References
  1. Smigiel KS, Srivastava S, Stolley JM, et al. Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunol Rev 2014; 259(1): 40-59. doi: 10.1111/imr.12170.
  2. Kumar P, Bhattacharya P and Prabhakar BS. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 2018; 95: 77-99. doi: 10.1016/j.jaut.2018.08.007
  3. Rocamora-Reverte L, Melzer FL, Würzner R, et al. The complex role of regulatory T cells in immunity and aging. Front Immunol 2021; 11: 616949. doi: 10.3389/fimmu.2020.616949.
  4. Shevyrev D and Tereshchenko V. Treg Heterogeneity, function, and homeostasis. Front Immunol 2020; 10:3100. doi: 10.3389/fimmu.2019.03100.
  5. Vadasz Z, Haj T, Kessel A, Toubi E. Age-related autoimmunity. BMC Med 2013; 11: 94. doi: 10.1186/1741-7015-11-94.
  6. Kronenberg M and Rudensky A. Regulation of immunity by self-reactive T cells. Nature 2005; 435: 598604. doi: 10.1038/nature03725.
  7. Workman CJ, Szymczak-Workman AL, et al. The development and function of regulatory T cells. Cell Mol Life Sci 2009; 66(16): 2603-22. doi: 10.1007/s00018-009-0026-2.
  8. Yu A, Zhu L, Altman NH, Malek TR. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 2009; 30: 20417. doi: 10.1016/j.immuni.2008.11.014.
  9. Horwitz DA, Zheng SG, Wang J, et al. Critical role of IL-2 and TGF-β in generation, function and stabilization of Foxp3+CD4+ Treg. Eur J Immunol 2008; 38(4): 912-5. doi: 10.1002/eji.200738109.
  10. Jung HN, Lee SY, Lee S, et al. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging. Theranostics 2022; 12(17): 7509-7531. doi: 10.7150/thno.77259.
  11. Qiu Y, Shi YN, Zhu N, et al. A lipid perspective on regulated pyroptosis. Int J Biol Sci 2023; 19(8): 2333-2348. doi: 10.7150/ijbs.81017.
  12. Forster J. III, Nandi D, Kulkarni A. mRNA-carrying lipid nanoparticles that induce lysosomal rupture activate NLRP3 inflammasome and reduce mRNA transfection efficiency. Biomater Sci 2022; 10: 5566-82. doi: 10.1039/d2bm00883a.
  13. Lima H Jr, Jacobson LS, Goldberg MF, et al. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle 2013; 12(12): 1868-78. doi: 10.4161/cc.24903.
  14. Phulphagar K, Khn LI, Ebner S, Frauenstein A, et al. Proteomics reveals distinct mechanisms regulating the release of cytokines and alarmins during pyroptosis. Cell Rep 2021; 34(10): 108826. doi: 10.1016/j.celrep.2021.108826.
  15. Cinat D, Coppes RP, Barazzuol L. DNA Damage-induced inflammatory microenvironment and adult stem cell response. Front Cell Dev Biol 2021; 9: 729136. doi: 10.3389/fcell.2021.729136.
  16. Sansonetti PJ, Phalipon A, Arondel J, et al. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 2000; 12(5): 581-90. doi: 10.1016/s1074-7613(00)80209-5.
  17. Iwai Y, Hemmi H, Mizenina O, et al. An IFN-gamma-IL-18 signaling loop accelerates memory CD8+ T cell proliferation. PLoS One 2008; 3(6): e2404. doi: 10.1371/journal.pone.0002404.
  18. Enoksson SL, Grasset EK, Hägglöf T, et al. The inflammatory cytokine IL-18 induces self-reactive innate antibody responses regulated by natural killer T cells. Proc Natl Acad Sci U S A 2011; 108(51): E1399-407. doi: 10.1073/pnas.1107830108.
  19. Huang C-F, Chen L, Li Y-C, et al. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res 2017; 36: 113. doi: 10.1186/S13046-017-0589-Y.
  20. Peligero-Cruz C, Givony T, Seb-Pedrs A, et al. IL18 signaling promotes homing of mature Tregs into the thymus. Elife 2020; 9: e58213. doi: 10.7554/eLife.58213.
  21. Thiault N, Darrigues J, Adoue V, et al. Peripheral regulatory T lymphocytes recirculating to the Thymus suppress the development of their precursors. Nature Immunology 2015; 16: 628634. doi: 10.1038/ni.3150.
  22. Agrati C, Castilletti C, Goletti D, et al. Coordinate induction of humoral and spike specific T-cell response in a cohort of Italian health care workers receiving BNT162b2 mRNA vaccine. Microorganisms 2021; 9(6): 1315. doi: 10.3390/microorganisms9061315.
  23. Sedegah M, Porter C, Goguet E, et al. Cellular interferon-γ and interleukin-2 responses to SARS-CoV-2 structural proteins are broader and higher in those vaccinated after SARS-CoV-2 infection compared to vaccinees without prior SARS-CoV-2 infection. PLoS One 2022; 17(10): e0276241. doi: 10.1371/journal.pone.0276241.
  24. Won T, Gilotra NA, Wood MK, et al. Increased interleukin 18-dependent immune responses are associated with myopericarditis after COVID-19 mRNA vaccination. Front Immunol 2022; 13: 851620. doi: 10.3389/fimmu.2022.851620.
  25. Thomas R, Wang W, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing 2020; 17: 2. doi: 10.1186/s12979-020-0173-8.
  26. Palmer S, Albergante L, Blackburn C, et al. Thymic involution and rising disease incidence with age. PNAS 2018; 115(8): 18831888. doi: 10.1073/pnas.1714478115.
  27. Youm YH, Kanneganti TD, Vandanmagsar B, et al. The NLRP3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Rep 2012; 1(1):56-68. doi: 10.1016/j.celrep.2011.11.005.
  28. Granadier D, Cooper K, Kinsella S, et al. Interleukin 18 suppresses regeneration of the thymus. Blood 2022; 140(Suppl 1): 116901170. doi: 10.1182/blood-2022-168432.
