References
- Wang C, Geng H, Liu W, Zhang G.
Prenatal, perinatal, and postnatal factors associated with autism: a
meta-analysis. Medicine (Baltimore) 2017;96:e6696. doi:
https://doi.org/10.1097/MD.0000000000006696.
- Genovese A, Butler MG. The
autism spectrum: Behavioral, psychiatric and genetic associations.
Genes (Basel). 2023 Mar 9;14(3):677. doi:
https://doi.org/10.3390/genes14030677.
- Rossignol DA, Frye RE. A review
of research trends in physiological abnormalities in autism spectrum
disorders: immune dysregulation, inflammation, oxidative stress,
mitochondrial dysfunction and environmental toxicant exposures. Mol.
Psychiatry. 2012;17:389401. doi:
https://doi.org/10.1038/mp.2011.165.
- Lampiasi N, Bonaventura R, Deidda I, Zito F, Russo R. Inflammation and
the potential implication of macrophage-microglia polarization in
human ASD: An overview. Int J Mol Sci. 2023 Jan 31;24(3):2703. doi:
https://doi.org/10.3390/ijms24032703.
- Yang Y, Zhou S, Xing Y, Yang G, You M. Impact of pesticides exposure
during neurodevelopmental period on autism spectrum disorders - A
focus on gut microbiota. Ecotoxicol Environ Saf. 2023 Jul
15;260:115079. doi:
https://doi.org/10.1016/j.ecoenv.2023.115079.
- Adams JB, Baral M, Geis E,
Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S, Gehn E, Rubin
RA, Mitchell K, Bradstreet J, El-Dahr JM. The severity of autism is
associated with toxic metal body burden and red blood cell glutathione
levels. J Toxicol. 2009;2009:532640. doi:
https://doi.org/10.1155/2009/532640.
- Singh R, Turner RC, Nguyen L, Motwani K, Swatek M, Lucke-Wold BP.
Pediatric traumatic brain injury and autism: Elucidating shared
mechanisms. Behav Neurol. 2016;2016:8781725. doi:
https://doi.org/10.1155/2016/8781725.
- Li Z, Dong T, Proschel C, Noble
M. Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt
precursor cell function. PLoS Biol. 2007;5:e35.
doi:
https://doi.org/10.1371/journal.pbio.0050035.
- Zwaigenbaum L, Bryson S, Lord
C, Rogers S, Carter A, Carver L, Chawarska K, Constantino J, Dawson G,
Dobkins K, Fein D, Iverson J, Klin A, Landa R, Messinger D, Ozonoff S,
Sigman M, Stone W, Tager-Flusberg H, Yirmiya N. Clinical assessment
and management of toddlers with suspected autism spectrum disorder:
insights from studies of high-risk infants. Pediatrics. 2009
May;123(5):1383-91. doi: https://doi.org/10.1542/peds.2008-1606.
- Bacon EC, Courchesne E, Barnes
CC, Cha D, Pence S, Schreibman L, Stahmer AC, Pierce K. Rethinking the
idea of late autism spectrum disorder onset. Development and
Psychopathology. 2018;30(2):553-569. doi:
https://doi.org/10.1017/S0954579417001067.
- Jones W, Klin A. Attention to
eyes is present but in decline in 2–6-month-old infants later
diagnosed with autism. Nature 2013; 504: 427-431. doi:
https://doi.org/10.1038/nature12715.
- Ozonoff S, Williams BJ, Landa
R. Parental report of the early development of children with
regressive autism: The delays-plus-regression phenotype. Autism 2005;
9(5): 461-486. doi: https://doi.org/10.1177/1362361305057880.
- Seneff S. Toxic Legacy: How the
Herbicide Glyphosate is Destroying Our Health and the Environment.
Chelsea Green Publishers. River Junction VT. 2021.
- von Ehrenstein OS, Ling C, Cui
X, Cockburn M, Park AS, Yu F, Wu J, Ritz B. Prenatal and infant
exposure to ambient pesticides and autism spectrum disorder in
children: population based case-control study. BMJ. 2019 Mar
20;364:l962. doi: https://doi.org/10.1136/bmj.l962.
- Ma M, Ren Q, Yang J, Zhang K,
Xiong Z, Ishima T, Pu Y, Hwang SH, Toyoshima M, Iwayama Y, Hisano Y,
Yoshikawa T, Hammock BD, Hashimoto K. Key role of soluble epoxide
hydrolase in the neurodevelopmental disorders of offspring after
maternal immune activation. Proc Natl Acad Sci U S A. 2019 Apr
2;116(14):7083-7088. doi: https://doi.org/10.1073/pnas.
- Morel C, Martinez Sanchez I,
Cherifi Y, Chartrel N, Diaz Heijtz R. Perturbation of maternal gut
microbiota in mice during a critical perinatal window influences early
neurobehavioral outcomes in offspring. Neuropharmacology. 2023 May
15;229:109479. doi:
https://doi.org/10.1016/j.neuropharm.2023.109479.
- Pu Y, Yang J, Chang L, Qu Y,
Wang S, Zhang K, Xiong Z, Zhang J, Tan Y, Wang X, Fujita Y, Ishima T,
Wang D, Hwang SH, Hammock BD, Hashimoto K. Maternal glyphosate
exposure causes autism-like behaviors in offspring through increased
expression of soluble epoxide hydrolase. Proc Natl Acad Sci U S A.
2020 May 26;117(21):11753-11759. doi:
https://doi.org/10.1073/pnas.1922287117.
- Liu X, Lin J, Zhang H, Khan NU,
Zhang J, Tang X, Cao X, Shen L. Oxidative stress in autism spectrum
disorder-current progress of mechanisms and biomarkers. Front.
Psychiatry 2022, 13, 813304. doi:
https://doi.org/10.3389/fpsyt.2022.813304.
- Rose S, Melnyk S, Pavliv O, Bai
S, Nick TG, Frye RE, James SJ. Evidence of oxidative damage and
inflammation associated with low glutathione redox status in the
autism brain. Transl Psychiatry. 2012 Jul 10;2(7):e134. doi:
https://doi.org/10.1038/tp.2012.61.
- Ghezzo A, Visconti P, Abruzzo
PM, Bolotta A, Ferreri C, Gobbi G, Malisardi G, Manfredini S, Marini
M, Nanetti L, Pipitone E, Raffaelli F, Resca F, Vignini A, Mazzanti L.
Oxidative stress and erythrocyte membrane alterations in children with
autism: Correlation with clinical features. PLoS One. 2013 Jun
19;8(6):e66418. doi:
https://doi.org/10.1371/journal.pone.0066418.
- Belardo A, Gevi F, Zolla L. The
concomitant lower concentrations of vitamins B6, B9 and B12 may cause
methylation deficiency in autistic children. J Nutr Biochem. 2019 Aug;
70: 38-46. doi: https://doi.org/10.1016/j.jnutbio.2019.04.004.
- Dalto DB, Matte JJ. Pyridoxine
(Vitamin B) and the Glutathione Peroxidase System; a Link between
One-Carbon Metabolism and Antioxidation. Nutrients. 2017 Feb 24; 9(3):
189. doi: https://doi.org/10.3390/nu9030189.
- Goulding CW, Postigo D,
Matthews RG. Cobalamin-dependent methionine synthase is a modular
protein with distinct regions for binding homocysteine,
methyltetrahydrofolate, cobalamin, and adenosylmethionine.
Biochemistry. 1997; 36(26): 8082-91. doi:
https://doi.org/10.1021/bi9705164.
- Kikuchi M, Kashii S, Honda Y,
Tamura Y, Kaneda K, Akaike A. Protective effects of methylcobalamin, a
vitamin B12 analog, against glutamate-induced neurotoxicity in retinal
cell culture. Invest Ophthalmol Vis Sci. 1997 Apr; 38(5): 848-54.
https://pubmed.ncbi.nlm.nih.gov/9112980/.
- Waring RH, Klovrza LV. Sulphur
metabolism in autism. Journal of Nutritional & En- vironmental
Medicine. 2000;10:2532. doi:
https://doi.org/10.1080/13590840050000861.
- McCully KS. Chemical pathology
of homocysteine. V. Thioretinamide, thioretinaco, and cystathionine
synthase function in degenerative diseases. Ann Clin Lab Sci. 2011
Fall;41(4):301-14. https://pubmed.ncbi.nlm.nih.gov/22166499/.
- Guo M, Zhu J, Yang T, Lai X,
Liu X, Liu J, Chen J, Li T. Vita- min A improves the symptoms of
autism spectrum disorders and decreases 5- hydroxytryptamine (5-HT): A
pilot study. Brain Res Bull. 2018 Mar;137:35-40. doi:
https://doi.org/10.1016/j.brainresbull.2017.11.001.
- Yang L, Xia Z, Feng J, Zhang M,
Miao P, Nie Y, Zhang X, Hao Z, Hu R. Retinoic acid supplementation
rescues the social deficits in Fmr1 knockout mice. Front Genet. 2022
Jun 17; 13: 928393. doi:
https://doi.org/10.3389/fgene.2022.928393.
- Margedari P, Goudarzi I,
Sepehri H. The protective role of prenatal administration of ascorbic
acid on autistic-like behavior in a rat model of autism. IBRO
Neuroscience Reports 2024; 16: 78-85. doi:
https://doi.org/10.1016/j.ibneur.2023.11.002.
- Alvarez-Moya C, Smano-Len AG,
Reynoso-Silva M, R Ramírez-Velasco R, Ruiz-López MA,
Villalobos-Armbula AR. Antigenotoxic Effect of Ascorbic Acid and
Resveratrol in Erythrocytes of Ambystoma mexicanum, Oreochromis
niloticus and Human Lympho- cytes Exposed to Glyphosate. Curr Issues
Mol Biol. 2022 May 17;44(5):2230-2242. doi:
https://doi.org/10.3390/cimb44050151.
- Tordjman S, Davlantis KS,
Georgieff N, Geoffray MM, Speranza M, Anderson GM, Xavier J, Botbol M,
Oriol C, Bellissant E, Vernay-Leconte J, Fougerou C, Hespel A,
Tavenard A, Cohen D, Kermarrec S, Coulon N, Bonnot O, Dawson G. Autism
as a disorder of biological and behavioral rhythms: toward new
therapeutic perspectives. Front Pediatr. 2015 Feb 23; 3: 1. doi:
https://doi.org/10.3389/fped.2015.00001.
- Peres MF (2005) Melatonin, the
pineal gland and their implications for headache disorders.
Cephalalgia 25(6):403411, 15910564. doi:
https://doi.org/10.1111/j.1468-2982.2005.00889.x.
- Tordjman S, Anderson GM,
Pichard N, Charbuy H, Touitou Y. Nocturnal excretion of
6-sulphatoxymelatonin in children and adolescents with autistic
disorder. Biol Psychiatry. 2005 Jan 15;57(2):134-8. doi:
https://doi.org/10.1016/j.biopsych.2004.11.003.
