
�i HD

1,1y(�i), (12)

has a unique solution it giving in the formulae
y(t) = HI

�'(t)

+ HI
�'(1 + �) (log t)
−2

(
 − 1)�1 − (
 − 2)�2 log t
Δ

+ (log(1 + �))
−2
[ n
∑

i=1
�i HI

�−1'(�i) − HI
�−1'(e)

]

log(1 + �) (log t)
−2 − (log t)
−1

Δ

(13)

where

Δ = (
 − 2)�2
[

log(1 + �)
]
−1 − (
 − 1)�1

[

log(1 + �)
]
−2

�1 = 1 −
n
∑

i=1
�i
(

log �i
)
−2

�2 = 1 −
n
∑

i=1
�i
(

log �i
)
−3 ,

with
(
 − 2)�2 log(1 + �) − (
 − 1)�1 ≠ 0.

Proof.
Assume y satisfies (11)-(12), lemma (2) implies

HI
� (

HD
�,�y

)

(t) = HI
�'(t)

= y(t) −
1
∑

j=0

(

�2−j−1( HI2−
y)
)

(1)
Γ(
 − j)

(

log t
1

)
−j−1
,

= y(t) − c0 (log t)

−1 − c1 (log t)


−2 .

Then
y(t) = HI

�'(t) + c0 (log t)

−1 + c1 (log t)


−2 , (14)
and

y(1 + �) = 0⇒ HI
�'(1 + �) + c0 (log(1 + �))


−1 + c1 (log(1 + �))

−2 = 0

c0 =
−1

(log(1 + �))
−1 HI
�'(1 + �) −

c1
log(1 + �)

,

by Property (1), (2)
(

HI�(n−�) HD
'
)

HD
1,1y(t) = HD

1,1 [
HI

�'(t) + c0 (log t)

−1 + c1 (log t)


−2]

= HD
1,1

HI
�'(t) + c0 HD1,1 (log t)
−1 + c1 HD1,1 (log t)
−2

=
(

HI
1(2−1)

HD
2
HI

�'(t)
)

+ c0
(

HI
1(2−1)

HD
2 (log t)
−1

)

+ c1
(

HI
1(2−1)

HD
2 (log t)
−2

)

=
(

HI
1
HI

�−2'(t)
)

+ c0

(

HI
1 Γ(
)
Γ(
 − 2)

(log t)
−2−1
)

+ c1

(

HI
1 Γ(
 − 1)
Γ(
 − 1 − 2)

(log t)
−1−2−1
)

= HI
�−1'(t) + c0

Γ(
)
Γ(
 − 1)

(log t)
−2 + c1
Γ(
 − 1)
Γ(
 − 2)

(log t)
−3

= HI
�−1'(t) + c0

(
 − 1)Γ(
 − 1)
Γ(
 − 1)

(log t)
−2 + c1
(
 − 2)Γ(
 − 2)

Γ(
 − 2)
(log t)
−3

= HI
�−1'(t) + c0(
 − 1) (log t)


−2 + c1(
 − 2) (log t)

−3 .

HD
1,1y(e) = HI

�−1'(e) + c0(
 − 1) + c1(
 − 2)
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n
∑

i=1
�i HD

1,1y(�i) =
n
∑

i=1
�i HI

�−1'(�i) + c0(
 − 1)
n
∑

i=1
�i
(

log �i
)
−2

+ c1(
 − 2)
n
∑

i=1
�i
(

log �i
)
−3

= HI
�−1'(e) + c0(
 − 1) + c1(
 − 2).

c1

[

(
 − 2)

[

1 −
n
∑

i=1
�i
(

log �i
)
−3

]]

=

n
∑

i=1
�i HI

�−1'(�i) − HI
�−1'(e) − c0

[

(
 − 1)

[

1 −
n
∑

i=1
�i
(

log �i
)
−2

]]

.

Let

�1 = 1 −
n
∑

i=1
�i
(

log �i
)
−2 �2 = 1 −

n
∑

i=1
�i
(

log �i
)
−3 ,

then

c1 =
1

(
 − 2)�2

[ n
∑

i=1
�i HI

�−1'(�i) − HI
�−1'(e)

]

− c0
(
 − 1)�1
(
 − 2)�2

.

c0 =
−1

(log(1 + �))
−1 HI

'(1 + �) − 1

(
 − 2)�2 log(1 + �)

[ n
∑

i=1
�i HI

�−1'(�i) − HI
�−1'(e)

]

+ c0
(
 − 1)�1

(
 − 2)�2 log(1 + �)
.

c0 = −
1
Δ

[

(
 − 2)�2 HI�'(1 + �) + (log(1 + �))
−2
( n
∑

i=1
�i HI

�−1'(�i) − HI
�−1'(e)

)]

,

then

c1 =
1
Δ

[

log(1 + �)
−1
( n
∑

i=1
�i HI

�−1'(�i) − HI
�−1'(e)

)

+ (
 − 1)�1 HI�'(1 + �)

]

.