  29. Liu Z, Liang Q, Ren Y, et al. Immunosenescence: molecular mechanisms and diseases. Sig Transduct Target Ther 2023; 8: 200. doi: 10.1038/s41392-023-01451-2.
  30. Churov AV, Mamashov KY, Novitskaia AV. Homeostasis and the functional roles of CD4+ Treg cells in aging. Immunol Lett 2020; 226: 83-89. doi: 10.1016/j.imlet.2020.07.004.
  31. Thomas R, Oh J, Wang W, et al. Thymic atrophy creates holes in Treg-mediated immuno-regulation via impairment of an antigen-specific clone. Immunology 2021; 163(4): 478-492. doi: 10.1111/imm.13333
  32. Barbé-Tuana F, Funchal G, Schmitz CRR, et al. The interplay between immunosenescence and age-related diseases. Semin Immunopathol 2020; 42: 545-557. doi: 10.1007/s00281-020-00806-z.
  33. Liu J, Wang J, Xu J, et al. Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discov 2021; 7(1): 99. doi: 10.1038/s41421-021-00329-3.
  34. Choueiri TK, Labaki C, Bakouny Z, et al. Breakthrough SARS-CoV-2 infections among patients with cancer following two and three doses of COVID-19 mRNA vaccines: a retrospective observational study from the COVID-19 and Cancer Consortium. The Lancet Regional Health – Americas 2023; 19: 100445. doi: 10.1016/j.lana.2023.100445.
  35. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci 2019; 110(7): 2080-2089. doi: 10.1111/cas.14069.
  36. Gonzalez-Dias P, Lee EK, Sorgi S, et al. Methods for predicting vaccine immunogenicity and reactogenicity. Hum Vaccin Immunother 2020; 16(2): 269-276. doi: 10.1080/21645515.2019.1697110.
  37. Luo CT, Liao W, Dadi S, et al. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature 2016; 529(7587): 532-6. doi: 10.1038/nature16486.
  38. Goswami TK, Singh M, Dhawan M, et al. Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders – Advances and challenges. Hum Vaccin Immunother 2022; 8(1): 2035117. doi: 10.1080/21645515.2022.2035117.
  39. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74. doi: 10.1016/j.cell.2011.02.013.
  40. Hatzioannou A, Boumpas A, Papadopoulou M, et al. Regulatory T cells in autoimmunity and cancer: A duplicitous lifestyle. Front Immunol 2021; 12: 731947. doi: 10.3389/fimmu.2021.731947.
  41. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8: 561. doi: 10.3389/fphar.2017.00561.
  42. Schmidt R, Grimbacher B, Witte T. Autoimmunity and primary immunodeficiency: two sides of the same coin? Nat Rev Rheumatol 2018; 14: 7-18. doi: 10.1038/nrrheum.2017.198
  43. Shang B, Liu Y, Jiang SJ, et al. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 2015; 5: 15179. doi: 10.1038/srep15179.
  44. Barhoumi T, Alghanem B, Shaibah H, et al. SARS-CoV-2 coronavirus spike protein-induced apoptosis, inflammatory, and oxidative Stress responses in THP-1-like-macrophages: Potential role of angiotensin-converting enzyme inhibitor (Perindopril). Front Immunol 2021; 12: 728896. doi: 10.3389/fimmu.2021.728896.
  45. Dejaco C, Duftner C, Grubeck-Loebenstein B, et al. Imbalance of regulatory T cells in human autoimmune diseases. Immunology 2006; 117(3): 289-300. doi: 10.1111/j.1365-2567.2005.02317.x.
  46. Raw RK, Rees J, Kelly CA, et al. Prior COVID-19 infection is associated with increased Adverse Events (AEs) after the first, but not the second, dose of the BNT162b2/Pfizer vaccine. Vaccine 2022; 40(3): 418-423. doi: 10.1016/j.vaccine.2021.11.090.
  47. Tormo N, Navalpotro D, Martínez-Serrano M, et al. Commercial interferon-gamma release assay to assess the immune response to first and second doses of mRNA vaccine in previously COVID-19 infected versus uninfected individuals. Diagn Microbiol Infect Dis 2022; 102(4): 115573. doi: 10.1016/j.diagmicrobio.2021.115573.
  48. Lourenço EV, La Cava A. Natural Regulatory T cells in autoimmunity. Autoimmunity 2011; 44(1): 33-42. doi: 10.3109/08916931003782155.
  49. Sanchez AM, Yang Y. The role of natural regulatory T cells in infection. Immunol Res 2011; 49(1-3): 124-34. doi: 10.1007/s12026-010-8176-8.
  50. Pellerin L, Jenks JA, Bégin P, et al. Regulatory T cells and their roles in immune dysregulation and allergy. Immunol Res 2014; 58(2-3): 358-68. doi: 10.1007/s12026-014-8512-5.
  51. van der Geest KS, Abdulahad WH, Tete SM, et al. Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp Gerontol 2014; 60: 190-6. doi: 10.1016/j.exger.2014.11.005.
  52. Baum A, Garca-Sastre A. Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids 2010; 38(5): 1283-99. doi: 10.1007/s00726-009-0374-0.
  53. Seneff S, Nigh G, Kyriakopoulos AM, et al. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and microRNAs. Food Chem Toxicol 2022; 164: 113008. doi: 10.1016/j.fct.2022.113008.
  54. Lee SE, Li X, Kim JC, Lee J, et al. Type I interferons maintain Foxp3 expression and T-regulatory cell functions under inflammatory conditions in mice. Gastroenterology 2012; 143(1): 145-54. doi: 10.1053/j.gastro.2012.03.042.
  55. Gangaplara A, Martens C, Dahlstrom E, et al. Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment. PloS Pathog 2018; 14(4): e1006985. doi: 10.1371/journal.ppat.1006985.
  56. Levings MK, Bacchetta R, Schulz U, et al. The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 2002; 129(4): 263-76. doi: 10.1159/000067596.