- Bartakovicova K, Kemenyova P,
Belica I, Janik Szapuova Z, Stebelova K, Waczulikova I, Ostatnikova D,
Babinska K. Sleep problems and 6-sulfatoxymelatonin as possible
predictors of symptom severity, adaptive and maladaptive behavior in
children with autism spectrum disorder. Int J Environ Res Public
Health. 2022 Jun 21;19(13):7594. doi:
https://doi.org/10.3390/ijerph19137594.
- Vivancos PD, Driscoll SP,
Bulman CA, Ying L, Emami K, Treumann A, Mauve C, Noctor G, Foyer CH.
Perturbations of amino acid metabolism associated with
glyphosate-dependent inhibition of shikimic acid metabolism affect
cellular redox homeostasis and alter the abundance of proteins
involved in photosynthesis and photorespiration. Plant Physiol. 2011
Sep;157(1):256-68. doi: https://doi.org/10.1104/pp.111.181024.
- Samsel A, Seneff S.
Glyphosate’s suppression of cytochrome P450 enzymes and amino acid
biosynthesis by the gut microbiome: Pathways to modern diseases.
Entropy 2013; 15: 1416-1463. doi:
https://doi.org/10.3390/e15041416.
- Kane MJ, Angoa-Peréz M, Briggs
DI, Sykes CE, Francescutti DM, Rosenberg DR, Kuhn DM. Mice genetically
depleted of brain serotonin display social impairments, communication
deficits and repetitive behaviors: possible relevance to autism. PLoS
One. 2012;7(11):e48975. doi:
https://doi.org/10.1371/journal.pone.0048975.
- Batllori M, Molero-Luis M,
Arrabal L, Heras JL, Fernandez-Ramos JA, Gutiérrez-Solana LG,
Ibáñez-Micó S, Domingo R, Campistol J, Ormazabal A, Sedel F, Opladen
T, Zouvelou B, Pons R, Garcia-Cazorla A, Lopez-Laso E, Artuch R.
Urinary sulphatoxymelatonin as a biomarker of serotonin status in
biogenic amine-deficient patients. Sci Rep 7, 14675 (2017). doi:
https://doi.org/10.1038/s41598-017-15063-8.
- Cattani D, Pierozan P, Zamoner
A, Brittebo E, Karlsson O. Long-Term Effects of Perinatal Exposure to
a Glyphosate-Based Herbicide on Melatonin Levels and Oxidative Brain
Damage in Adult Male Rats. Antioxidants (Basel). 2023 Oct
3;12(10):1825. doi: https://doi.org/10.3390/antiox12101825.
- Zhang Y, Hodgson NW, Trivedi
MS, Abdolmaleky HM, Fournier M, Cuenod M, Do KQ, Deth RC. Decreased
brain levels of vitamin B12 in aging, autism and schizophrenia. PLoS
One. 2016 Jan 22; 11(1): e0146797. doi:
https://doi.org/10.1371/journal.pone.0146797.
- Pezacka E, Green R, Jacobsen
DW. Glutathionylcobalamin as an intermediate in the formation of
cobalamin coenzymes. Biochem Biophys Res Commun. 1990 Jun 15; 169(2):
443-50. doi: https://doi.org/10.1016/0006-291x(90)90351-m.
- Ikeda M, Asai M, Moriya T,
Sagara M, Inou S, Shibata S. Methylcobalamin amplifies
melatonin-induced circadian phase shifts by facilitation of melatonin
synthesis in the rat pineal gland. Brain Res. 1998 Jun
8;795(1-2):98-104. doi:
https://doi.org/10.1016/s0006-8993(98)00262-5.
- Yaffe MB, Schutkowski M, Shen
M, Zhou XZ, Stukenberg PT, Rahfeld JU, Xu J, Kuang J, Kirschner MW,
Fischer G, Cantley LC, and Lu KP. Sequence-specific and
phosphorylation-dependent proline isomerization: a potential mitotic
regulatory mechanism. Science 1997; 278, 1957-1960. doi:
https://doi.org/10.1126/science.278.5345.1957.
- Liou YC, Zhou XZ, Lu KP. Prolyl
isomerase PIN1 as a molecular switch to determine the fate of
phosphoproteins. Trends Biochem Sci. 2011 Oct;36(10):501-14. doi:
https://pubmed.ncbi.nlm.nih.gov/21852138/.
- Makinwa Y, Musich PR, Zou Y.
Phosphorylation-dependent PIN1 isomerization of ATR: Its role in
regulating ATR’s anti-apoptotic function at mitochondria, and the
implications in cancer. Front Cell Dev Biol. 2020 Apr 30;8:281. doi:
https://doi.org/10.3389/fcell.2020.00281.
- Lu KP, Hanes SD, Hunter T. A
human peptidyl-prolyl isomerase essential for regulation of mitosis.
Nature 1996; 380: 544–547. doi: https://doi.org/10.1038/380544a0
- Lu KP.
Phosphorylation-dependent prolyl isomerization: a novel cell cycle
regulatory mechanism. Prog Cell Cycle Res. 2000;4:83-96. doi:
https://doi.org/10.1007/978-1-4615-4253-7 8.
- Fagiani F, Govoni S, Racchi M,
Lanni C. The peptidyl-prolyl isomerase PIN1 in neuronal signaling:
From neurodevelopment to neurodegeneration. Mol Neurobiol. 2021
Mar;58(3):1062-1073. doi:
https://doi.org/10.1007/s12035-020-02179-8.
- Yu JH, Im CY, Min SH. Function
of PIN1 in cancer development and its inhibitors as cancer
therapeutics. Front Cell Dev Biol. 2020 Mar 17;8:120. doi:
https://doi.org/10.3389/fcell.2020.00120.
- Sandal P, Jong CJ, Merrill RA,
Song J, Strack S. Protein phosphatase 2A - structure, function and
role in neurodevelopmental disorders. J Cell Sci. 2021 Jul
1;134(13):jcs248187. doi: https://doi.org/10.1242/jcs.248187.
- Schwartz PA, Murray BW. Protein
kinase biochemistry and drug discovery. Bioorg Chem. 2011
Dec;39(5-6):192-210. doi:
https://doi.org/10.1016/j.bioorg.2011.07.004.
- Silva YP, Bernardi A, Frozza
RL. The role of short-chain fatty acids from gut microbiota in
gut-brain communication. Front Endocrinol (Lausanne). (2020) 11:2525.
doi: https://doi.org/10.3389/fendo.2020.00025.
- Appleton J. The gut-brain axis:
Influence of microbiota on mood and mental health. Integr Med
(Encinitas). 2018 Aug;17(4):28-32.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469458/.
- Barnett JA, Bandy ML, Gibson
DL. Is the use of glyphosate in modern agriculture resulting in
increased neuropsychiatric conditions through modulation of the
gut-brain-microbiome axis? Front Nutr. 2022 Mar 8; 9: 827384. doi:
https://doi.org/10.3389/fnut.2022.827384.
- Szentirmai , Millican NS,
Massie AR, Kaps L. Butyrate, a metabolite of intestinal bacteria,
enhances sleep. Sci Rep. (2019) 9:7035. doi:
https://doi.org/10.1038/s41598-019-43502-1
- Devnani PA, Hegde AU. Autism
and sleep disorders. J Pediatr Neurosci. 2015;10(4):304-7. doi:
https://doi.org/10.4103/1817-1745.174438.
- Swanson NL, Leu A, Abrahamson
J, Wallet B. Genetically engineered crops, glyphosate and the
deterioration of health in the United States of America. Journal of
Organic Systems 2014;9(2):6-37.
https://www.organic-systems.org/journal/92/abstracts/Swanson-et-al.html.
- Chen X, Wang S, Mao X, Xiang X,
Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, Deng M, Wang X. Adverse
health effects of emerging contaminants on inflammatory bowel disease.
Front Public Health. 2023 Feb 24;11:1140786. doi:
https://doi.org/10.3389/fpubh.2023.
- Kim JY, Choi MJ, Ha S, Hwang J,
Koyanagi A, Dragioti E, Radua J, Smith L, Jacob L, Salazar de Pablo G,
Lee SW, Yon DK, Thompson T, Cortese S, Lollo G, Liang CS, Chu CS,
Fusar-Poli P, Cheon KA, Shin JI, Solmi M. Association between autism
spectrum disorder and inflammatory bowel disease: A systematic review
and meta-analysis. Autism Res. 2022 Feb;15(2):340-352. doi:
https://doi.org/10.1002/aur.2656.
- Vargas MM, Artigiani Neto R,
Sdepanian VL. Quantitative histology as a diagnostic tool for celiac
disease in children and adolescents. Ann Diagn Pathol. 2022
Dec;61:152031. doi: https://doi.org/10.1016/j.anndiagpath.2022.
- Tang Q, Tang J, Ren X, Li C.
Glyphosate exposure induces inflammatory responses in the small
intestine and alters gut microbial composition in rats. Environ
Pollut. 2020 Jun;261:114129. doi:
https://doi.org/10.1016/j.envpol.2020.114129.
- Chen YC, Lin HY, Chien Y, Tung
YH, Ni YH, Gau SS. Altered gut microbiota correlates with behavioral
problems but not gastrointestinal symptoms in individuals with autism.
Brain Behav Immun. 2022 Nov;106:161-178. doi:
https://doi.org/10.1016/j.bbi.2022.08.015.
- Croall ID, Hoggard N,
Hadjivassiliou M. Gluten and autism spectrum disorder. Nutrients. 2021
Feb 9;13(2):572. doi: https://doi.org/10.3390/nu13020572
- Genuis SJ, Bouchard TP. Celiac
disease presenting as autism. J Child Neurol. 2010 Jan;25(1):114-9.
doi: https://doi.org/10.1177/0883073809336127.
- Barnett JA, Gibson DL.
Separating the empirical wheat from the pseudoscientific chaff: A
critical review of the literature surrounding glyphosate, dysbiosis
and wheat-sensitivity. Front Microbiol. 2020 Sep 25;11:556729. doi:
https://doi.org/10.3389/fmicb.2020.556729.
- Samsel A, Seneff S. Glyphosate,
pathways to modern diseases II: Celiac sprue and gluten intolerance.
Interdiscip Toxicol. 2013 Dec;6(4):159-84. doi:
https://doi.org/10.2478/intox-2013-002.
- Avila-Vazquez M, Difilippo FS,
MacLean B, Maturano E. Environmental exposure to glyphosate and risk
of asthma in an ecological study. Global Journal of Medical Research:
F Diseases 2021; 21(1): 15-23. Doi:
https://doi.org/10.34257/GJMRFVOL21IS1PG15.
- Croen LA, Ames JL, Qian Y,
Alexeeff S, Ashwood P, Gunderson EP, Wu YW, Boghossian AS, Yolken R,
Van de Water J, Weiss LA. Inflammatory conditions during pregnancy and
risk of autism and other neurodevelopmental disorders. Biol Psychiatry
Glob Open Sci. 2023 Oct 11;4(1):39-50. doi:
https://doi.org/10.1016/j.bpsgos.2023.09.008.
- Hoppin JA, Umbach DM, Long S,
London SJ, Henneberger PK, Blair A, Alavanja M, Freeman LE, Sandler
DP. Pesticides are associated with allergic and non-allergic wheeze
among male farmers. Environ Health Perspect. 2017 Apr;125(4):535-543.
doi: https://doi.org/10.1289/EHP315.