Now substituting the values of c0 and c1 in(14) we get(13).

3.1 The Lipschitz case
We prove the existence of solutions for the problem (9)-(10) with a nonconvex valued right hand side. Our proof is based on the
fixed point theorem for multi-valued map due to Covitz and Nadler that is theorem (1).

Theorem 4. Assume that the following hypothesis holds:

• (H1) F ∶ J ×ℝ → Pcp(ℝ), such that F (., y) ∶ J → Pcp(ℝ) is measurable for each y ∈ ℝ.

• (H2) There exists l ∈ L1(J ,ℝ) such that

Hd(F (t, y), F (t, ȳ)) ≤ l(t)|y − ȳ| for every y, ȳ ∈ ℝ,

and
d(0, F (t, 0)) ≤ l(t) for almost all t ∈ J .

• (H3) If Φ satisfied the condition ‖l‖∞Φ < 1 where

Φ =

{

1 −
[

log(1 + �)
]3−�−


Γ(� + 1)
|

|

|

|

(
 − 1)�1 − (
 − 2)�2
(
 − 2)�2 log(1 + �) − (
 − 1)�1

|

|

|

|

+
1 +

∑n
i=1 |�i|

Γ(�)
1 + log(1 + �)

|

|

(
 − 2)�2 log(1 + �) − (
 − 1)�1||

}

.
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Then the problem of boundary value (9)-(10) has at least one solution on J .

Proof. Transform the problem (9)-(10) into a fixed point problem. Consider the multivalued operator,

N(y)(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ ∈ C(J ,ℝ) ∶
ℎ(t) = HI�v(t)
+ HI�v(1 + �) (log t)


−2 (
−1)�1−(
−2)�2 log t
Δ

+ (log(1 + �))
−2
[
∑n
i=1 �i HI

�−1v(�i) − HI�−1v(e)
] log(1+�)(log t)
−2−(log t)
−1

Δ
,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(15)

where
v ∈ SF ,y = {v ∈ L1(J ,R)|v(t) ∈ F (t, y(t)) for a.e t ∈ J}

�1 = 1 −
n
∑

i=1
�i
(

log �i
)
−2 �2 = 1 −

n
∑

i=1
�i
(

log �i
)
−3 ,

with
(
 − 2)�2 log(1 + �) − (
 − 1)�1 ≠ 0.

Remark 1. For each y ∈ C(J ,ℝ), the set SF ,y is nonempty since by (H1), F has a measurable selection (see15, Theorem III.6).

We shall prove thatN satisfies the assumptions of Theorem (1).
The proof will be given in two steps.
Step 1.N(y) ∈ Pcl(C(J ,ℝ)) for each y ∈ C(J ,ℝ).
Indeed, let (yn)n∈ℕ ∈ N(y) such that yn → ȳ in C(J ,ℝ); then ȳ ∈ C(J ,ℝ) and there exists vn ∈ SF ,y such that for each t ∈ J ,

yn(t) = HI
�vn(t)

+ HI
�vn(1 + �) (log t)


−2 (
 − 1)�1 − (
 − 2)�2 log t
Δ

+ (log(1 + �))
−2
[ n
∑

i=1
�i HI

�−1vn(�i) − HI
�−1vn(e)

]

log(1 + �) (log t)
−2 − (log t)
−1

Δ
,

= 1
Γ(�)

t

∫
1

(

log t
�

)�−1 vn(�)
�

d�

+
(
−1)�1(log t)
−2−(
−2)�2(log t)
−1

Δ

Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 vn(�)
�

d�

+ (log(1 + �))
−2
⎡

⎢

⎢

⎣

n
∑

i=1
�i

1
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 vn(�)
�

d� − 1
Γ(� − 1)

e

∫
1

(

log e
�

)�−2 vn(�)
�

d�
⎤

⎥

⎥

⎦

×
log(1 + �)(log t)
−2 − (log t)
−1

Δ
.