  57. Patra T, Meyer K, Geerling L, et al. SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog 2020; 16(12): e1009128. doi: 10.1371/journal.ppat.1009128.
  58. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020; 369(6504): 718724. doi: 10.1016/j.cell.2020.04.026.
  59. Röltgen K, Nielsen SCA, Silva O, et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 2022; 185(6): 1025-1040.e14. doi: 10.1016/j.cell.2022.01.018.
  60. Gil-Manso S, Carbonell D, López-Fernández L, et al. Induction of high levels of specific humoral and cellular responses to SARS-CoV-2 after the administration of COVID-19 mRNA vaccines requires several days. Front. Immunol 2021; 12: 726960. doi: 10.3389/fimmu.2021.726960.
  61. Mishra R, Banerjea AC. SARS-CoV-2 spike targets USP33-IRF9 axis via exosomal miR-148a to activate human microglia. Front. Immunol 2021; 12: 656700. doi: 10.3389/fimmu.2021.656700.
  62. Bansal S, Perincheri S, Fleming T, et al. Cutting edge: Circulating exosomes with COVID spike protein are induced by BNT162b2 (Pfizer-BioNTech) vaccination prior to development of antibodies: A novel mechanism for immune activation by mRNA vaccines. J Immunol 2021; 207(10): 2405-2410. doi: 10.4049/jimmunol.2100637.
  63. Kolumam GA, Thomas S, Thompson LJ, et al. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med 2005; 202(5): 637-50. doi: 10.1084/jem.20050821. E
  64. Xu HC, Grusdat M, Pandyra AA, et al. Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity 2014; 40: 949-960. doi: 10.1016/j.immuni.2014.05.004.
  65. Nicol A, Amendt T, El Ayoubi O, et al. Rheumatoid factor IgM autoantibodies control IgG homeostasis. Front Immunol 2022; 13: 1016263. doi: 10.3389/fimmu.2022.1016263.
  66. Boes M, Schmidt T, Linkemann K, et al. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci U S A 2000; 97(3): 1184-9. doi: 10.1073/pnas.97.3.1184.
  67. Morais P, Adachi H, Yu YT. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front Cell Dev Biol 2021; 9: 789427. doi: 10.3389/fcell.2021.789427.
  68. Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry. Antibodies 2020; 9: 33. doi: 10.3390/antib9030033.
  69. Robles JP, Zamora M, Adan-Castro E, et al. The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin A5β1 and NF-kB signalling. J Biol Chem 2022; 298(3): 101695. doi: 10.1016/j.jbc.2022.101695.
  70. Khantakova JN, Bulygin AS, Sennikov SV. The regulatory-T-cell memory phenotype: What we know. Cells 2022; 11(10): 1687. Doi: 10.3390/cells11101687.
  71. Shimizu Y, Newman W, Gopal TV, et al. Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions. J Cell Biol 1991; 113(5): 1203-12. doi: 10.1083/jcb.113.5.1203.
  72. Maganto-Garca E, Bu DX, Tarrio ML, et al. Foxp3+-inducible regulatory T cells suppress endothelial activation and leukocyte recruitment. J Immunol 2011; 187(7): 3521-9. doi: 10.4049/jimmunol.1003947.
  73. Murphy WJ, Longo DL. A possible role for anti-idiotype antibodies in SARS-CoV-2 infection and vaccination. N Engl J Med 2022; 386(4): 394-396. doi: 10.1056/NEJMcibr2113694.
  74. Omland SH, Nielsen PS, Gjerdrum LM, et al. Immunosuppressive environment in basal cell carcinoma: The role of regulatory T cells. Acta Derm Venereol 2016; 96(7): 917-921. doi: 10.2340/00015555-2440.
  75. Bednar KJ, Lee JH, Ort T. Tregs in autoimmunity: Insights into intrinsic brake mechanism driving pathogenesis and immune homeostasis. Front Immunol 2022; 13: 932485. doi: 10.3389/fimmu.2022.932485.
  76. Lee KA, Flores RR, Jang IH, et al. Immune senescence, immunosenescence and aging. Front Aging 2022; 3: 900028. doi: 10.3389/fragi.2022.900028.
  77. Jagger A, Shimojima Y, Goronzy JJ, et al. Regulatory T cells and the immune aging process: a mini-review. Gerontology 2014; 60(2): 130-7. doi: 10.1159/000355303.
  78. Kalfaoglu B, Almeida-Santos J, Tye CA, et al. T-cell hyperactivation and paralysis in severe COVID-19 infection revealed by single-cell analysis. Front Immunol 2020; 1: 589380. doi:10.3389/fimmu.2020.589380.
  79. Kumar P. IFNγ-producing CD4+ T lymphocytes: the double-edged swords in tuberculosis. Clin Transl Med 2017; 6(1): 21. doi: 10.1186/s40169-017-0151-8.
  80. Larkin J 3rd, Ahmed CM, Wilson TD, Johnson HM. Regulation of interferon gamma signaling by suppressors of cytokine signaling and regulatory T cells. Front Immunol 2013; 4: 469. doi: 10.3389/fimmu.2013.00469.
  81. Lozano-Ojalvo D, Camara C, Lopez-Granados E, et al. Differential effects of the second vaccine on T cell immunity in naïve and COVID-19 recovered individuals. Cell Rep 2021; 36(8): 109570. doi: 10.1016/j.celrep.2021.109570.
  82. Diani S, Leonardi E, Cavezzi A, et al. SARS-CoV-2 – The role of natural immunity: A narrative review. J Clin Med 2022; 11(21): 6272. doi: 10.3390/jcm11216272.
  83. Antia A, Ahmed H, Handel A, et al. Heterogeneity and longevity of antibody memory to viruses and vaccines. PloS Biol 2018; 16(8): e2006601. doi: 10.1371/journal.pbio.2006601.