- Kumar S, Khodoun M, Kettleson
EM, McKnight C, Reponen T, Grinshpun SA, Adhikari A. Glyphosate-rich
air samples induce IL-33, TSLP and generate IL-13 dependent airway
inflammation. Toxicology. 2014 Nov 5;325:42-51. doi:
https://doi.org/10.1016/j.tox.2014.08.008.
- Dellon ES, Hirano I.
Epidemiology and Natural History of Eosinophilic Esophagitis.
Gastroenterology. 2018;154(2):31932.e3. doi:
https://doi.org/https://doi.org/10.1053/j.gastro.2017.06.067.
- Soto G, Sasaki M, Karakasheva T, Muir A. The Impact of Early Life
Exposure to Glyphosate. The FASEB Journal 2022; 36(S1). doi:
https://doi.org/10.1096/faseb
j.2022.36.S1.R5628.
- Sohn JK, Barnes BH, Al-Hazaymeh
A, Sauer BG, McGowan EC. High prevalence of developmental disorders in
pediatric eosinophilic esophagitis (EoE): A single-center
observational study. J Allergy Clin Immunol Pract. 2021
Feb;9(2):1032-1034.e1. doi:
https://doi.org/10.1016/j.jaip.2020.09.032.
- Anderson J, Moonie S, Hogan MB,
Scherr R, Allenback G. Eosinophilic esophagitis: comorbidities and
atopic disease in Nevada. Dis Esophagus. 2020 May 15;33(5):doz105.
doi: https://doi.org/10.1093/dote/doz105.
- Kamionkowski S, Shibli F,
Ganocy S, Fass R. The relationship between gastroesophageal reflux
disease and autism spectrum disorder in adult patients in the United
States. Neurogastroenterol Motil. 2022 Jul;34(7):e14295. doi:
https://doi.org/10.1111/nmo.14295.
- Dharmaraj R, Hagglund K, Lyons
H. Eosinophilic esophagitis associated with celiac disease in
children. BMC Res Notes. 2015 Jun 26;8:263. doi:
https://doi.org/10.1186/s13104-015-1256-z.
- Wasilewska J, Klukowski M.
Gastrointestinal symptoms and autism spectrum disorder: links and
risks a possible new overlap syndrome. Pediatric Health, Medicine and
Therapeutics 2015; 6: 153-166. doi:
https://doi.org/10.2147/PHMT.S85717.
- Cattani D, de Liz Oliveira
Cavalli VL, Heinz Rieg CE. Domingues JT, Dal-Cim T, Tasca CI, Mena
Barreto Silva FR, Zamoner A. Mechanisms underlying the neurotoxicity
induced by glyphosate-based herbicide in immature rat hippocampus:
Involvement of glutamate excitotoxicity. Toxicology. 2014;320:3445.
doi: https://doi.org/10.1016/j.tox.2014.03.001.
- Lewerenz J, Hewett SJ, Huang Y,
Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A,
Pergande M, Smith SB, Ganapathy V, Maher P. The cystine/glutamate
antiporter system x(c)(-) in health and disease: from molecular
mechanisms to novel therapeutic opportunities. Antioxid Redox Signal.
2013 Feb 10;18(5):522-55. doi:
https://doi.org/10.1089/ars.2011.4391.
- Cattani D, Cesconetto PA,
Tavares MK, Parisotto EB, De Oliveira PA, Rieg CEH, Leite MC, Prediger
RDS, Wendt NC, Razzera G, Filho DW, Zamoner A. Developmental exposure
to glyphosate-based herbicide and depressive-like behavior in adult
offspring: Implication of glutamate excitotoxicity and oxidative
stress. Toxicology. 2017;387:6780. doi:
https://doi.org/10.1016/j.tox.2017.06.001.
- Tomova A, Kemnyov P, Filkov D,
Szapuov , Kov A, Babinsk K, Ostatnkov D. Plasma levels of glial cell
marker S100B in children with autism. Physiol Res. 2019 Dec
20;68(Suppl 3):S315-S323. doi:
https://doi.org/10.33549/physiolres.934350.
- Patel O, Syamlal G, Henneberger
PK, Alarcon WA, Mazurek JM. Pesticide use, allergic rhinitis, and
asthma among US farm operators. J Agromedicine. 2018; 23(4):327-335.
doi: https://doi.org/10.1080/1059924X.2018.1501451
- Lee JW, Choi YJ, Park S, Gil
HW, Song HY, Hong SY. Serum S100 protein could predict altered
consciousness in glyphosate or glufosinate poisoning patients. Clin
Toxicol (Phila). 2017;55(5):357-359. doi:
https://doi.org/10.1080/15563650.2017.1286013.
- Lushchak OV, Kubrak OI, Storey
JM, Storey KB, Lushchak VI. Low toxic herbicide Roundup induces mild
oxidative stress in goldfish tissues. Chemosphere. 2009
Aug;76(7):932-7. doi:
https://doi.org/10.1016/j.chemosphere.2009.04.045.
- Costas-Ferreira C, Durán R,
Faro LRF. Toxic effects of glyphosate on the nervous system: A
systematic review. Int J Mol Sci. 2022 Apr 21;23(9):4605. doi:
https://doi.org/10.3390/ijms23094605
- Singh P, Ravanan P, Talwar P.
Death Associated Protein Kinase 1 (DAPK1): A regulator of apoptosis
and autophagy. Front Mol Neurosci. 2016 Jun 23;9:46. doi:
https://doi.org/10.3389/fn-
mol.2016.00046.
- Chen D, Mei Y, Kim N, Lan G,
Gan CL, Fan F, Zhang T, Xia Y, Wang L, Lin C, Ke F, Zhou XZ, Lu KP,
Lee TH. Melatonin directly binds and inhibits death-associated protein
kinase 1 function in Alzheimer’s disease. J Pineal Res. 2020
Sep;69(2):e12665. doi: https://doi.org/10.1111/jpi.12665.
- Souza SS, Santos AA,
Ribeiro-Paz, EED, Crdoba-Moreno M, Trevisan IL, Caldeira W, Muxel SM,
Sousa KDS. Markus RP. Melatonin synthesized by activated microglia
orchestrates the progression of microglia from a pro-inflammatory to a
recovery/repair phenotype. Melatonin Res. 2022, Vol 5 (1) 55-67; doi:
https://doi.org/10.32794/mr112500120.
- Gou Z, Su X, Hu X, Zhou Y,
Huang L, Fan Y, Li J, Lu L. Melatonin improves hypoxic-ischemic brain
damage through the Akt/Nrf2/Gpx4 signaling pathway. Brain Res Bull.
2020 Oct;163:40-48. doi:
https://doi.org/10.1016/j.brainresbull.2020.07.011.
- Jung KH, Hong SW, Zheng HM, Lee
DH, Hong SS. Melatonin downregulates nuclear erythroid 2-related
factor 2 and nuclear factor-kappaB during prevention of oxidative
liver injury in a dimethylnitrosamine model. J Pineal Res. (2009)
47:17383. doi: https://doi.org/10.1111/j.1600-079X.2009.00698.x.
- Innes BT, Sowole MA, Gyenis L,
Dubinsky M, Konermann L, Litchfield DW, Brandl CJ, Shilton BH.
Peroxide-mediated oxidation and inhibition of the peptidyl-prolyl
isomerase Pin1. Biochim Biophys Acta. 2015 May;1852(5):905-12. doi:
https://doi.org/10.1016/j.bbadis.2014.12.025.
- Fatemi SH. The
hyperglutamatergic hypothesis of autism. Prog. Neuropsychopharmacol.
Biol. Psychiatry. 2008;32:912913. doi:
https://doi.org/10.1016/j.pnpbp.2007.11.004.
- Montanari M, Martella G, Bonsi
P, Meringolo M. Autism spectrum disorder: Focus on glutamatergic
neurotransmission. Int J Mol Sci. 2022 Mar 31;23(7):3861. doi:
https://doi.org/10.3390/ijms23073861.
- Purcell AE, Jeon OH, Zimmerman
AW, Blue ME, Pevsner J. Postmortem brain abnormalities of the
glutamate neurotransmitter system in autism. Neurology. 2001 Nov
13;57(9):1618-28. doi: https://doi.org/10.1212/wnl.57.9.1618.
- Egbenya DL, Aidoo E, Kyei G.
Glutamate receptors in brain development. Childs Nerv Syst. 2021
Sep;37(9):2753-2758. doi:
https://doi.org/10.1007/s00381-021-05266-w.
- Aldred S, Moore KM, Fitzgerald
M, Waring RH. Plasma amino acid levels in children with autism and
their families. J Autism Dev Disord. 2003 Feb;33(1):93-7. doi:
https://doi.org/10.1023/a:1022238706604.
- Yap HM, Lye K-L and Tan LT-H.
Comprehensive insight of neurodegenerative diseases and the role of
neurotoxin agents Glutamate. Prog Mircobes Mol Bio1 2020;
3(1):a0000070. doi: https://doi.org/10.3687/pddbs.a0000070.
- Kau KS, Madayag A, Mantsch JR,
Grier MD, Abdulhameed O, Baker DA. Blunted cystine-glutamate
antiporter function in the nucleus accumbens promotes cocaine-induced
drug seeking. Neuroscience. 2008 Aug 13;155(2):530-7. doi:
https://doi.org/10.1016/j.neuroscience.2008.06.010.
- Ghanizadeh A, Derakhshan N.
N-acetylcysteine for treatment of autism, a case report. J Res Med
Sci. 2012 Oct;17(10):985-7.
https://pubmed.ncbi.nlm.nih.gov/23826003/.
- Lee TM, Lee KM, Lee CY, Lee HC,
Tam KW, Loh EW. Effectiveness of N-acetylcysteine in autism spectrum
disorders: A meta-analysis of randomized controlled trials. Aust N Z J
Psychiatry. 2021 Feb;55(2):196-206. doi:
https://doi.org/10.1177/0004867420952540.
- Prasad M, Gatasheh MK,
Alshuniaber MA, Krishnamoorthy R, Rajagopal P, Krishnamoorthy K,
Periyasamy V, Veeraraghavan VP, Jayaraman S. Impact of glyphosate on
the development of insulin resistance in experimental diabetic rats:
Role of NFB signalling pathways. Antioxidants (Basel). 2022 Dec
9;11(12):2436. doi: https://doi.org/10.3390/antiox11122436.
- Kong L, Chen X, Gissler M,
Lavebratt C. Relationship of prenatal maternal obesity and diabetes to
offspring neurodevelopmental and psychiatric disorders: a narrative
review. Int J Obes (Lond). 2020 Oct;44(10):1981-2000. doi:
https://doi.org/10.1038/s41366-020-0609-4.
- Amaral FG, Turati AO, Barone M,
Scialfa JH, do Carmo Buonfiglio D, Peres R, Peliciari-Garcia RA,
Afeche SC, Lima L, Scavone C, Bordin S, Reiter RJ, Menna-Barreto L,
Cipolla-Neto J. Melatonin synthesis impairment as a new deleterious
outcome of diabetes-derived hyperglycemia. J Pineal Res. 2014
Aug;57(1):67-79. doi: https://doi.org/10.1111/jpi.12144.