Using the fact that F has compact values and from (H2) we pass into a subsequence to obtain that vn converges to v in L1(J ,ℝ).
Thus v ∈ SF ,y and for each t ∈ J we have

yn(t)→ ȳ(t)

ȳ(t) = 1
Γ(�)

t

∫
1

(

log t
�

)�−1 v(�)
�
d�

+
(
−1)�1(log t)
−2−(
−2)�2(log t)
−1

Δ

Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v(�)
�
d�

+
(log(1 + �))
−2

Γ(� − 1)
log(1 + �)(log t)
−2 − (log t)
−1

Δ
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⎡

⎢

⎢

⎣

n
∑

i=1
�i

�i

∫
1

(

log
�i
�

)�−2 v(�)
�
d� −

e

∫
1

(

log e
�

)�−2 v(�)
�
d�

⎤

⎥

⎥

⎦

So ȳ ∈ N(y).
Step 2.We show that there exists � < 1 such that

Hd(N(y), N(ȳ)) ≤ �‖y − ȳ‖,

for each y, ȳ ∈ C(J ,ℝ).
Let y, ȳ ∈ C(J ,ℝ) and ℎ1 ∈ N(y), then there exists v1 ∈ F (t, y(t)) such that for each t ∈ J ,

ℎ1(t) =
1
Γ(�)

t

∫
1

(

log t
�

)�−1 v1(�)
�

d�

+
(
−1)�1(log t)
−2−(
−2)�2(log t)
−1

Δ

Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v1(�)
�

d�

+
(log(1 + �))
−2

Γ(� − 1)

⎡

⎢

⎢

⎣

n
∑

i=1
�i

�i

∫
1

(

log
�i
�

)�−2 v1(�)
�

d� −

e

∫
1

(

log e
�

)�−2 v1(�)
�

d�
⎤

⎥

⎥

⎦

log(1 + �)(log t)
−2 − (log t)
−1

Δ
.

By (H2), we have
Hd(F (t, y(t)), F (t, ȳ(t))) ≤ l(t)|y(t) − ȳ(t)|.

So, there exists w ∈ F (t, ȳ(t)) such that

|v1(t) −w(t)| ≤ l(t)|y(t) − ȳ(t)| t ∈ J .

Consider U ∶ J → P (ℝ) given by

U (t) =
{

w ∈ ℝ ∶ |v1(t) −w(t)| ≤ l(t)|y(t) − ȳ(t)|
}

.

Since the multivalued operator U (t) ∩ F (t, ȳ(t)) is measurable by proposition (1)15, there exists a function v2(t) which is
measurable selection for U ∩ F (t, ȳ), v2(t) ∈ F (t, ȳ(t)) and for each t ∈ J .

|v1(t) − v2(t)| ≤ l(t)|y(t) − ȳ(t)| t ∈ J .

Let us define for each t ∈ J ,

ℎ2(t) =
1
Γ(�)

t

∫
1

(

log t
�

)�−1 v2(�)
�

d�

+
(
−1)�1(log t)
−2−(
−2)�2(log t)
−1

Δ

Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v2(�)
�

d�

+
log(1 + �)
−1(log t)
−2 − log(1 + �)
−2(log t)
−1

ΔΓ(� − 1)
⎡

⎢

⎢

⎣

n
∑

i=1
�i

�i

∫
1

(

log
�i
�

)�−2 v2(�)
�

d� −

e

∫
1

(

log e
�

)�−2 v2(�)
�

d�
⎤

⎥

⎥

⎦

.



Berrabah et al 11

Thus

|ℎ1(t) − ℎ2(t)| ≤
1
Γ(�)

t

∫
1

(

log t
�

)�−1 1
�
|v1(�) − v2(�)|d�

+
|

|

|

|

|

(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

Δ

|

|

|

|

|

1
Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 1
�
|v1(�) − v2(�)|d�

+ (log(1 + �))
−2
⎡

⎢

⎢

⎣

n
∑

i=1
|�i|

1
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 1
�
|v1(�) − v2(�)|d�

− 1
Γ(� − 1)

e

∫
1

(

log e
�

)�−2 1
�
|v1(�) − v2(�)|d�

⎤

⎥

⎥

⎦

|

|

|

|

|

log(1 + �)(log t)
−2 − (log t)
−1

Δ

|

|

|

|

|

≤ 1
�Γ(�)

(log t)� |l(t)| |y(t) − ȳ(t)| + 1
�Γ(�)

[

log(1 + �)
]�
|l(t)| |y(t) − ȳ(t)|

.
|

|

|

|

|

(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

Δ

|

|

|

|

|

+ (log(1 + �))
−2
[ n
∑

i=1
|�i|

1
(� − 1)Γ(� − 1)

(

log �i
)�−1 + 1

(� − 1)Γ(� − 1)
(log e)�−1

]

. |l(t)| |y(t) − ȳ(t)|
|

|

|

|

|

log(1 + �)(log t)
−2 − (log t)
−1

Δ

|

|

|

|

|

≤ ‖l‖‖y − ȳ‖

{

1
Γ(� + 1)

+

[

log(1 + �)
]�

Γ(� + 1)
|

|

|

|

(
 − 1)�1 + (
 − 2)�2
Δ

|

|

|

|

+ (log(1 + �))
−2
1 +

∑n
i=1 |�i|

Γ(�)
1 + log(1 + �)

|Δ|

}

≤ ‖l‖‖y − ȳ‖

{

1
Γ(� + 1)

+

[

log(1 + �)
]�

Γ(� + 1)
|

|

|

|

(
 − 1)�1 + (
 − 2)�2
Δ

|

|

|

|

+ (log(1 + �))
−2
1 +

∑n
i=1 |�i|

Γ(�)
1 + log(1 + �)

|Δ|

}

.