  84. Amar S, Avni YS, O’Rourke N, et al. Prevalence of common infectious diseases After COVID-19 vaccination and easing of pandemic restrictions in Israel. JAMA Netw Open 2022; 5(2): e2146175. doi:10.1001/jamanetworkopen.2021.46175.
  85. Nunes-Alves C, Nobrega C, Behar SM, et al. Tolerance has its limits: how the thymus copes with infection. Trends Immunol 2013; 34(10): 502-10. doi: 10.1016/j.it.2013.06.004.
  86. Rosichini M, Bordoni V, Silvestris DA, et al. SARS-CoV-2 infection of thymus induces loss of function that correlates with disease severity. J Allergy Clin Immunol 2023; 151(4): 911-921. doi: 10.1016/j.jaci.2023.01.022.
  87. Ansari AR, Liu H. Acute thymic involution and mechanisms for recovery. Arch Immunol Ther Exp 2017; 65: 401-20. doi: 10.1007/s00005-017-0462-x.
  88. Gui J, Zhu X, Dohkan J, et al. The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol 2007; 19(10): 1201-11. doi: 10.1093/intimm/dxm095.
  89. Alexandropoulos K, Bonito AJ, Weinstein EG, et al. Medullary thymic epithelial cells and central tolerance in autoimmune hepatitis development: novel perspective from a new mouse model. Int J Mol Sci 2015; 16(1): 1980-2000. doi: 10.3390/ijms16011980.
  90. Zheng H, Zhang T, Xu Y, et al. Autoimmune hepatitis after COVID-19 vaccination. Front Immunol 2022; 13: 1035073. doi: 10.3389/fimmu.2022.1035073.
  91. Co M, Wong PCP, Kwong A. COVID-19 vaccine associated axillary lymphadenopathy - A systematic review. Cancer Treat Res Commun 2022; 31: 100546. doi: 10.1016/j.ctarc.2022.100546.
  92. Yoshimoto N, Yanagi A, Takayama S, et al. Timing and duration of axillary lymph node swelling after COVID-19 vaccination: Japanese Case Report and Literature Review. In Vivo 2022; 36(3): 1333-1336. doi: 10.21873/in-vivo.
  93. Li J, Park J, Foss D, Goldschneider I. Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J Exp Med 2009; 206(3): 607-22. doi: 10.1084/jem.20082232.
  94. Colunga Biancatelli RML, Solopov PA, Sharlow ER, et al. The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in 18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 321(2): L477-L484. doi: 10.1152/ajplung.00223.2021.
  95. Wu H, Li X, Zhou C, et al. Circulating mature dendritic cells homing to the thymus promote thymic epithelial cells involution via the Jagged1/Notch3 axis. Cell Death Discov 2021; 7: 225. doi: 10.1038/s41420-021-00619-5.
  96. Gantier MP, Williams BR. The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev. 2007; 18(5-6): 363-71. doi: 10.1016/j.cytogfr.2007.06.016.
  97. Cunningham L, Kimber I, Basketter D, Simmonds P, et al. Perforin, COVID-19 and a possible pathogenic auto-inflammatory feedback loop. Scand J Immunol 2021; 94(5): e13102. doi: 10.1111/sji.13102.
  98. Rukavina D, Laskarin G, Rubesa G, et al. Age-related decline of perforin expression in human cytotoxic T lymphocytes and natural killer cells. Blood 1998; 92(7): 2410-20.
  99. Huang CF, Hsieh SM, Pan SC, et al. Dose-related aberrant inhibition of intracellular perforin expression by S1 subunit of spike glycoprotein that contains receptor-binding domain from SARS-CoV-2. Microorganisms 2021; 9(6): 1303. doi: 10.3390/microorganisms9061303.
  100. Terrell CE, Jordan MB. Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8(+) T cells and dendritic cells. Blood 2013; 121(26): 5184-91. doi: 10.1182/blood-2013-04-495309.
  101. Hieber ML, Sprute R, Eichenauer DA, et al. Hemophagocytic lymphohistiocytosis after SARS-CoV-2 vaccination. Infection 2022; 50(5): 1399-1404. doi: 10.1007/s15010-022-01786-y.
  102. Lin TY, Yeh YH, Chen LW, et al. Hemophagocytic lymphohistiocytosis Following BNT162b2 mRNA COVID-19 Vaccination. Vaccines (Basel) 2022; 10(4): 573. doi: 10.3390/vaccines10040573.
  103. Ashizawa N, Takazono T, Umeda M, et al. Macrophage activation syndrome after BNT162b2 mRNA vaccination successfully treated with corticosteroids. Clin Exp Rheumatol 2022; 40(5): 1060. doi: 10.55563/clinexprheumatol/a9hrmo.
  104. Franzblau LE, Mauskar M, Wysocki CA. Macrophage activation syndrome complicated by toxic epidermal necrolysis following SARS-CoV-2 mRNA vaccination. J Clin Immunol 2023; 43: 521-524. doi: 10.1007/s10875-022-01408-0.
  105. Kasper IR, Apostolidis SA, Sharabi A, et al. Empowering regulatory T cells in autoimmunity. Trends Mol Med 2016; 22(9): 784-797. doi: 10.1016/j.molmed.2016.07.003.
  106. Rosenblum MD, Way SS, Abbas AK. Regulatory T cell memory. Nat Rev Immunol. 2016; 16(2): 90-101. doi: 10.1038/nri.2015.1.
  107. Niederlova V, Tsyklauri O, Chadimova T, et al. CD8+ Tregs revisited: A heterogeneous population with different phenotypes and properties. Eur J Immunol 2021; 51(3): 512-530. doi: 10.1002/eji.202048614.
  108. Hall BM, Verma ND, Tran GT, et al. Distinct regulatory CD4+T cell subsets; differences between naïve and antigen specific T regulatory cells. Curr Opin Immunol 2011; 23(5): 641-7. doi: 10.1016/j.coi.2011.07.012.
  109. Lu C, Zanker D, Lock P, et al. Memory regulatory T cells home to the lung and control influenza A virus infection. Immunol Cell Biol 2019; 97(9): 774-786. doi: 10.1111/imcb.12271.