- Bach A, Mühlbauer E, Peschke E.
Adrenoceptor expression and diurnal rhythms of melatonin and its
precursors in the pineal gland of type 2 diabetic gotokakizaki rats.
Endocrinology. 2010; 151(6): 2483-93.. doi:
https://doi.org/10.1210/en.2009-1299.
- Nadeem MS, Hosawi S, Alshehri
S, Ghoneim MM, Imam SS, Murtaza BN, Kazmi I. Symptomatic, Genetic, and
mechanistic overlaps between autism and Alzheimer’s disease.
Biomolecules. 2021 Nov 4;11(11):1635. doi:
https://doi.org/10.3390/biom11111635.
- Driver JA, Zhou XZ, Lu KP. Pin1
dysregulation helps to explain the inverse association between cancer
and Alzheimer’s disease. Biochim Biophys Acta. 2015
Oct;1850(10):2069-76. doi:
https://doi.org/10.1016/j.bbagen.2014.12.025.
- Wen Y, Herbert MR. Connecting
the dots: Overlaps between autism and cancer suggest possible common
mechanisms regarding signaling pathways related to metabolic
alterations. Med Hypotheses. 2017 Jun;103:118-123. doi:
https://doi.org/10.1016/j.mehy.2017.05.004.
- Crawley JN, Heyer WD, LaSalle
JM. Autism and cancer share risk genes, pathways, and drug targets.
Trends Genet. 2016 Mar;32(3):139-146. doi:
https://doi.org/10.1016/j.tig.2016.01.001.
- He K, Aizenman E. ERK signaling
leads to mitochondrial dysfunction in pextracellular zinc-induced
neurotoxicity. J Neurochem 2010;114(2):45261. doi:
https://doi.org/10.1111/j.1471-4159.2010.06762.x.
- Pu W, Zheng Y, Peng Y. Prolyl
isomerase Pin1 in human cancer: Function, mechanism, and significance.
Front Cell Dev Biol. 2020 Mar 31;8:168. doi:
https://doi.org/10.3389/fcell.2020.00168.
- Atabay KD, Karabay A. Pin1
inhibition activates cyclin D and produces neurodegenerative
pathology. J Neurochem. 2012 Feb;120(3):430-9. doi:
https://doi.org/10.1111/j.1471-4159.2011.07259.x.
- Butterfield D, Abdul H, Opii W,
Newman S, Joshi G, Ansari M, Sultana R. (2006). Review: Pin1 in
Alzheimer’s disease. Journal of Neurochemistry 2006; 98: 1697-1706.
doi: https://doi.org/10.1111/j.1471-4159.2006.03995.x.
- Maynard S, Schurman SH, Harboe
C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA
damage and association with cancer and aging. Carcinogenesis. 2009
Jan;30(1):2-10. doi: https://doi.org/10.1093/carcin/bgn250.
- Liu S, Yao S, Yang H, Liu S,
Wang Y. Autophagy: Regulator of cell death. Cell Death Dis 2023; 14:
648. doi: https://doi.org/10.1038/s41419-023-06154-8.
- Tang G, Gudsnuk K, Kuo SH,
Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C,
Yamamoto A, Yue Z, Arancio O, Peterson BS, Champagne F, Dwork AJ,
Goldman J, Sulzer D. Loss of mTOR-dependent macroautophagy causes
autistic-like synaptic pruning deficits. Neuron. 2014 Sep
3;83(5):1131-43. doi:
https://doi.org/10.1016/j.neuron.2014.07.040.
- Kim HJ, Cho MH, Shim WH, Kim
JK, Jeon EY, Kim DH, Yoon SY. Deficient autophagy in microglia impairs
synaptic pruning and causes social behavioral defects. Mol Psychiatry.
2017 Nov;22(11):1576-1584. doi:
https://doi.org/10.1038/mp.2016.103.
- Caracci MO, Avila ME,
Espinoza-Cavieres FA, Lpez HR, Ugarte GD, De Ferrari GV.
Wnt/β-catenin-dependent transcription in autism spectrum disorders.
Front Mol Neurosci. 2021 Nov 11;14:764756. doi:
https://doi.org/10.3389/fnmol.2021.
- Coullery
RP, Ferrari ME, Rosso SB. Neuronal development and axon growth are
altered by glyphosate through a WNT non-canonical signaling pathway.
Neurotoxicology. 2016 Jan;52:150-61. doi:
https://doi.org/10.1016/j.neuro.2015.12.004.
- Sun X, Kato H, Sato H, Torio M,
Han X, Zhang Y, Hirofuji Y, Kato TA, Sakai Y, Ohga S, Fukumoto S,
Masuda K. Impaired neurite development and mitochondrial dysfunction
associated with calcium accumulation in dopaminergic neurons
differentiated from the dental pulp stem cells of a patient with
metatropic dysplasia. Biochem Biophys Rep. 2021 Mar 9;26:100968. doi:
https://doi.org/10.1016/j.bbrep.2021.100968.
- Stephenson JR, Wang X, Perfitt
TL, Parrish WP, Shonesy BC, Marks CR, Mortlock DP, Nakagawa T,
Sutcliffe JS, Colbran RJ. A novel human CAMK2A mutation disrupts
dendritic morphology and synaptic transmission, and causes ASD-related
behaviors. J Neurosci. 2017 Feb 22;37(8):2216-2233. doi:
https://doi.org/10.1523/JNEUROSCI.2068-16.2017.
- Coullery R, Pacchioni AM, Rosso
SB. Exposure to glyphosate during pregnancy induces neurobehavioral
alterations and downregulation of Wnt5a-CaMKII pathway. Reprod
Toxicol. 2020 Sep; 96: 390-398. doi:
https://doi.org/10.1016/j.reprotox.2020.08.006.
- Hutchins BI, Li L, Kalil K.
Wnt/calcium signaling mediates axon growth and guid- ance in the
developing corpus callosum. Dev Neurobiol. 2011 Apr;71(4):269-83. doi:
https://doi.org/10.1002/dneu.20846.
- Sosa LJ, Malter JS, Hu J,
Bustos Plonka F, Oksdath M, Nieto Guil AF, Quiroga S, Pfenninger KH.
Protein interacting with NIMA (never in mitosis A)-1 regulates axonal
growth cone adhesion and spreading through myristoylated alanine-rich
C kinase sub- strate isomerization. J Neurochem. 2016
Jun;137(5):744-55. doi: https://doi.org/10.1111/jnc.13612.
- Paul, L., Brown, W., Adolphs,
R. et al. Agenesis of the corpus callosum: genetic, developmental and
functional aspects of connectivity. Nat Rev Neurosci 8, 287299 (2007).
https://doi.org/10.1038/nrn2107.
- Meyza KZ, Blanchard DC. The
BTBR mouse model of idiopathic autism - Cur- rent view on mechanisms.
Neurosci Biobehav Rev. 2017 May;76(Pt A):99-110. doi:
https://doi.org/10.1016/j.neubiorev.2016.12.037.
- Lau YC, Hinkley LB, Bukshpun P,
Strominger ZA, Wakahiro ML, Baron-Cohen S, Alli- son C, Auyeung B,
Jeremy RJ, Nagarajan SS, Sherr EH, Marco EJ. Autism traits in indi-
viduals with agenesis of the corpus callosum. J Autism Dev Disord.
2013 May;43(5):1106- 18. doi:
https://doi.org/10.1007/s10803-012-1653-2.
- Giese KP, Fedorov NB,
Filipkowski RK, Silva AJ. Autophosphorylation at Thr286 of the alpha
calcium-calmodulin kinase II in LTP and learning. Science 1998 Feb 6;
279(5352): 870-3. doi:
https://doi.org/10.1126/science.279.5352.870.
- Goodell DJ, Zaegel V, Coultrap
SJ, Hell JW, Bayer KU. DAPK1 mediates LTD by making Camkii/GluN2B
binding LTP specific. Cell Rep. 2017 Jun 13;19(11):2231-2243. doi:
https://doi.org/10.1016/j.celrep.2017.05.068.
- Medina MA, Andrade VM, Caracci
MO, Avila ME, Verdugo DA, Vargas MF, Ugarte GD, Reyes AE, Opazo C, De
Ferrari GV. Wnt/β-catenin signaling stimulates the expression and
synaptic clustering of the autism-associated Neuroligin 3 gene. Transl
Psychiatry 8, 45 (2018). doi:
https://doi.org/10.1038/s41398-018-0093-y.
- Nakamura K, Kosugi I, Lee DY,
Hafner A, Sinclair DA, Ryo A, Lu KP. Prolyl isomerase Pin1 regulates
neuronal differentiation via β-catenin. Mol Cell Biol. 2012
Aug;32(15):2966-78. doi: https://doi.org/10.1128/MCB.05688-11.
- Chen L, Liu H, Li Y, Lin X, Xia
S, Wanggou S, Li X. Functional characterization of TSPAN7 as a novel
indicator for immunotherapy in glioma. Front Immunol. 2023 Feb
9;14:1105489. doi: https://doi.org/10.3389/fimmu.2023.
- Wei H, Malik M, Sheikh AM, Merz
G, Ted Brown W, Li X. Abnormal cell properties and down-regulated
FAK-Src complex signaling in B lymphoblasts of autistic subjects. Am J
Pathol. 2011 Jul;179(1):66-74. doi:
https://doi.org/10.1016/j.ajpath.2011.03.034.
- Ivankovic-Dikic I, Grnroos E,
Blaukat A, Barth BU, Dikic I. Pyk2 and FAK regulate neurite outgrowth
induced by growth factors and integrins. Nat Cell Biol. 2000
Sep;2(9):574-81. doi: https://doi.org/10.1038/35023515.
- Pang S, Luo Z, Dong W, Gao S,
Chen W, Liu N, Zhang X, Gao X, Li J, Gao K, Shi X, Guan F, Zhang L,
Zhang L. Integrin β1/FAK/SRC signal pathway is involved in autism
spectrum disorder in Tspan7 knockout rats. Life Sci Alliance. 2022 Dec
20;6(3):e202201616. doi: https://doi.org/10.26508/lsa.202201616.
- Chen XR, Igumenova TI.
Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl
isomerase. Adv Biol Regul. 2023 Jan ;87: 100938. doi:
https://doi.org/10.1016/j.jbior.2022.100938.
- Kim B, van Golen CM, Feldman
EL. Degradation and dephosphorylation of focal adhesion kinase during
okadaic acid-induced apoptosis in human neuroblastoma cells.
Neoplasia. 2003 Sep-Oct;5(5):405-16. doi:
https://doi.org/10.1016/s1476-5586(03)80043-x.
- Ruoslahti E. RGD and other
recognition sequences for integrins. Annu Rev Cell Dev Biol.
1996;12:697-715. doi:
https://doi.org/10.1146/annurev.cellbio.12.1.697.