For an analogous relation, obtained by interchanging the roles of y and ȳ

Hd(N(y), N(ȳ)) ≤ ‖l‖

{

1
Γ(� + 1)

+

[

log(1 + �)
]�

Γ(� + 1)
|

|

|

|

(
 − 1)�1 + (
 − 2)�2
Δ

|

|

|

|

+ (log(1 + �))
−2
1 +

∑n
i=1 |�i|

Γ(�)
1 + log(1 + �)

|Δ|

}

‖y − ȳ‖.

SinceN is a contraction by (H3) and thus by theorem (1),N has a fixed point y which is a solution to (9)-(10).

3.2 The Carathéodory case
We consider the case when N has convex values, our approach is based on the nonlinear alternative Leray-Schauder type fore
multivalued map.
Let us impose the conditions below for convenience.

• (A1) F ∶ J ×ℝ → Pcp,c(ℝ) is a Carathéodory multivalued map.
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• (A2) There exist p ∈ C(J ,ℝ+) and  ∶ [0,∞)→ (0,∞) continuous and non decreasing such that

‖F (t, y)‖P = sup {|v| ∶ v(t) ∈ F (t, y)} ≤ p(t) (‖y‖)

for t ∈ J and each y ∈ C(J ,ℝ).

• (A3) There exists a numberM > 0 such that
M

‖p‖ (‖M‖)
{

1
Γ(�+1)

+ m1,� + m2,�
} > 1,

where

m1,� =

[

log(1 + �)
]�

Γ(� + 1)
|

|

|

|

(
 − 1)�1 + (
 − 2)�2
Δ

|

|

|

|

,

m2,� = (log(1 + �))

−2 1 +

∑n
i=1 |�i|

Γ(�)
1 + log(1 + �)

|Δ|
.

Theorem 5. Assume that the conditions (A1)-(A3) and (H2) hold then the problem (9)-(10) has at least one solution.

Proof. Consider the operator N ∶ C(J ,ℝ) → P (C(J ,ℝ)) defined by (15). We will show that N satisfies the assumptions of
the nonlinear alternative of Leray-Schauder type.
The proof will be given in several steps.
Step 1.N(y) is convex for each y ∈ C(J ,ℝ).
Indeed, if ℎ1, ℎ2 belong toN(y), then there exist v1, v2 ∈ SF ,y such that for each t ∈ J , we

ℎj(t) =
1
Γ(�)

t

∫
1

(

log t
�

)�−1 vj(�)
�

d� +
(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

Δ

1
Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 vj(�)
�

d�

+
(log(1 + �))
−2

Γ(� − 1)

⎡

⎢

⎢

⎣

n
∑

i=1
�i

�i

∫
1

(

log
�i
�

)�−2 vj(�)
�

d� −

e

∫
1

(

log e
�

)�−2 vj(�)
�

d�
⎤

⎥

⎥

⎦

×
log(1 + �)(log t)
−2 − (log t)
−1

Δ
j = 1, 2.

Let 0 ≤ � ≤ 1, Then for each t ∈ J we have

[�ℎ1 + (1 − �)ℎ2](t)

= 1
Γ(�)

t

∫
1

(

log t
�

)�−1 1
�
[�v1(�) + (1 − �)v2(�)]d�

+ 1
Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 1
�
[�v1(�) + (1 − �)v2(�)]d�

(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

Δ

+
(log(1 + �))
−2

Γ(� − 1)
×
log(1 + �)(log t)
−2 − (log t)
−1

Δ

×
⎡

⎢

⎢

⎣

n
∑

i=1
�i

�i

∫
1

(

log
�i
�

)�−2 1
�
[�v1(�) + (1 − �)v2(�)]d� −

e

∫
1

(

log e
�

)�−2 1
�
[�v1(�) + (1 − �)v2(�)]d�

⎤

⎥

⎥

⎦
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Since SF ,y is convex (because F has convex values), we have

�ℎ1 + (1 − �)ℎ2 ∈ N(y).