  110. Liang S, Bao C, Yang Z, et al. SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation via reduced mitophagy. Sig Transduct Target Ther 2023; 8: 108. doi: 10.1038/s41392-023-01368-w.
  111. Liu T, Zhang L, Joo D, et al. NF-κB signalling in inflammation. Sig Transduct Target Ther 2017; 2: 17023. doi: 10.1038/sigtrans.2017.23
  112. Daniels MA, Luera D, Teixeiro E. NFκB signaling in T cell memory. Front Immunol 2023; 14: 1129191. doi: 10.3389/fimmu.2023.1129191.
  113. Oh H, Grinberg-Bleyer Y, Liao W, et al. An NF-κB Transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity 2017; 47(3): 450-465.e5. doi: 10.1016/j.immuni.2017.08.010.
  114. Grinberg-Bleyer Y, Oh H, Desrichard A, et al. NF-κB c-Rel Is Crucial for the Regulatory T cell immune checkpoint in cancer. Cell 2017; 170(6): 1096-1108.e13. doi: 10.1016/j.cell.2017.08.004.
  115. Keeton R, Tincho MB, Ngomti A, et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 2022; 603(7901): 488-492. doi: 10.1038/s41586-022-04460-3. Erratum in: Nature 604(7907): E25, 2022.
  116. Murray SE, Polesso F, Rowe AM, et al. NF-κB-inducing kinase plays an essential T cell-intrinsic role in graft-versus-host disease and lethal autoimmunity in mice. J Clin Invest 2011; 121(12): 4775-86. doi: 10.1172/JCI44943.
  117. Chougnet CA, Tripathi P, Lages CS, et al. A major role for Bim in regulatory T cell homeostasis. J Immunol 2011; 186: 156163. doi: 10.4049/jimmunol.1001505.
  118. Świerkot J, Madej M, Szmyrka M, et al. The risk of autoimmunity development following mRNA COVID-19 vaccination. Viruses 2022; 14(12): 2655. doi: 10.3390/v14122655.
  119. Fraiman J, Erviti J, Jones M, et al. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine 2022; 40(40): 5798-5805. doi: 10.1016/j.vaccine.2022.08.036
  120. Kadali RA, Janagama R, Yedlapati SH, et al. S ide effects of messenger RNA vaccines and prior history of COVID-19, a cross-sectional study, American Journal of Infection Control 2022; 50(1): 8-14. doi: 10.1016/j.ajic.2021.10.017.
  121. Watad A, De Marco G, Mahajna H, et al. Immune-mediated disease flares or new-onset disease in 27 subjects following mRNA/DNA SARS-CoV-2 vaccination. Vaccines (Basel) 2021; 9(5): 435. doi: 10.3390/vaccines9050435.
  122. Raviv Y, Betesh-Abay B, Valdman-Grinshpoun Y, et al. First presentation of systemic lupus erythematosus in a 24-year-old male following mRNA COVID-19 vaccine. Case Rep Rheumatol 2022; 2022: 9698138. doi: 10.1155/2022/9698138.
  123. Ghielmetti M, Schaufelberger HD, Mieli-Vergani G, et al. Acute autoimmune-like hepatitis with atypical anti-mitochondrial antibody after mRNA COVID-19 vaccination: a novel clinical entity? J. Autoimmun 2021; 123: 102706. doi: 10.1016/j.jaut.2021.102706.
  124. Fatima Z, Reece BRA, Moore JS, et al. Autoimmune hemolytic anemia after mRNA COVID vaccine. J Investig Med High Impact Case Rep 2022; 10: 23247096211073258. doi: 10.1177/23247096211073258.
  125. Gadi SRV, Brunker PAR, Al-Samkari H, et al. Severe autoimmune hemolytic anemia following receipt of SARS-CoV-2 mRNA vaccine. Transfusion 2021; 61(11): 3267-3271. doi: 10.1111/trf.16672.
  126. Alqatari S, Ismail M, Hasan M, et al. Emergence of post COVID-19 vaccine autoimmune diseases: A single center study. Infect Drug Resist 2023; 16: 1263-1278. doi: 10.2147/IDR.S394602.
  127. Guo M, Liu X, Chen X, et al. Insights into new-onset autoimmune diseases after COVID-19 vaccination. Autoimmun Rev 2023; 22(7): 103340. doi: 10.1016/j.autrev.2023.103340.
  128. Saleh R, Elkord E. FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett. 2020; 490: 174-185. doi: 10.1016/j.canlet.2020.07.022.
  129. Sharabi A, Tsokos MG, Ding Y, et al. Regulatory T cells in the treatment of disease. Nat Rev Drug Discov 2018; 17: 823-844. doi: 10.1038/nrd.2018.148.
  130. Iglesias-Escudero M, Arias-González N, Martínez-Cáceres E. Regulatory cells and the effect of cancer immunotherapy. Mol Cancer 2023; 22: 26. doi: 10.1186/s12943-023-01714-0.
  131. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163(10): 5211-8. doi: 10.4049/jimmunol.163.10.5211.
  132. Takahashi T, Kuniyasu Y, Toda M, et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998; 10(12): 1969-80. doi: 10.1093/intimm/10.12.1969.
  133. Zelenay S, Lopes-Carvalho T, Caramalho I, et al. Foxp3+ CD25-CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci U S A 2005; 102(11): 4091-6. doi: 10.1073/pnas.0408679102.
  134. Lasagna A, Lilleri D, Agustoni F, et al. Analysis of the humoral and cellular immune response after a full course of BNT162b2 anti-SARS-CoV-2 vaccine in cancer patients treated with PD-1/PD-L1 inhibitors with or without chemotherapy: an update after 6 months of follow-up. ESMO Open 2022; 7(1): 100359. doi: 10.1016/j.esmoop.2021.100359.
  135. Benitez Fuentes JD, Mohamed KM, de Luna Aguilar A, et al. Evidence of exhausted lymphocytes after the third anti-SARS-CoV-2 vaccine dose in cancer patients. Front Oncol 2022; 12: 975980. doi: 10.3389/fonc.2022.975980.