- Szekacs I, Farkas E, Gemes BL,
Takacs E, Szekacs A, Horvath R. Integrin targeting of glyphosate and
its cell adhesion modulation effects on osteoblastic MC3T3-E1 cells
revealed by label-free optical biosensing. Sci Rep. 2018 Nov
27;8(1):17401. doi: https://doi.org/10.1038/s41598-018-36081-0.
- Sakamoto S, Kyprianou N.
Targeting anoikis resistance in prostate cancer metastasis. Mol
Aspects Med. 2010 Apr;31(2):205-14. doi:
https://doi.org/10.1016/j.mam.2010.02.001.
- Duxbury MS, Ito H, Zinner MJ,
Ashley SW, Whang EE. Focal adhesion kinase gene silencing promotes
anoikis and suppresses metastasis of human pancreatic adenocarcinoma
cells. Surgery. 2004 May;135(5):555-62. doi:
https://doi.org/10.1016/j.surg.2003.10.017.
- Liu G, Meng X, Jin Y, Bai J,
Zhao Y, Cui X, Chen F, Fu S. Inhibitory role of focal adhesion kinase
on anoikis in the lung cancer cell A549. Cell Biol Int. 2008
Jun;32(6):663-70. doi:
https://doi.org/10.1016/j.cellbi.2008.01.292.
- Coley AA, Gao WJ. PSD-95
deficiency disrupts PFC-associated function and behavior during
neurodevelopment. Sci Rep 2019; 9: 9486. doi:
https://doi.org/10.1038/s41598-019-45971-w.
- Coley AA, Gao WJ. PSD-95: A
synaptic protein implicated in schizophrenia or autism? Prog
Neuropsychopharmacol Biol Psychiatry. 2018 Mar 2;82:187-194. doi:
https://doi.org/10.1016/j.pnpbp.2017.11.016.
- Bonsi P, De Jaco A, Fasano L,
Gubellini P. Postsynaptic autism spectrum disorder genes and synaptic
dysfunction. Neurobiol Dis. 2022 Jan;162:105564. doi:
https://doi.org/10.1016/j.nbd.2021.105564.
- Luna S, Neila LP, Vena R,
Borgatello C, Rosso SB. Glyphosate exposure induces synaptic
impairment in hippocampal neurons and cognitive deficits in developing
rats. Arch Toxicol. 2021 Jun;95(6):2137-2150. doi:
https://doi.org/10.1007/s00204-021-03046-8.
- Antonelli R, De Filippo R,
Middei S, Stancheva S, Pastore B, Ammassari-Teule M, Barberis A,
Cherubini E, Zacchi P. Pin1 modulates the synaptic content of NMDA
receptors via prolyl-isomerization of PSD-95. J Neurosci. 2016 May
18;36(20):5437-47. doi:
https://doi.org/10.1523/JNEUROSCI.3124-15.2016.
- Hutsler JJ, Zhang H. Increased
dendritic spine densities on cortical projection neurons in autism
spectrum disorders. Brain Res. 2010 Jan 14;1309:83-94. doi:
https://doi.org/10.1016/j.brainres.2009.09.120.
- Wang J, Gao Y, Xiao L, Lin Y,
Huang L, Chen J, Liang G, Li W, Yi W, Lao J, Zhang B, Gao TM, Zhong M,
Yang X. Increased NMDARs in neurons and glutamine synthetase in
astrocytes underlying autistic-like behaviors of Gabrb1-/- mice.
iScience. 2023 Jul 25;26(8):107476. doi:
https://doi.org/10.1016/j.isci.2023.107476.
- Huang L, Wang J, Liang G, Gao
Y, Jin SY,Hu J, Yang X, Lao J, Chen J, Luo ZC, Fan C, Xiong L, Zhu X,
Gao TM, Zhong M, Yang X. Upregulated NMDAR-mediated GABAergic
transmission underlies autistic-like deficits in Htr3a knockout mice.
Theranostics. 2021 Sep 7;11(19):9296-9310. doi:
https://doi.org/10.7150/thno.60531.
- Brignell A, Marraffa C,
Williams K, May T. Memantine for autism spectrum disorder. Cochrane
Database Syst Rev. 2022 Aug 25;8(8):CD013845. doi:
https://doi.org/10.1002/14651858.CD013845.pub2.
- Rodríguez-Palmero A, Boerrigter
MM, Gómez-Andrés D, Aldinger KA, Marcos-Alcalde Í, Popp B, Everman DB,
Lovgren AK, Arpin S, Bahrambeigi V, Beunders G, Bisgaard AM,
Bjerregaard VA, Bruel AL, Challman TD, Cogné B, Coubes C, de Man SA,
Denommé-Pichon AS, Dye TJ, … Tümer Z. DLG4-related synaptopathy: A
new rare brain disorder. Genet. Med. 2021; 23: 888-899. doi:
https://doi.org/10.1038/s41436-020-01075-9.
- Zhang T, Xia Y, Hu L, Chen D,
Gan CL, Wang L, Mei Y, Lan G, Shui X, Tian Y, Li R, Zhang M, Lee TH.
Death-associated protein kinase 1 mediates Aβ42 aggregation-induced
neuronal apoptosis and tau dysregulation in Alzheimer’s disease. Int J
Biol Sci. 2022 Jan 1;18(2):693-706. doi:
https://doi.org/10.7150/ijbs.66760.
- Won J, Lee S, Ahmad Khan Z,
Choi J, Ho Lee T, Hong Y. Suppression of DAPK1 reduces ischemic brain
injury through inhibiting cell death signaling and promoting neural
remodeling. Brain Res. 2023 Dec 1;1820:148588. doi:
https://doi.org/10.1016/j.brainres.
- Tereshko V, Teplova M,
Brunzelle J, Watterson DM, Egli M. Crystal structures of the catalytic
domain of human protein kinase associated with apoptosis and tumor
suppression. Nat Struct Biol. 2001 Oct;8(10):899-907. doi:
https://doi.org/10.1038/nsb1001-899.
- O’Neill GM. The coordination
between actin filaments and adhesion in mesenchymal migration. Cell
Adh Migr. 2009 Oct-Dec;3(4):355-7. doi:
https://doi.org/10.4161/cam.3.4.9468.
- Qin
R, Melamed S, Yang B, Saxena M, Sheetz MP, Wolfenson H. Tumor
suppressor DAPK1 catalyzes adhesion assembly on rigid but anoikis on
soft matrices. Front Cell Dev Biol. 2022 Jul 19;10:959521. doi:
https://doi.org/10.3389/fcell.2022.959521.
- Kumar A, Balbach J. Folding and
stability of ankyrin repeats control biological protein function.
Biomolecules. 2021 Jun 5;11(6):840. doi:
https://doi.org/10.3390/biom11060840.
- Jin Y, Blue EK, Dixon S, Shao
Z, Gallagher PJ. A death-associated protein kinase (DAPK)-interacting
protein, DIP-1, is an E3 ubiquitin ligase that promotes tumor necrosis
factor-induced apoptosis and regulates the cellular levels of DAPK. J
Biol Chem. 2002 Dec 6;277(49):46980-6. doi:
https://doi.org/10.1074/jbc.M208585200.
- Kim N, Chen D, Zhou XZ, Lee TH.
Death-associated protein kinase 1 phosphorylation in neuronal cell
death and neurodegenerative disease. Int J Mol Sci. 2019 Jun
26;20(13):3131. doi: https://doi.org/10.3390/ijms20133131.
- Carreras FJ. Lessons from
glaucoma: Rethinking the fluid-brain barriers in common
neurodegenerative disorders. Neural Regen Res. 2019 Jun;14(6):962-966.
doi: https://doi.org/10.4103/1673-5374.249215.
- Bao Y, Wang L, Liu H, Yang J,
Yu F, Cui C, Huang D. A diagnostic model for Parkinson’s disease based
on anoikis-related genes. Mol Neurobiol. 2023 Nov 25. doi:
https://doi.org/10.1007/s12035-023-03753-6.
- Mehrabian M, Ehsani S,
Schmitt-Ulms G. An emerging role of the cellular prion protein as a
modulator of a morphogenetic program underlying
epithelial-to-mesenchymal transition. Front Cell Dev Biol. 2014 Sep
18;2:53. doi: https://doi.org/10.3389/fcell.2014.00053.
- Zhou J, Yang S, Zhu D, Li H,
Miao X, Gu M, Xu W, Zhang Y, Tang W, Shen R, Zha J, Zhu J, Yuan Z, Gu
X. The crosstalk between anoikis and epithelial-mesenchymal transition
and their synergistic roles in predicting prognosis in colon
adenocarcinoma. Front Oncol. 2023 Jun 7;13:1184215. doi:
https://doi.org/10.3389/fonc.2023.1184215.
- Mehrpour M, Codogno P. Prion
protein: From physiology to cancer biology. Cancer Lett. 2010 Apr
1;290(1):1-23. doi:
https://doi.org/10.1016/j.canlet.2009.07.009.
- Bianchi M, Manco M. Pin1
modulation in physiological status and neurodegeneration. Any
contribution to the pathogenesis of type 3 diabetes? Int J Mol Sci.
2018 Aug 8;19(8):2319. doi:
https://doi.org/10.3390/ijms19082319.
- Betancur C, Sakurai T, Buxbaum
JD. The emerging role of synaptic cell-adhesion pathways in the
pathogenesis of autism spectrum disorders. Trends Neurosci. 2009
Jul;32(7):402-12. doi:
https://doi.org/10.1016/j.tins.2009.04.003.
- Trobiani L, Meringolo M,
Diamanti T, Bourne Y, Marchot P, Martella G, Dini L, Pisani A, De Jaco
A, Bonsi P. The neuroligins and the synaptic pathway in Autism
Spectrum Disorder. Neurosci Biobehav Rev. 2020 Dec;119:37-51. doi:
https://doi.org/10.1016/j.neubiorev.2020.09.017.
- Guang S, Pang N, Deng X, Yang
L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology involved in
autism spectrum disorder. Front Cell Neurosci. 2018 Dec 21;12:470.
doi: https://doi.org/10.3389/fncel.2018.00470.
- Tullis JE, Bayer KU. Distinct
synaptic pools of DAPK1 differentially regulate activity-dependent
synaptic CaMKII accumulation. iScience. 2023 Apr 23;26(5):106723. doi:
https://doi.org/10.1016/j.isci.2023.106723.
- Konno D, Ko JA, Usui S, Hori K,
Maruoka H, Inui M, Fujikado T, Tano Y, Suzuki T, Tohyama K, Sobue K.
The postsynaptic density and dendritic raft localization of PSD-Zip70,
which contains an N-myristoylation sequence and leucine-zipper motifs.
J Cell Sci. 2002 Dec 1;115(Pt 23):4695-706. doi:
https://doi.org/10.1242/jcs.00127.
- Xu L, Ren Z, Chow FE, Tsai R,
Liu T, Rizzolio F, Boffo S, Xu Y, Huang S, Lippa CF, Gong Y.
Pathological role of peptidyl-prolyl isomerase Pin1 in the disruption
of synaptic plasticity in Alzheimer’s disease. Neural Plast.
2017;2017:3270725. doi: https://doi.org/10.1155/2017/3270725.