Step 2.N maps bounded sets into bounded sets in C(J ,ℝ).
Let Br = {y ∈ C(J ,ℝ) ∶ ‖y‖ ≤ r} be a bounded sets in C(J ,ℝ) and y ∈ Br; then for each ℎ ∈ N(y) there exists v ∈ SF ,y
such that for each t ∈ J , it follows by using (A2)

ℎ(t) = 1
Γ(�)

t

∫
1

(

log t
�

)�−1 v(�)
�
d�

+
(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

ΔΓ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v(�)
�
d�

+ (log(1 + �))
−2
⎡

⎢

⎢

⎣

n
∑

i=1
�i

1
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 v(�)
�
d� − 1

Γ(� − 1)

e

∫
1

(

log e
�

)�−2 v(�)
�
d�

⎤

⎥

⎥

⎦

log(1 + �)(log t)
−2 − (log t)
−1

Δ

≤ 1
Γ(�)

t

∫
1

(

log t
�

)�−1
|v(�)|
�

d� + 1
Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1
|v(�)|
�

d�

.
|

|

|

|

|

(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

Δ

|

|

|

|

|

+ (log(1 + �))
−2
⎡

⎢

⎢

⎣

|

|

|

|

|

|

|

n
∑

i=1
�i

1
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 v(�)
�
d�

|

|

|

|

|

|

|

+
|

|

|

|

|

|

|

1
Γ(� − 1)

e

∫
1

(

log e
�

)�−2 v(�)
�
d�

|

|

|

|

|

|

|

⎤

⎥

⎥

⎦

|

|

|

|

|

log(1 + �)(log t)
−2 − (log t)
−1

Δ

|

|

|

|

|

≤ 1
Γ(�)

t

∫
1

(

log t
�

)�−1 p(�) (‖y‖)
�

d� +
|

|

|

(
−1)�1−(
−2)�2
Δ

|

|

|

Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 p(�) (‖y‖)
�

d�

+ (log(1 + �))
−2
⎡

⎢

⎢

⎣

|

|

|

|

|

|

|

n
∑

i=1
�i

1
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 p(�) (‖y‖)
�

d�

|

|

|

|

|

|

|

+
|

|

|

|

|

|

|

1
Γ(� − 1)

e

∫
1

(

log e
�

)�−2 p(�) (‖y‖)
�

d�

|

|

|

|

|

|

|

⎤

⎥

⎥

⎦

|

|

|

|

|

log(1 + �)(log t)
−2 − (log t)
−1

Δ

|

|

|

|

|

≤ 1
Γ(� + 1)

‖p‖ (‖y‖) +

[

log(1 + �)
]�

Γ(� + 1)
|

|

|

|

(
 − 1)�1 + (
 − 2)�2
Δ

|

|

|

|

‖p‖ (‖y‖)

+ (log(1 + �))
−2
[

∑n
i=1 |�i|
Γ(�)

‖p‖ (‖y‖) + 1
Γ(�)

‖p‖ (‖y‖)

]

1 + log(1 + �)
|Δ|

≤ ‖p‖ (r)

{

1
Γ(� + 1)

+

[

log(1 + �)
]�

Γ(� + 1)
|

|

|

|

(
 − 1)�1 + (
 − 2)�2
Δ

|

|

|

|

+ (log(1 + �))
−2
1 +

∑n
i=1 |�i|

Γ(�)
1 + log(1 + �)

|Δ|

}

∶= l.

Step 3.N maps bounded sets into equicontinuous sets of C(J ,ℝ).
Let t1, t2 ∈ J , t1 < t2 and Br be a bounded set of C(J ,ℝ) as in Step 2.
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Let y ∈ Br and ℎ ∈ N(y), using condition (A2) one has
|

|

ℎ(t2) − ℎ(t1)|| =
|

|

|

|

|

|

|

1
Γ(�)

t2

∫
1

(

log
t2
�

)�−1 v(�)
�
d� + 1

Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v(�)
�
d�

×
(
 − 1)�1(log t2)
−2 − (
 − 2)�2(log t2)
−1

Δ

+ (log(1 + �))
−2
⎡

⎢

⎢

⎣

n
∑

i=1
�i

1
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 v(�)
�
d� − 1

Γ(� − 1)

e

∫
1

(

log e
�

)�−2 v(�)
�
d�

⎤

⎥

⎥

⎦

log(1 + �)(log t2)
−2 − (log t2)
−1

Δ
− 1
Γ(�)

t1

∫
1

(

log
t1
�

)�−1 v(�)
�
d�

−
(
 − 1)�1(log t1)
−2 − (
 − 2)�2(log t1)
−1

ΔΓ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v(�)
�
d�

− (log(1 + �))
−2
⎡

⎢

⎢

⎣

n
∑

i=1
�i

1
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 v(�)
�
d� − 1

Γ(� − 1)

e

∫
1

(

log e
�

)�−2 v(�)
�
d�

⎤

⎥

⎥

⎦

×
log(1 + �)(log t1)
−2 − (log t1)
−1

Δ

|

|

|

|

|

=
|

|

|

|

|

|

|

1
Γ(�)

t1

∫
1

[

(

log
t2
�

)�−1

−
(

log
t1
�

)�−1
]

v(�)
�
d� + 1

Γ(�)

t2

∫
t1

(

log
t2
�

)�−1 v(�)
�
d�

. +
(
 − 1)�1

[

(

log t2
)
−2 −

(

log t1
)
−2

]