  136. Lee J, Ahn E, Kissick HT, Ahmed R. Reinvigorating exhausted T cells by blockade of the PD-1 pathway. For Immunopathol Dis Therap 2015; 6(1-2): 7-17. doi: 10.1615/ForumImmunDisTher.2015014188.
  137. Al-Mterin MA, Alsalman A, Elkord E. Inhibitory immune checkpoint receptors and ligands as prognostic biomarkers in COVID-19 patients. Front Immunol 2022; 13: 870283. doi: 10.3389/fimmu.2022.870283.
  138. Simon S, Labarriere N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunology 2017; 7(1): e1364828. doi: 10.1080/2162402X.2017.1364828.
  139. Gao FX, Wu RX, Shen MY, et al. Extended SARS-CoV-2 RBD booster vaccination induces humoral and cellular immune tolerance in mice. iScience 2022; 25(12): 105479. doi: 10.1016/j.isci.2022.105479.
  140. Zaleska J, Kwasnik P, Paziewska M, et al. Response to anti-SARS-CoV-2 mRNA vaccines in multiple myeloma and chronic lymphocytic leukemia patients. Int J Cancer 2023; 152(4): 705-712. doi: 10.1002/ijc.34209.
  141. Shroff RT, Chalasani P, Wei R, et al. Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors. Nat Med 2021; 27(11): 2002-2011. doi: 10.1038/s41591-021-01542-z.
  142. Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol 2010; 10(4): 236-47. doi: 10.1038/nri2729.
  143. Qian J, Wang C, Wang B, et al. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J Neuroinflammation 2018; 15: 290. doi: 10.1186/s12974-018-1330-2.
  144. Loacker L, Kimpel J, Bánki Z, et al. Increased PD-L1 surface expression on peripheral blood granulocytes and monocytes after vaccination with SARS-CoV2 mRNA or vector vaccine. Clin Chem Lab Med 2022; 61(1): e17-e19. doi: 10.1515/cclm-2022-0787.
  145. Özbay Kurt FG, Lepper A, et al. Booster dose of mRNA vaccine augments waning T cell and antibody responses against SARS-CoV-2. Front Immunol 2022; 13: 1012526. doi: 10.3389/fimmu.2022.1012526.
  146. Ostrand-Rosenberg S, Horn LA, Haile ST. The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. J Immunol 2014; 193(8): 3835-41. doi: 10.4049/jimmunol.1401572.
  147. Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 2013; 5(200): 200ra116. doi: 10.1126/scitranslmed.3006504.
  148. Ai L, Chen J, Yan H, et al. Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy. Drug Des Devel Ther 2020; 14: 3625-3649. doi: 10.2147/DDDT.S267433.
  149. Zamani MR, Aslani S, Salmaninejad A, et al. A growing relationship. Cell Immunol 2016; 310: 27-41. doi: 10.1016/j.cellimm.2016.09.009.
  150. Spiliopoulou P, Janse van Rensburg HJ, Avery L, et al. Longitudinal efficacy and toxicity of SARS-CoV-2 vaccination in cancer patients treated with immunotherapy. Cell Death Dis 2023; 14: 49. doi: 10.1038/s41419-022-05548-4.
  151. Sakowska J, Arcimowicz Ł, Jankowiak M, et al. Autoimmunity and cancer-two sides of the same coin. Front Immunol 2022; 13: 793234. doi: 10.3389/fimmu.2022.793234.
  152. Platanias L: Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005; 5: 375-386. doi: 10.1038/nri1604.
  153. Zeng H, Yang K, Cloer C, et al. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 2013; 499(7459): 485-490. doi: 10.1038/nature12297.
  154. Dominic A, Le NT, Takahashi M. Loop between NLRP3 inflammasome and reactive oxygen species. Antioxid Redox Signal 2022; 36(10-12): 784-796. doi: 10.1089/ars.2020.8257.
  155. Wen C, Wang H, Wu X, et al. ROS-mediated inactivation of the PI3K/AKT pathway is involved in the antigastric cancer effects of thioredoxin reductase-1 inhibitor chaetocin. Cell Death Dis 2019; 10(11): 809. doi: 10.1038/s41419-019-2035-x.
  156. Li F, Li J, Wang PH, et al. SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochim Biophys Acta Mol Basis Dis 2021; 1867(12): 166260. doi: 10.1016/j.bbadis.2021.166260
  157. Tarassishin L, Suh HS, Lee SC. Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. J Neuroinflammation 2011; 8:187. doi: 10.1186/1742-2094-8-187.
  158. Freitas RS, Crum TF, Parvatiyar K. SARS-CoV-2 spike antagonizes innate antiviral immunity by targeting interferon regulatory factor 3. Front Cell Infect Microbiol 2022; 11: 789462. doi: 10.3389/fcimb.2021.789462.
  159. Rodríguez-Jiménez P, Chicharro P, Cabrera LM, et al. Varicella-zoster virus reactivation after SARS-CoV-2 BNT162b2 mRNA vaccination: Report of 5 cases. JAAD Case Rep 2021; 12: 58-59. doi: 10.1016/j.jdcr.2021.04.014.
  160. Netti GS, Infante B, Troise D, et al. mTOR inhibitors improve both humoral and cellular response to SARS-CoV-2 messenger RNA BNT16b2 vaccine in kidney transplant recipients. Am J Transplant 2022; 22(5): 1475-1482. doi: 10.1111/ajt.16958.
  161. Pollizzi KN, Patel CH, Sun IH, et al. mTORC1 and mTORC2 selectively regulate CD8⁺ T cell differentiation. J Clin Invest 2015; 125(5): 2090-108. doi: 10.1172/JCI77746.
  162. Tu W, Rao S. Mechanisms underlying T cell immunosenescence: Aging and Cytomegalovirus infection. Front Microbiol 2016; 7: 2111. doi: 10.3389/fmicb.2016.02111.