- Wang SC, Hu XM, Xiong K. The
regulatory role of Pin1 in neuronal death. Neural Regen Res. 2023
Jan;18(1):74-80. doi: https://doi.org/10.4103/1673-5374.341043.
- Marchionini DM, Collier TJ,
Camargo M, McGuire S, Pitzer M, Sortwell CE. Interference with
anoikis-induced cell death of dopamine neurons: implications for
augmenting embryonic graft survival in a rat model of Parkinson’s
disease. J Comp Neurol. 2003 Sep 15;464(2):172-9. doi:
https://doi.org/10.1002/cne.10785.
- Biswas D, Cary W, Nolta JA.
PPP2R5D-related intellectual disability and neurodevelopmental delay:
A review of the current understanding of the genetics and biochemical
basis of the disorder. Int J Mol Sci. 2020 Feb 14;21(4):1286. doi:
https://doi.org/10.3390/ijms21041286.
- Samuels IS, Saitta SC, Landreth
GE. MAP’ing CNS development and cognition: An ERKsome process. Neuron.
2009 Jan 29;61(2):160-7. doi:
https://doi.org/10.1016/j.neuron.2009.01.001.
- Faridar A, Jones-Davis D, Rider
E, Li J, Gobius I, Morcom L, Richards LJ, Sen S, Sherr EH. Mapk/Erk
activation in an animal model of social deficits shows a possible link
to autism. Mol Autism. 2014 Dec 22;5:57. doi:
https://doi.org/10.1186/2040-2392-5-57.
- Lee KY, Wang H, Yook Y, Rhodes
JS, Christian-Hinman CA, Tsai NP. Tumor suppressor p53 modulates
activity-dependent synapse strengthening, autism-like behavior and
hippocampus-dependent learning. Mol Psychiatry. 2023;28(9):3782-3794.
doi:
https://doi.org/10.1038/s41380-023-02268-9.
- Lewis PA. The function of ROCO
proteins in health and disease. Biol Cell. 2009 Mar;101(3):183-91.
doi:
https://doi.org/10.1042/BC20080053.
- Seshacharyulu P, Pandey P,
Datta K, Batra SK. Phosphatase: PP2A structural importance, regulation
and its aberrant expression in cancer. Cancer Lett. 2013 Jul
10;335(1):9-18. doi:
https://doi.org/10.1016/j.canlet.2013.02.036.
- Zhou H, Luo W, Zeng C, Zhang Y,
Wang L, Yao W, Nie C. PP2A mediates apoptosis or autophagic cell death
in multiple myeloma cell lines. Oncotarget. 2017 Aug
23;8(46):80770-80789. doi:
https://doi.org/10.18632/oncotarget.20415.
- Lee TH, Chen CH, Suizu F, Huang
P, Schiene-Fischer C, Daum S, Zhang YJ, Goate A, Chen RH, Zhou XZ, Lu
KP. Death-associated protein kinase 1 phosphorylates Pin1 and inhibits
its prolyl isomerase activity and cellular function. Mol Cell. 2011
Apr 22;42(2):147-59. doi:
https://doi.org/10.1016/j.molcel.2011.03.005.
- Montalto FI, De Amicis F.
Cyclin D1 in cancer: A molecular connection for cell cycle control,
adhesion and invasion in tumor and stroma. Cells. 2020 Dec
9;9(12):2648. doi: https://doi.org/10.3390/cells9122648.
- Nakagawa T, Hattori S, Nobuta
R, Kimura R, Nakagawa M, Matsumoto M, Nagasawa Y, Funayama R, Miyakawa
T, Inada T, Osumi N, Nakayama KI, Nakayama K. The autism-related
protein SETD5 controls neural cell proliferation through epigenetic
regulation of rDNA expression. iScience. 2020 Apr 24;23(4):101030.
doi: https://doi.org/10.1016/j.isci.2020.101030.
- Antonelli R, Pizzarelli R,
Pedroni A, Fritschy JM, Del Sal G, Cherubini E, Zacchi P.
Pin1-dependent signalling negatively affects GABAergic transmission by
modulating neuroligin2/gephyrin interaction. Nat Commun. 2014 Oct 9;
5: 5066. doi: https://doi.org/10.1038/ncomms6066.
- Wang WJ, Kuo JC, Ku W, Lee YR,
Lin FC, Chang YL, Lin YM, Chen CH, Huang YP, Chiang MJ, Yeh SW, Wu PR,
Shen CH, Wu CT, Chen RH. The tumor suppressor DAPK is reciprocally
regulated by tyrosine kinase Src and phosphatase LAR. Mol Cell. 2007
Sep 7;27(5):701-16. doi:
https://doi.org/10.1016/j.molcel.2007.06.037.
- Navarro AI, Rico B. Focal
adhesion kinase function in neuronal development. Curr Opin Neurobiol.
2014 Aug;27:89-95. doi:
https://doi.org/10.1016/j.conb.2014.03.002.
- Monje FJ, Kim EJ, Pollak DD,
Cabatic M, Li L, Baston A, Lubec G. Focal adhesion kinase regulates
neuronal growth, synaptic plasticity and hippocampus-dependent spatial
learning and memory. Neurosignals. 2012;20(1):1-14. doi:
https://doi.org/10.1159/000330193.
- László ZI, Lele Z, Zöldi M,
Miczán V,Mógor F,Simon GM,Mackie K,Kacskovics IK, Cravatt BF, Katona
I. ABHD4-dependent developmental anoikis safeguards the embryonic
brain. Nature Communications 2020; 11: 4363. doi:
https://doi.org/10.1038/s41467-020-18175-4.
- Paganelli A, Gnazzo V, Acosta
H, López SL, Carrasco AE. Glyphosate-based herbicides produce
teratogenic effects on vertebrates by impairing retinoic acid
signaling. Chem Res Toxicol. 2010 Oct 18;23(10):1586-95. doi:
https://doi.org/10.1021/tx1001749.
- Chen CH, Wang WJ, Kuo JC, Tsai
HC, Lin JR, Chang ZF, Chen RH. Bidirectional signals transduced by
DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J.
2005 Jan 26;24(2):294-304. doi:
https://doi.org/10.1038/sj.emboj.7600510.
- Xiong W, Wu Y, Xian W, Song L,
Hu L, Pan S, Liu M, Yao S, Pei L, Shang Y. DAPK1-ERK signal mediates
oxygen glucose deprivation reperfusion induced apoptosis in mouse N2a
cells. J Neurol Sci. 2018 Apr 15;387:210-219. doi:
https://doi.org/10.1016/j.jns.2018.01.003.
- Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, Wu Y, Yao C, Wang X, Zhu
LQ, Lu Y. DAPK1-p53 interaction converges necrotic and apoptotic
pathways of ischemic neuronal death. J Neurosci. 2014 May
7;34(19):6546-56. doi:
https://doi.org/10.1523/JNEUROSCI.5119-13.2014.
- Araki T, Shinoda S, Schindler CK, Quan-Lan J, Meller R, Taki W, Simon
RP, Henshall DC. Expression, interaction, and proteolysis of
death-associated protein kinase and p53 within vulnerable and
resistant hippocampal subfields following seizures. Hippocampus.
2004;14(3):326-36. doi: https://doi.org/10.1002/hipo.10184.
- Chen B, Jin W. A comprehensive
review of stroke-related signaling pathways and treatment in western
medicine and traditional Chinese medicine. Front Neurosci. 2023 Jun
7;17:1200061. doi: https://doi.org/10.3389/fnins.2023.1200061.
- Zhang M, Shui X, Zheng X, Lee
JE, Mei Y, Li R, Tian Y, Zheng X, Wang Q, Wang L, Chen D, Zhang T, Kim
BM, Kim J, Lee TH. Death-associated protein kinase 1 phosphorylates
MDM2 and inhibits its protein stability and function. Arch Pharm Res.
2023 Oct 7. doi:
https://doi.org/10.1007/s12272-023-01469-8.
- Hemann M, Lowe S. The p53-Bcl-2 connection. Cell Death Differ 2006;
13: 1256-1259. doi: https://doi.org/10.1038/sj.cdd.4401962.
- Park JH, Zhuang J, Li J, Hwang PM. p53 as guardian of the
mitochondrial genome. FEBS Lett. 2016; 590(7): 924-34. doi:
https://doi.org/10.1002/1873-3468.12061.
- Zheng H, You H, Zhou XZ, Murray
SA, Uchida T, Wulf G, Gu L, Tang X, Lu KP, Xiao ZX. The prolyl
isomerase Pin1 is a regulator of p53 in genotoxic response. Nature.
2002; 419(6909):849-53. doi:
https://doi.org/10.1038/nature01116.
- Raj N, Attardi LD. The transactivation domains of the p53 protein.
Cold Spring Harb Perspect Med. 2017 Jan 3;7(1):a026047. doi:
https://doi.org/10.1101/cshperspect.a026047.
- Izumi
Y, O’Dell KA, Zorumski CF. The herbicide glyphosate inhibits
hippocampal long-term potentiation and learning through activation of
pro-inflammatory signaling. Sci Rep 2023; 13: 18005. doi:
https://doi.org/10.1038/s41598-023-44121-7.
- Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for
p53 activation. Cell. 2008 May 16;133(4):612-26. doi:
https://doi.org/10.1016/j.cell.2008.03.025.
- Mantovani F, Tocco F, Girardini J, Smith P, Gasco M, Lu X, Crook T,
Del Sal G. The prolyl isomerase Pin1 orchestrates p53 acetylation and
dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol.
2007 Oct;14(10):912-20. doi: https://doi.org/10.1038/nsmb1306.
- Dai CQ, Luo TT, Luo SC, Wang JQ, Wang SM, Bai YH, Yang YL, Wang YY.
p53 and mitochondrial dysfunction: Novel insight of neurodegenerative
diseases. J Bioenerg Biomembr. 2016 Aug;48(4):337-47. doi:
https://doi.org/10.1007/s10863-016-9669-5.
- Baptiste N, Prives C. p53 in the cytoplasm: a question of overkill?
Cell. 2004 Feb 20;116(4):487-9. doi:
https://doi.org/10.1016/s0092-8674(04)00164-3.
- Chipuk JE, Green DR. p53’s believe it or not: Lessons on
transcription-independent death. J Clin Immunol. 2003
Sep;23(5):355-61. doi: https://doi.org/10.1023/a:1025365432325.
- Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W.
Ferroptosis as a p53-mediated activity during tumour suppression.
Nature. 2015 Apr 2;520(7545):57-62. doi:
https://doi.org/10.1038/nature14344.
- Green DR, Kroemer G. Cytoplasmic functions of the tumour suppressor
p53. Nature. 2009 Apr 30;458(7242):1127-30. doi:
https://doi.org/10.1038/nature07986.
- Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M,
D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara
C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F,
Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K,
Tavernarakis N, Codogno P, Cecconi F, Kroemer G. Regulation of
autophagy by cytoplasmic p53. Nat Cell Biol. 2008 Jun;10(6):676-87.
doi: https://doi.org/10.1038/ncb1730.
- Dinkova-Kostova AT, Abramov AY.