− (
 − 2)�2
[

(

log t2
)
−1 −

(

log t1
)
−1

]

Δ

× 1
Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v(�)
�
d�

+ (log(1 + �))
−2
⎡

⎢

⎢

⎣

n
∑

i=1
�i

1
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 v(�)
�
d� − 1

Γ(� − 1)

e

∫
1

(

log e
�

)�−2 v(�)
�
d�

⎤

⎥

⎥

⎦

. ×
log(1 + �)

[

(log t2)
−2 − (log t1)
−2
]

−
[

(log t2)
−1 − (log t1)
−1
]

Δ

|

|

|

|

|

≤ ‖p‖ (r)
Γ(�)

t1

∫
1

[

(

log
t2
�

)�−1

−
(

log
t1
�

)�−1
]

d�
�
+
‖p‖ (r)
Γ(�)

t2

∫
t1

(

log
t2
�

)�−1 d�
�

+
‖p‖ (r)
Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 d�
�

. ×
|

|

|

|

|

|

|

(
 − 1)�1
[

(

log t2
)
−2 −

(

log t1
)
−2

]

− (
 − 2)�2
[

(

log t2
)
−1 −

(

log t1
)
−1

]

Δ

|

|

|

|

|

|

|

+ (log(1 + �))
−2
⎡

⎢

⎢

⎣

n
∑

i=1
�i
‖p‖ (r)
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 d�
�
+

‖p‖ (r)
Γ(� − 1)

e

∫
1

(

log e
�

)�−2 d�
�

⎤

⎥

⎥

⎦

. ×
log(1 + �) |

|

(log t2)
−2 − (log t1)
−2|| + |

|

(log t2)
−1 − (log t1)
−1||
|Δ|

.
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As t1 → t2, the right hand side of the above inequality tends to zero.
As a consequence of Step 1 to 3 therefore it follows by Ascoli-Arzela theorem that N ∶ C(J ,ℝ) → C(J ,ℝ) is completely
continuous.
Step 4.N has a closed graph.
Let yn → y∗, ℎn ∈ N(yn) and ℎn → ℎ∗, then we need to show that ℎ∗ ∈ N(y∗) associated with ℎn ∈ N(yn), there exists
vn ∈ SF ,yn such that for each t ∈ J ,

ℎn(t) =
1
Γ(�)

t

∫
1

(

log t
�

)�−1 vn(�)
�

d�

+
(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

(

(
 − 2)�2
[

log(1 + �)
]
−1 − (
 − 1)�1

[

log(1 + �)
]
−2

)

Γ(�)
1+�

∫
1

(

log 1 + �
�

)�−1 vn(�)
�

d�

+
⎡

⎢

⎢

⎣

n
∑

i=1
�i

1
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 vn(�)
�

d� − 1
Γ(� − 1)

e

∫
1

(

log e
�

)�−2 vn(�)
�

d�
⎤

⎥

⎥

⎦

×
log(1 + �)(log t)
−2 − (log t)
−1

(
 − 2)�2 log(1 + �) − (
 − 1)�1
.

(16)

Thus we must show that there exists v∗ ∈ SF ,y∗ such that for each t ∈ J

ℎ∗(t) =
1
Γ(�)

t

∫
1

(

log t
�

)�−1 v∗(�)
�

d� + 1
Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v∗(�)
�

d�

×
(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

Δ

+ (log(1 + �))
−2
log(1 + �)(log t)
−2 − (log t)
−1

Δ
.

×
⎡

⎢

⎢

⎣

n
∑

i=1
�i

1
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 v∗(�)
�

d� − 1
Γ(� − 1)

e

∫
1

(

log e
�

)�−2 v∗(�)
�

d�
⎤

⎥

⎥

⎦

Since F (t, .) is upper semicontinuous by (A1), then for every " > 0, there exist n0(") ≥ 0 such that for every n ≥ n0, we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y∗(t)) + "B(0, 1) a.e. t ∈ J .

Since F (., .) has compact values then there exists a subsequence vnk(.) such that

vnk(.) ←→ v∗(.) as k→∞,

v∗(t) ∈ F (t, y∗(t)) a.e. t ∈ J .
For every w ∈ F (t, y∗(t)), we have

|vnm(t) − v∗(t)| ≤ |vnm(t) −w| + |w − v∗(t)|.
Then

|vnm(t) − v∗(t)| ≤ d(vnm(t), F (t, y∗(t)).
By an analogous relation, obtained by interchanging the roles of vnm and v∗ and using condition (H2), it follows that

|vnm(t) − v∗(t)| ≤ Hd(F (t, yn(t)), F (t, y∗(t))) ≤ l(t)‖yn − y∗‖∞.
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Then

|ℎn(t) − ℎ∗(t)| ≤
1
Γ(�)

t

∫
1

(

log t
�

)�−1 |vnm(�) − v
∗(�)|

�
d�

+
(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

ΔΓ(�)