  163. Biering SB, Gomes de Sousa FT, Tjang LV, et al. SARS-CoV-2 spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. Nat Commun 2022; 13(1): 7630. doi: 10.1038/s41467-022-34910-5.
  164. Prieto-Fernández E, Egia-Mendikute L, Vila-Vecilla L, et al. Hypoxia reduces cell attachment of SARS-CoV-2 spike protein by modulating the expression of ACE2, neuropilin-1, syndecan-1 and cellular heparan sulfate. Emerg Microbes Infect 2021; 10(1): 1065-1076. doi: 10.1080/22221751.2021.1932607.
  165. Mallikarjuna P, Raviprakash TS, Aripaka K, et al. Interactions between TGF-β type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma. Cell Cycle 2019; 18(17): 2141-2156. doi: 10.1080/15384101.2019.1642069.
  166. Deng W, Feng X, Li X, et al. Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol. 2016; 303: 7-15. doi: 10.1016/j.cellimm.2016.04.001.
  167. Kyriakopoulos AM, McCullough PA, Nigh G, et al. Potential mechanisms for human genome integration of genetic code from SARS-CoV-2 mRNA vaccination: implications for disease. J Neurol Disord 2022; 10: 519.
  168. Seneff S, Kyriakopoulos AM, Nigh G, et al. A potential role of the spike protein in neurodegenerative diseases: A narrative review. Cureus 2023; 15(2): e34872. doi: 10.7759/cureus.34872.
  169. Tang YY, Wang DC, Wang YQ, et al. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Front Immunol 2023; 13: 1073971. doi: 10.3389/fimmu.2022.1073971
  170. Xu M, Pang Q, Xu S, et al. Hypoxia-inducible factor-1α activates transforming growth factor-β1/Smad signaling and increases collagen deposition in dermal fibroblasts. Oncotarget 2017; 9(3): 3188-3197. doi: 10.18632/oncotarget.23225.
  171. Samson M, Audia S, Janikashvili N, et al. Brief report: inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum 2012; 64(8): 2499-503. doi: 10.1002/art.34477.
  172. Pesce B, Soto L, Sabugo F, et al. Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol 2013; 171(3): 237-42. doi: 10.1111/cei.12017.
  173. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008; 9(6): 641-9. doi: 10.1038/ni.1610.
  174. Khan S, Shafiei MS, Longoria C, et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. eLife 2021; 10: e68563. doi: 10.7554/eLife.68563.
  175. Park DW, Lyu JH, Kim JS, et al. Role of JAK2-STAT3 in TLR2-mediated tissue factor expression. J Cell Biochem 2013; 114(6): 1315-21. doi: 10.1002/jcb.24472.
  176. Fontes-Dantas FL, Fernandes GG, Gutman EG, et al. SARS-CoV-2 Spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. Cell Rep 2023; 42(3): 112189. doi: 10.1016/j.celrep.2023.112189.
  177. Palakkott AR, Alneyadi A, Muhammad K, et al. The SARS-CoV-2 spike protein activates the epidermal growth factor receptor-mediated signaling. Vaccines (Basel) 2023; 11(4): 768. doi: 10.3390/vaccines11040768.
  178. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9(11): 798-809. doi: 10.1038/nrc2734.
  179. Wang Y, van Boxel-Dezaire AH, Cheon H, et al. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc Natl Acad Sci U S A 2013; 110(42): 16975-80. doi: 10.1073/pnas.1315862110.
  180. McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007; 8(12): 1390-7. doi: 10.1038/ni1539.
  181. Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019; 41(3): 283-297. doi: 10.1007/s00281-019-00733-8.
  182. Bailey SR, Nelson MH, Himes RA, et al. Th17 cells in cancer: the ultimate identity crisis. Front Immunol 2014; 5: 276. doi: 10.3389/fimmu.2014.00276.
  183. Lee AR, Woo JS, Lee SY, et al. SARS-CoV-2 spike protein promotes inflammatory cytokine activation and aggravates rheumatoid arthritis. Cell Commun Signal 2023; 21: 44. doi: 10.1186/s12964-023-01044-0.
  184. Buergin N, Lopez-Ayala P, Hirsiger JR, et al. Sex-specific differences in myocardial injury incidence after COVID-19 mRNA-1273 booster vaccination. Eur J Heart Fail 2023; 25(10): 1871-1881. doi: 10.1002/ejhf.2978.
  185. Schwab C, Domke LM, Hartmann L, et al. Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clin Res Cardiol 2023; 112(3): 431-440. doi: 10.1007/s00392-022-02129-5.
  186. Wang J, Liu T, Chen X, et al. Bazedoxifene regulates Th17 immune response to ameliorate experimental autoimmune myocarditis via inhibition of STAT3 activation. Front Pharmacol 2021; 11: 613160. doi: 10.3389/fphar.2020.613160.
  187. Barmada A, Klein J, Ramaswamy A, et al. Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis. Sci Immunol 2023; 8(83): eadh3455. doi: 10.1126/sciimmunol.adh3455.
  188. Xu L, Zhang T, Liu Z, et al. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp Hematol 2012; 40: 994–1004. doi: 10.1016/j.exphem.2012.08.008.
  189. Barcellini W, Clerici G, Montesano R, et al. In vitro quantification of anti-red blood cell antibody production in idiopathic autoimmune haemolytic anaemia: effect of mitogen and cytokine stimulation. Br J Haematol 2000; 111: 452–460. doi: 10.1046/j.1365-2141.2000.02380.x.
  190. Ahmad E, Elgohary T, Ibrahim H. Naturally occurring regulatory T cells and interleukins 10 and 12 in the pathogenesis of idiopathic warm autoimmune hemolytic anemia. J Investig Allergol Clin Immunol 2011; 21:297–304, 2011.
  191. Yonker LM, Swank Z, Bartsch YC, et al. Circulating spike protein detected in post-COVID-19 mRNA vaccine myocarditis. Circulation 2023; 147(11): 867-876. doi: 10.1161/CIRCULATIONAHA.122.061025.