The emerging role of Nrf2 in mitochondrial function. Free Radic Biol
Med. 2015 Nov;88(Pt B):179-188. doi:
https://doi.org/10.1016/j.freeradbiomed.2015.04.036.
- Ha KN, Chen Y, Cai J, Sternberg
P Jr. Increased glutathione synthesis through an ARE-Nrf2-dependent
pathway by zinc in the RPE: implication for protection against
oxidative stress. Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2709-15.
doi: https://doi.org/10.1167/iovs.05-1322.
- Chen L, Shi XJ, Liu H, Mao X,
Gui LN, Wang H, Cheng Y. Oxidative stress marker aberrations in
children with autism spectrum disorder: a systematic review and
meta-analysis of 87 studies (N=9109). Transl Psychiatry. 2021 Jan
5;11(1):15. doi: https://doi.org/10.1038/s41398-020-01135-3.
- Schrier MS, Zhang Y, Trivedi
MS, Deth RC. Decreased cortical Nrf2 gene expression in autism and its
relationship to thiol and cobalamin status. Biochimie. 2022
Jan;192:1-12. doi: https://doi.org/10.1016/j.biochi.2021.09.006.
- Ma Q. Role of NRF2 in oxidative
stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401-26. doi:
https://doi.org/10.1146/annurev-pharmtox-011112-140320.
- Ngo V, Karunatilleke NC,
Brickenden A, Choy WY, Duennwald ML. Oxidative stress-induced
misfolding and inclusion formation of Nrf2 and Keap1. Antioxidants
(Basel). 2022 Jan 27;11(2):243. doi:
https://doi.org/10.3390/antiox11020243.
- Pensabene KM, LaMorte J,
Allender AE, Wehr J, Kaur P, Savage M, Eggler AL. Acute Oxidative
stress can paradoxically suppress human NRF2 protein synthesis by
inhibiting global protein translation. Antioxidants (Basel). 2023 Sep
7;12(9):1735. doi: https://doi.org/10.3390/antiox12091735.
- Saeidi S, Kim SJ,
Guillen-Quispe YN, Jagadeesh ASV, Han HJ, Kim SH, Zhong X, Piao JY,
Kim SJ, Jeong J, Shin YJ, Cha YJ, Lee HB, Han W, Min SH, Tian W,
Kitamura H, Surh YJ. Peptidyl-prolyl cis-trans isomerase
NIMA-interacting 1 directly binds and stabilizes Nrf2 in breast
cancer. FASEB J. 2022 Jan;36(1):e22068. doi:
https://doi.org/10.1096/fj.202100776RR.
- Ishii T, Warabi E, Mann GE.
Stress Activated MAP kinases and cyclin-dependent kinase 5 mediate
nuclear translocation of Nrf2 via Hsp90-Pin1-dynein motor transport
machinery. Antioxidants (Basel). 2023 Jan 26;12(2):274. doi:
https://doi.org/10.3390/antiox12020274.
- Meyza KZ, Blanchard DC. The
BTBR mouse model of idiopathic autism - Current view on mechanisms.
Neurosci Biobehav Rev. 2017 May;76(Pt A):99-110. doi:
https://doi.org/10.1016/j.neubiorev.2016.
- Dinkova-Kostova AT, Fahey JW,
Kostov RV, Kensler TW. KEAP1 and Done? Targeting the NRF2 pathway with
sulforaphane. Trends Food Sci Technol. 2017 Nov;69(Pt B):257-269. doi:
https://doi.org/10.1016/j.tifs.2017.02.002.
- Nadeem A, Ahmad SF, Al-Harbi
NO, Attia SM, Bakheet SA, Ibrahim KE, Alqahtani F, Alqinyah M. Nrf2
activator, sulforaphane ameliorates autism-like symptoms through
suppression of Th17 related signaling and rectification of
oxidant-antioxidant imbalance in periphery and brain of BTBR T+tf/J
mice. Behav Brain Res. 2019 May 17;364:213-224. doi:
https://doi.org/10.1016/j.bbr.2019.02.031.
- Wang Y, Zhou Y, Graves DT. FOXO
transcription factors: their clinical significance and regulation.
Biomed Res Int. 2014;2014:925350. doi:
https://doi.org/10.1155/2014/925350.
- Mori S, Nada S, Kimura H,
Tajima S, Takahashi Y, Kitamura A, Oneyama C, Okada M. The mTOR
pathway controls cell proliferation by regulating the FoxO3a
transcription factor via SGK1 kinase. PLoS One. 2014 Feb
18;9(2):e88891. doi:
https://doi.org/10.1371/journal.pone.0088891.
- Schäffner I, Minakaki G, Khan
MA, Balta EA, Schltzer-Schrehardt U, Schwarz TJ, Beckervordersandforth
R, Winner B, Webb AE, DePinho RA, Paik J, Wurst W, Klucken J, Lie DC.
FoxO function Is essential for maintenance of autophagic flux and
neuronal morphogenesis in adult neurogenesis. Neuron. 2018 Sep
19;99(6):1188-1203.e6. doi:
https://doi.org/10.1016/j.neuron.2018.08.017.
- Thomas SD, Jha NK, Ojha S,
Sadek B. mTOR signaling disruption and its association with the
development of autism spectrum disorder. Molecules. 2023 Feb
16;28(4):1889. doi: https://doi.org/10.3390/molecules28041889.
- Chen CC, Jeon SM, Bhaskar PT,
Nogueira V, Sundararajan D, Tonic I, Park Y, Hay N. FoxOs inhibit
mTORC1 and activate Akt by inducing the expression of Sestrin3 and
Rictor. Dev Cell. 2010 Apr 20;18(4):592-604. doi:
https://doi.org/10.1016/j.devcel.2010.03.008.
- Deng Z, Zhou X, Lu J -H. Yue Z.
Autophagy deficiency in neurodevelopmental disorders. Cell Biosci 11,
214 (2021). doi: https://doi.org/10.1186/s13578-021-00726-x.
- Long J, Wang J, Dong Y, Yang J,
Xie G,Tong Y, Prolyl isomerase Pin1 promotes autophagy and cancer cell
viability through activating FoxO3 signalling, Cellular Signalling,
Volume 113, 2024, 110940. doi:
https://doi.org/10.1016/j.cellsig.2023.110940.
- Kim YC, Guan KL. mTOR: a
pharmacologic target for autophagy regulation. J Clin Invest. 2015
Jan;125(1):25-32. doi: https://doi.org/10.1172/JCI73939.
- Limanaqi F, Biagioni F,
Gambardella S, Ryskalin L, Fornai F. Interdependency between autophagy
and synaptic vesicle trafficking: Implications for dopamine release.
Front Mol Neurosci. 2018 Aug 21;11:299. doi:
https://doi.org/10.3389/fnmol.2018.00299.
- Dossou AS, Basu A. The emerging
roles of mTORC1 in macromanaging autophagy. Cancers (Basel). 2019 Sep
24;11(10):1422. doi: https://doi.org/10.3390/cancers11101422.
- Rosenhall U, Nordin V, Sandstrm
M, Ahlsn G, Gillberg C. Autism and hearing loss. J Autism Dev Disord.
1999 Oct;29(5):349-57. doi:
https://doi.org/10.1023/a:1023022709710.
- Fu X, Sun X, Zhang L, Jin Y,
Chai R, Yang L, Zhang A, Liu X, Bai X, Li J, Wang H, Gao J. Tuberous
sclerosis complex-mediated mTORC1 over-activation promotes age-related
hearing loss. J Clin Invest. 2018; 128(11): 49384955. doi:
https://doi.org/10.1172/JCI98058.
- Lamming DW. Inhibition of the
Mechanistic Target of Rapamycin (mTOR) –Rapamycin and beyond. Cold
Spring Harb Perspect Med. 2016 May 2;6(5):a025924. doi:
https://doi.org/10.1101/csh-perspect.a025924.
- Zhang Y, Lv Z, Liu Y, Cao H,
Yang J, Wang B. PIN1 protects hair cells and auditory HEI-OC1 cells
against senescence by inhibiting the PI3K/Akt/mTOR pathway. Oxid Med
Cell Longev. 2021 Jun 2;2021:9980444. doi:
https://doi.org/10.1155/2021/9980444.
- Kosillo P, Bateup HS.
Dopaminergic dysregulation in syndromic autism spectrum disorders:
Insights From genetic mouse models. Front Neural Circuits. 2021 Jul
23;15:700968. doi: https://doi.org/10.3389/fncir.2021.700968.
- Hernandez D, Torres CA, Setlik
W, Cebrin C, Mosharov EV, Tang G, Cheng HC, Kholodilov N, Yarygina O,
Burke RE, Gershon M, Sulzer D. Regulation of presynaptic
neurotransmission by macroautophagy. Neuron. 2012 Apr 26;74(2):277-84.
doi: https://doi.org/10.1016/j.neuron.2012.02.020.
- Yu G, Luo H, Zhang N, Wang Y, Li Y, Huang H, Liu Y, Hu Y, Liu H, Zhang
J, Tang Y, Huang Y. Loss of p53 sensitizes cells to palmitic
acid-induced apoptosis by reactive oxygen species accumulation. Int J
Mol Sci. 2019;20(24):6268. doi: https://doi.org/10.3390/ijms20246268.
- Lee
BH, Smith T, Paciorkowski AR. Autism spectrum disorder and epilepsy:
Disorders with a shared biology. Epilepsy Behav. 2015 Jun;47:191-201.
doi: https://doi.org/10.1016/j.yebeh.2015.03.017.
- Brooks-Kayal A. Epilepsy and
autism spectrum disorders: Are there common develop- mental
mechanisms? Brain and Dev. 2010; 32: 7318. doi:
https://doi.org/10.1016/j.braindev.2010.04.010.
- Naraine AS, Aker R, Sweeney I,
Kalvey M, Surtel A, Shanbhag V, Dawson-Scully K. Roundup and
glyphosates impact on GABA to elicit extended proconvulsant behavior
in Caenorhabditis elegans. Sci Rep 12, 13655 (2022). doi:
https://doi.org/10.1038/s41598-022-17537-w.
- Perucca P, Smith G,
Santana-Gomez C, Bragin A, Staba R. Electrophysiological biomarkers of
epileptogenicity after traumatic brain injury. Neurobiol Dis. 2019
Mar; 123:69-74. doi: https://doi.org/10.1016/j.nbd.2018.06.002.
- Vannini E, Restani L, Dilillo
M, McDonnell LA, Caleo M, Marra V. Synaptic vesicles dynamics in
neocortical epilepsy. Front Cell Neurosci. 2020 Dec 10;14:606142. doi:
https://doi.org/10.3389/fncel.2020.606142.
- Chen Y, Hou X, Pang J, Yang F,
Li A, Lin S, Lin N, Lee TH, Liu H. The role of peptidyl-prolyl
isomerase Pin1 in neuronal signaling in epilepsy. Front Mol Neurosci.
2022 Oct 11;15:1006419. doi:
https://doi.org/10.3389/fnmol.2022.1006419.