1+�

∫
1

(

log 1 + �
�

)�−1
|vnm(�) − v

∗(�)|
�

d�

+
(log(1 + �))
−2

Γ(� − 1)
log(1 + �)(log t)
−2 − (log t)
−1

Δ
⎡

⎢

⎢

⎣

n
∑

i=1
�i

�i

∫
1

(

log
�i
�

)�−2 |vnm(�) − v
∗(�)|

�
d� −

e

∫
1

(

log e
�

)�−2 |vnm(�) − v
∗(�)|

�
d�

⎤

⎥

⎥

⎦

≤ 1
Γ(�)

t

∫
1

(

log t
�

)�−1 ‖ynm − y∗‖∞
�

d�

+
(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

ΔΓ(�)

1+�

∫
1

(

log 1 + �
�

)�−1
‖ynm − y∗‖∞‖

�
d�

+
‖ynm − y∗‖∞
Γ(� − 1)

(log(1 + �))
−2
⎡

⎢

⎢

⎣

n
∑

i=1
�i

�i

∫
1

(

log
�i
�

)�−2 1
�
d� −

e

∫
1

(

log e
�

)�−2 1
�
d�

⎤

⎥

⎥

⎦

log(1 + �)(log t)
−2 − (log t)
−1

Δ
.

Since ‖ynm − y∗‖ → 0 as m→ 0, one has ‖ℎn − ℎ∗‖ → 0 as n→ 0.
Step 5. A priori bounds on solutions.
Let y be such that y ∈ �N(y)with � ∈ (0, 1) then there exists v ∈ SF ,y such that for each t ∈ J and taking account (A2)we have

y(t) = 1
Γ(�)

t

∫
1

(

log t
�

)�−1 v(�)
�
d�

+
(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

ΔΓ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v(�)
�
d�

+ (log(1 + �))
−2
⎡

⎢

⎢

⎣

∑n
i=1 �i

Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 v(�)
�
d� − 1

Γ(� − 1)

e

∫
1

(

log e
�

)�−2 v(�)
�
d�

⎤

⎥

⎥

⎦

log(1 + �)(log t)
−2 − (log t)
−1

Δ

≤ 1
Γ(�)

t

∫
1

(

log t
�

)�−1
|v(�)|
�

d� + 1
Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1
|v(�)|
�

d�

.
|

|

|

|

|

(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

Δ

|

|

|

|

|

+
log(1 + �) + 1

|Δ|
(log(1 + �))
−2

Γ(� − 1)

⎡

⎢

⎢

⎣

n
∑

i=1
|�i|

�i

∫
1

(

log
�i
�

)�−2
|v(�)|
�

d� +

e

∫
1

(

log e
�

)�−2
|v(�)|
�

d�
⎤

⎥

⎥

⎦
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≤ ‖p‖ (‖y‖)
Γ(�)

t

∫
1

(

log t
�

)�−1 1
�
d� +

‖p‖ (‖y‖)
Γ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 1
�
d�

|(
 − 1)�1| + |(
 − 2)�2|
|Δ|

+ (log(1 + �))
−2
⎡

⎢

⎢

⎣

n
∑

i=1
|�i|

‖p‖ (‖y‖)
Γ(� − 1)

�i

∫
1

(

log
�i
�

)�−2 1
�
d� +

‖p‖ (‖y‖)
Γ(� − 1)

e

∫
1

(

log e
�

)�−2 1
�
d�

⎤

⎥

⎥

⎦

log(1 + �) + 1
|Δ|

≤ ‖p‖ (‖y‖)
Γ(� + 1)

+
‖p‖ (‖y‖)
Γ(� + 1)

[

log(1 + �)
]�

.
|

|

(
 − 1)�1|| + |

|

(
 − 2)�2||
|Δ|

+ (log(1 + �))
−2
log(1 + �) + 1

|Δ|

[ n
∑

i=1
|�i|

‖p‖ (‖y‖)
Γ(�)

+
‖p‖ (‖y‖)
Γ(�)

]

≤ ‖p‖ (‖y‖)

{

1
Γ(� + 1)

+

[

log(1 + �)
]�

Γ(� + 1)
|(
 − 1)�1| + |(
 − 2)�2|

|Δ|

+ (log(1 + �))
−2
∑n
i=1 |�i| + 1
Γ(�)

|

log(1 + �) + 1
Δ

|

}

,

which implies that
‖y‖

‖p‖ (‖y‖)
{

1
Γ(�+1)

+ m1,� + m2,�
} ≤ 1.