  192. Mohiddin SA, Guttmann O, Marelli-Berg F. Vaccine-triggered acute autoimmune myocarditis: Defining, detecting, and managing an apparently novel condition. J Am Heart Assoc 2022; 11(21): e026873. doi: 10.1161/JAHA.122.026873.
  193. Sung SS Monocyte-derived dendritic cells as antigen-presenting cells in T-cell proliferation and cytokine production. Methods Mol Med 2008; 138: 97-106. doi: 10.1007/978-1-59745-366-0_9.
  194. Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-β: From conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 2017; 9(6): a022236. doi: 10.1101/cshperspect.a022236.
  195. Sriwastava S, Sharma K, Khalid SH, et al. COVID-19 vaccination and neurological manifestations: A review of case reports and case series. Brain Sci 2022; 12(3): 407. doi: 10.3390/brainsci12030407.
  196. Abu-Abaa M, Dawood G, Arshad H, et al. A possible case of autoimmune encephalitis after mRNA COVID-19 booster vaccine: A case report. Cureus 2022; 14(11): e31118. doi: 10.7759/cureus.31118.
  197. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014; 5: 520. doi: 10.3389/fimmu.2014.00520.
  198. Irrgang P, Gerling J, Kocher K, et al. Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci Immunol 2023; 8(79): eade2798. doi: 10.1126/sciimmunol.ade2798.
  199. Uversky VN, Redwan EM, Makis W, et al. IgG4 antibodies induced by repeated vaccination may generate immune tolerance to the SARS-CoV-2 spike protein. Vaccines (Basel) 2023; 11(5): 991. doi: 10.3390/vaccines11050991.
  200. Kiszel P, Sík P, Miklós J, et al. Class switch towards spike protein-specific IgG4 antibodies after SARS-CoV-2 mRNA vaccination depends on prior infection history. Sci Rep 2023; 13: 13166. doi: 10.1038/s41598-023-40103-x.
  201. Liu J, Yin W, Westerberg LS, et al. Immune dysregulation in IgG4-related disease. Front Immunol 2021; 12: 738540. doi: 10.3389/fimmu.2021.738540.
  202. Zhang X, Lu H, Peng L, et al. The role of PD-1/PD-Ls in the pathogenesis of IgG4-related disease. Rheumatology (Oxford) 2022; 61(2): 815-825. doi: 10.1093/rheumatology/keab360.
  203. Akiyama M, Suzuki K, Kassai Y, et al. Resolution of elevated circulating regulatory T cells by corticosteroids in patients with IgG4-Related dacryoadenitis and sialoadenitis. Int J Rheum Dis 2016; 19(4): 4302. doi: 10.1111/1756185X.12725
  204. Kusuda T, Uchida K, Miyoshi H, et al. Involvement of inducible costimulator and interleukin 10-positive regulatory T cells in the development of IgG4-related autoimmune pancreatitis. Pancreas 2011; 40(7):1120-1130. doi:10.1097/MPA.0b013e31821fc796.
  205. Uchida K, Okazaki K. Current status of type 1 (IgG4-related) autoimmune pancreatitis. J Gastroenterol 2022; 57(10): 695-708. doi: 10.1007/s00535-022-01891-7.
  206. Yu T, Wu Y, Liu J, et al. The risk of malignancy in patients with IgG4-related disease: a systematic review and meta-analysis. Arthritis Res Ther 2022; 24: 14. doi: 10.1186/s13075-021-02652-2.
  207. Kalra RK, Jayadeep S, Ball AL. Acute pancreatitis in an adolescent following COVID vaccination. Clin Pediatr (Phila) 61(3): 236-240, 2022. doi: 10.1177/00099228211067678.
  208. Kantar A, Seminara M, Odoni M, et al. Acute mild pancreatitis following COVID-19 mRNA vaccine in an adolescent. Children (Basel) 2021; 9(1): 29. doi: 10.3390/children9010029.
  209. Walter T, Connor S, Stedman C, et al. A case of acute necrotising pancreatitis following the second dose of Pfizer-BioNTech COVID-19 mRNA vaccine. Br J Clin Pharmacol 2022; 88(3): 1385-1386. doi: 10.1111/bcp.15039.
  210. Goldman S, Bron D, Tousseyn T, et al. Rapid progression of angioimmunoblastic T cell lymphoma following BNT162b2 mRNA vaccine booster shot: a case report. Front Med (Lausanne) 2021; 8: 798095. doi: 10.3389/fmed.2021.798095.
  211. Cavanna L, Grassi SO, Ruffini L, et al. Non-Hodgkin lymphoma developed shortly after mRNA COVID-19 vaccination: Report of a case and review of the literature. Medicina (Kaunas) 2023; 59(1): 157. doi: 10.3390/medicina59010157.
  212. Mizutani M, Mitsui H, Amano T, et al. Two cases of axillary lymphadenopathy diagnosed as diffuse large B-cell lymphoma developed shortly after BNT162b2 COVID-19 vaccination. J Eur Acad Dermatol Venereol 2022; 36(8): e613-e615. doi: 10.1111/jdv.18136.
  213. Tachita T, Takahata T, Yamashita S, et al. Newly diagnosed extranodal NK/T-cell lymphoma, nasal type, at the injected left arm after BNT162b2 mRNA COVID-19 vaccination. Int J Hematol 2023; 1–5. doi: 10.1007/s12185-023-03607-w.
  214. Zamfir MA, Moraru L, Dobrea C, et al. Hematologic malignancies diagnosed in the context of the mRNA COVID-19 vaccination campaign: A report of two cases. Medicina (Kaunas) 2022; 58(7): 874. doi: 10.3390/medicina58070874.
  215. Eens S, Van Hecke M, Favere K, et al. B-cell lymphoblastic lymphoma following intravenous BNT162b2 mRNA booster in a BALB/c mouse: A case report. Front Oncol 2023; 13: 1158124. doi: 10.3389/fonc.2023.1158124.