- Tang L, Zhang Y, Chen G, Xiong
Y, Wang X, Zhu B. Down-regulation of Pin1 in temporal lobe epilepsy
patients and mouse model. Neurochem Res. 2017 Apr;42(4):1211-1218.
doi: https://doi.org/10.1007/s11064-016-2158-8.
- Hou X, Yang F, Li A, Zhao D, Ma
N, Chen L, Lin S, Lin Y, Wang L, Yan X, Zheng M, Lee TH, Zhou XZ, Lu
KP, Liu H. The Pin1-CaMKII-AMPA receptor axis regulates epileptic
susceptibility. Cereb Cortex. 2021 May 10;31(6):3082-3095. doi:
https://doi.org/10.1093/cercor/bhab004.
- Kim JW, Park K, Kang RJ,
Gonzales ELT, Kim DG, Oh HA, Seung H, Ko MJ, Kwon KJ, Kim KC, Lee SH,
Chung C, Shin CY. Pharmacological modulation of AMPA receptor rescues
social impairments in animal models of autism.
Neuropsychopharmacology. 2019 Jan;44(2):314-323. doi:
https://doi.org/10.1038/s41386-018-0098-5.
- Oh J, Malter JS. Pin1-FADD
interactions regulate Fas-mediated apoptosis in activated eosinophils.
J Immunol. 2013 May 15;190(10):4937-45. doi:
https://doi.org/10.4049/jimmunol.1202646.
- Shen ZJ, Esnault S, Schinzel A,
Borner C, Malter JS. The peptidyl-prolyl isomerase Pin1 facilitates
cytokine-induced survival of eosinophils by suppressing Bax
activation. Nat Immunol. 2009 Mar;10(3):257-65. doi:
https://doi.org/10.1038/ni.1697.
- Rådinger M, Lötvall J.
Eosinophil progenitors in allergy and asthma - do they matter?
Pharmacol Ther. 2009 Feb;121(2):174-84. doi:
https://doi.org/10.1016/j.pharmthera.2008.10.008.
- Zheng Z, Zhang L, Zhu T, Huang
J, Qu Y, Mu D. Association between asthma and autism spectrum
disorder: A meta-analysis. PLoS One. 2016 Jun 3;11(6):e0156662. doi:
https://doi.org/10.1371/journal.pone.0156662.
- Akintunde ME, Rose M, Krakowiak
P, Heuer L, Ashwood P, Hansen R, Hertz-Picciotto I, Van de Water J.
Increased production of IL-17 in children with autism spectrum
disorders and co-morbid asthma. J Neuroimmunol. 2015 Sep 15;286:33-41.
doi:
https://doi.org/10.1016/j.jneuroim.2015.07.003.
- Gong T, Lundholm C, Lundström
S, Kuja-Halkola R, Taylor MJ, Almqvist C. Understanding the
relationship between asthma and autism spectrum disorder: a
population-based family and twin study. Psychol Med. 2023
May;53(7):3096-3104. doi:
https://doi.org/10.1017/S0033291721005158.
- Guglielmi
L, Servettini I, Caramia M, Catacuzzeno L, Franciolini F, D’Adamo MC,
Pessia M. Update on the implication of potassium channels in autism:
K(+) channelautism spectrum disorder. Front Cell Neurosci. 2015 Mar
2;9:34. doi: https://doi.org/10.3389/fncel.2015.00034.
- Hoffman DA, Magee JC, Colbert
CM, Johnston D. K+ channel regulation of signal propagation in
dendrites of hippocampal pyramidal neurons. Nature. 1997 Jun
26;387(6636):869-75. doi: https://doi.org/10.1038/43119.
- Lugo JN, Brewster AL, Spencer
CM, Anderson AE. Kv4.2 knockout mice have hippocampal-dependent
learning and memory deficits. Learn Mem. 2012 Apr 13;19(5):182-9. doi:
https://doi.org/10.1101/lm.023614.111.
- Hu JH, Malloy C, Tabor GT,
Gutzmann JJ, Liu Y, Abebe D, Karlsson RM, Durell S, Cameron HA,
Hoffman DA. Activity-dependent isomerization of Kv4.2 by Pin1
regulates cognitive flexibility. Nat Commun. 2020 Mar 26;11(1):1567.
doi: https://doi.org/10.1038/s41467-020-15390-x.
- Durand CM, Betancur C, Boeckers
TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg
IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N,
Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L,
Gillberg C, Leboyer M, Bourgeron T. Mutations in the gene encoding the
synaptic scaffolding protein SHANK3 are associated with autism
spectrum disorders. Nat Genet. 2007 Jan;39(1):25-7. doi:
https://doi.org/10.1038/ng1933.
- Shen ZJ, Esnault S, Rosenthal
LA, Szakaly RJ, Sorkness RL, Westmark PR, Sandor M, Malter JS. Pin1
regulates TGF-beta1 production by activated human and murine
eosinophils and contributes to allergic lung fibrosis. J Clin Invest.
2008 Feb;118(2):479-90. doi: https://doi.org/10.1172/JCI32789.
- Centers for Disease Control and
Prevention. COVID-19 Vaccination. January 18, 2024. [Accessed
January 23, 2024].
https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html.
- Yonker LM, Swank Z, Bartsch YC,
Burns MD, Kane A, Boribong BP, Davis JP, Loiselle M, Novak T, Senussi
Y, Cheng CA, Burgess E, Edlow AG, Chou J, Dionne A, Balaguru D,
Lahoud-Rahme M, Arditi M, Julg B, Randolph AG, Alter G, Fasano A, Walt
DR. Circulating spike protein detected in post-COVID-19 mRNA vaccine
myocarditis. Circulation. 2023 Mar 14;147(11):867-876. doi:
https://doi.org/10.1161/CIRCULATIONAHA.122.061025.
- Hulscher N, Hodkinson R, Makis
W, McCullough PA. Autopsy findings in cases of fatal COVID-19
vaccine-induced myocarditis. ESC Heart Fail. 2024 Jan 14. doi:
https://doi.org/10.1002/ehf2.14680.
- Seneff S, Kyriakopoulos AM,
Nigh G, McCullough PA. A potential role of the spike protein in
neurodegenerative diseases: A narrative review. Cureus. 2023 Feb
11;15(2):e34872. doi: https://doi.org/10.7759/cureus.34872.
- Morgun AV, Salmin VV, Boytsova
EB, Lopatina OL, Salmina AB. Molecular Mechanisms of proteins -
Targets for SARS-CoV-2 (Review). Sovrem Tekhnologii Med.
2021;12(6):98-108. doi:
https://doi.org/10.17691/stm2020.12.6.11.
- Nance KD, Meier JL.
Modifications in an emergency: The role of N1-methylpseudouridine in
COVID-19 vaccines. ACS Cent Sci. 2021 May 26;7(5):748-756. doi:
https://doi.org/10.1021/acscentsci.1c00197.
- Röltgen K, Nielsen SCA, Silva
O, Younes SF, Zaslavsky M, Costales C, Yang F, Wirz OF, Solis D, Hoh
RA, Wang A, Arunachalam PS, Colburg D, Zhao S, Haraguchi E, Lee AS,
Shah MM, Manohar M, Chang I, Gao F, Mallajosyula V, Li C, Liu J,
Shoura MJ, Sindher SB, Parsons E, Dashdorj NJ, Dashdorj ND, Monroe R,
Serrano GE, Beach TG, Chinthrajah RS, Charville GW, Wilbur JL,
Wohlstadter JN, Davis MM, Pulendran B, Troxell ML, Sigal GB, Natkunam
Y, Pinsky BA, Nadeau KC, Boyd SD. Immune imprinting, breadth of
variant recognition, and germinal center response in human SARS-CoV-2
infection and vaccination. Cell. 2022 Mar 17;185(6):1025-1040.e14.
doi: https://doi.org/10.1016/j.cell.2022.01.018.
- Siao WH, Chang FY, Chen YC.
Memantine treats psychosis and agitation associated with Moderna
COVID-19 vaccine. Schizophr Res. 2023 May;255:14-16. doi:
https://doi.org/10.1016/j.schres.2023.03.011.
- Haroon E, Miller A, Sanacora G.
Inflammation, glutamate, and glia: A trio of trouble in mood
disorders. Neuropsychopharmacol 42, 193215 (2017). doi:
https://doi.org/10.1038/npp.2016.199.
- Khanfar A, Al Qaroot B. Could
glutathione depletion be the Trojan horse of COVID-19 mortality? Eur.
Rev. Med. Pharmacol. Sci. 2020; 24, 12500–12509. doi:
https://doi.org/10.26355/eurrev_202012_24046.
- Erdogan MA, Gurbuz O, Bozkurt
MF, Erbas O. Prenatal exposure to COVID-19 mRNA vaccine BNT162b2
induces autism-like behaviors in male neonatal rats: Insights into WNT
and BDNF signaling perturbations. Neurochem Res 2024; 49: 1034-1048.
doi:
https://doi.org/10.1007/s11064-023-04089-2.
- Petkova-Tuffy A, Gdecke N,
Viotti J, Korte M, Dresbach T. Neuroligin-1 mediates presynaptic
maturation through brain-derived neurotrophic factor signaling. BMC
Biol. 2021 Sep 27;19(1):215. doi:
https://doi.org/10.1186/s12915-021-01145-7.
- Sheikh AM, Malik M, Wen G,
Chauhan A, Chauhan V, Gong CX, Liu F, Brown WT, Li X. BDNF-Akt-Bcl2
antiapoptotic signaling pathway is compromised in the brain of
autistic subjects. J Neurosci Res. 2010 Sep;88(12):2641-7. doi:
https://doi.org/10.1002/jnr.22416.
- Pagani M, Barsotti N, Bertero
A, Trakoshis S, Ulysse L, Locarno A, Miseviciute I, De Felice A,
Canella C, Supekar K, Galbusera A, Menon V, Tonini R, Deco G, Lombardo
MV, Pasqualetti M, Gozzi A. mTOR-related synaptic pathology causes
autism spectrum disorder-associated functional hyperconnectivity. Nat
Commun. 2021 Oct 19;12(1):6084. doi:
https://doi.org/10.1038/s41467-021-26131-z.
- Li W, Greenough TC, Moore MJ,
Vasilieva N, Somasundaran M, Sullivan JL, Farzan M, Choe H. Efficient
replication of severe acute respiratory syndrome coronavirus in mouse
cells is limited by murine angiotensin-converting enzyme 2. J Virol.
2004 Oct;78(20):11429-33. doi:
https://doi.org/10.1128/JVI.78.20.11429-11433.2004.
- Souissi A, Dergaa I, Romdhani
M, Ghram A, Irandoust K, Chamari K, Ben Saad H. Can melatonin reduce
the severity of post-COVID-19 syndrome? EXCLI J. 2023 Feb
2;22:173-187. doi: https://doi.org/10.17179/excli2023-5864.
- Centers for Disease Control and
Prevention. 6 Things to know about COVID-19 vaccination for children.
August 8, 2023. Accessed February 28, 2024.
- Mawson AR. Measles, mumps,
rubella vaccination and autism. Annals of Internal Medicine 2019;
171(5): 386-387. doi: https://doi.org/10.7326/L19-0382.