In view of (A3), there existsM such that ‖y‖ ≠M .
Let us set U = {y ∈ C(J ,ℝ) ∶ ‖y‖ < M}. The operator N ∶ Ū ←→ P (C(J ,ℝ)) is upper semicontinuous and completely
continuous; From the choice of U , there is no y ∈ )U such that y ∈ �N(y) for some � ∈ (0, 1). As a consequence of the
nonlinear alternative of Leray-Schauder, we deduce thatN has a fixed point y ∈ Ū which is a solution of the problem (9)-(10).

4 TOPOLOGICAL STRUCTURE OF THE SOLUTION SET

Below we shall concentrate our considerations on the topological structure of the set of fixed points of (9)-(10). Let us consider
the hypothesis below

(B) There exists p ∈ C(J ,ℝ) such that

‖F (t, y)‖P ≤ p(t) for t ∈ J and y ∈ ℝ.

Theorem 6. Assume that the conditions (A1) and (B) hold. Then the solution set of (9)-(10) is nonempty and compact in
C(J ,ℝ).

Proof .
Let

S = {y ∈ C(J ,ℝ); y is solution of (9)-(10)} .
From Theorem (5) S ≠ ∅.
Now, we prove that S is compact.
Let (yn)n∈ℕ ∈ S, then there exists vn ∈ SF ,yn and t ∈ J such that

yn(t) =
1
Γ(�)

t

∫
1

(

log t
�

)�−1 vn(�)
�

d�
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+
(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

ΔΓ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 vn(�)
�

d�

+
(log(1 + �))
−2

Γ(� − 1)
×
log(1 + �)(log t)
−2 − (log t)
−1

Δ

×
⎡

⎢

⎢

⎣

n
∑

i=1
�i

�i

∫
1

(

log
�i
�

)�−2 vn(�)
�

d� −

e

∫
1

(

log e
�

)�−2 vn(�)
�

d�
⎤

⎥

⎥

⎦

From (B) we can prove that there exists anM1 > 0 such that ‖yn‖ ≤M1 for every n ≥ 1. As in Step 3 in Theorem (5), we can
easily show that the set

{

yn; n ≥ 1
}

is equicontinuous in C(J ,ℝ), hence by Arzela-Ascoli theorem we can conclued that there
exists a subsequence (denoted by {yn}) of {yn} converging to y in C(J ,ℝ).
We shall show that there exist v(.) ∈ F (., y(.)) such that

y(t) = 1
Γ(�)

t

∫
1

(

log t
�

)�−1 v(�)
�
d�

+
(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

ΔΓ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v(�)
�
d�

+
(log(1 + �))
−2

Γ(� − 1)
×
log(1 + �)(log t)
−2 − (log t)
−1

Δ

×
⎡

⎢

⎢

⎣

n
∑

i=1
�i

�i

∫
1

(

log
�i
�

)�−2 v(�)
�
d� −

e

∫
1

(

log e
�

)�−2 v(�)
�
d�

⎤

⎥

⎥

⎦

Since F (t, .) is upper continuous, for every " > 0 there exists n0(") ≥ 0 such that for every n ≥ n0 we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y(t)) + "B(0, 1) a.e. t ∈ J ,

Since F (., .) has compact values, there exists a subsequence vnm such that

vnm(.)→ v(.) as m→∞, v(t) ∈ F (t, y(t)) a.e. t ∈ J .

It is clear that the subsequence vnm(t) is integrally bounded.
By Lebesgue dominated convergence theorem, yields v ∈ L1(J ,ℝ) which implies that v ∈ SF ,y. Thus for t ∈ J , we have

y(t) = 1
Γ(�)

t

∫
1

(

log t
�

)�−1 v(�)
�
d�

+
(
 − 1)�1(log t)
−2 − (
 − 2)�2(log t)
−1

ΔΓ(�)

1+�

∫
1

(

log 1 + �
�

)�−1 v(�)
�
d�

+
(log(1 + �))
−2

Γ(� − 1)
×
log(1 + �)(log t)
−2 − (log t)
−1

Δ

×
⎡

⎢

⎢

⎣

n
∑

i=1
�i

�i

∫
1

(

log
�i
�

)�−2 v(�)
�
d� −

e

∫
1

(

log e
�

)�−2 v(�)
�
d�

⎤

⎥

⎥

⎦

Then S ∈ Pcp(C(J ,ℝ)).
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5 CONCLUSION

In this work, we deal with the problem concerning existence of solution sets and its topological structure for Hilfer-Hadamard-
Type fractional differential inclusions modeled by inclusion (9)-(10) with Hilfer-Hadamard-Type fractional derivative and multi-
point boundary conditions. The nonconvex valued right hand side in the first leg forced us to make use Banach contraction, in
the second leg we apply the nonlinear alternative of Leray-Schauder to give our existence result we ended by giving topological
structure of the solution sets when it is nonempty.
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