References
  1. Wang C, Geng H, Liu W, Zhang G. Prenatal, perinatal, and postnatal factors associated with autism: a meta-analysis. Medicine (Baltimore) 2017;96:e6696. doi: https://doi.org/10.1097/MD.0000000000006696.
  2. Genovese A, Butler MG. The autism spectrum: Behavioral, psychiatric and genetic associations. Genes (Basel). 2023 Mar 9;14(3):677. doi: https://doi.org/10.3390/genes14030677.
  3. Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry. 2012;17:389401. doi: https://doi.org/10.1038/mp.2011.165.
  4. Lampiasi N, Bonaventura R, Deidda I, Zito F, Russo R. Inflammation and the potential implication of macrophage-microglia polarization in human ASD: An overview. Int J Mol Sci. 2023 Jan 31;24(3):2703. doi: https://doi.org/10.3390/ijms24032703.
  5. Yang Y, Zhou S, Xing Y, Yang G, You M. Impact of pesticides exposure during neurodevelopmental period on autism spectrum disorders - A focus on gut microbiota. Ecotoxicol Environ Saf. 2023 Jul 15;260:115079. doi: https://doi.org/10.1016/j.ecoenv.2023.115079.
  6. Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S, Gehn E, Rubin RA, Mitchell K, Bradstreet J, El-Dahr JM. The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol. 2009;2009:532640. doi: https://doi.org/10.1155/2009/532640.
  7. Singh R, Turner RC, Nguyen L, Motwani K, Swatek M, Lucke-Wold BP. Pediatric traumatic brain injury and autism: Elucidating shared mechanisms. Behav Neurol. 2016;2016:8781725. doi: https://doi.org/10.1155/2016/8781725.
  8. Li Z, Dong T, Proschel C, Noble M. Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function. PLoS Biol. 2007;5:e35. doi: https://doi.org/10.1371/journal.pbio.0050035.
  9. Zwaigenbaum L, Bryson S, Lord C, Rogers S, Carter A, Carver L, Chawarska K, Constantino J, Dawson G, Dobkins K, Fein D, Iverson J, Klin A, Landa R, Messinger D, Ozonoff S, Sigman M, Stone W, Tager-Flusberg H, Yirmiya N. Clinical assessment and management of toddlers with suspected autism spectrum disorder: insights from studies of high-risk infants. Pediatrics. 2009 May;123(5):1383-91. doi: https://doi.org/10.1542/peds.2008-1606.
  10. Bacon EC, Courchesne E, Barnes CC, Cha D, Pence S, Schreibman L, Stahmer AC, Pierce K. Rethinking the idea of late autism spectrum disorder onset. Development and Psychopathology. 2018;30(2):553-569. doi: https://doi.org/10.1017/S0954579417001067.
  11. Jones W, Klin A. Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature 2013; 504: 427-431. doi: https://doi.org/10.1038/nature12715.
  12. Ozonoff S, Williams BJ, Landa R. Parental report of the early development of children with regressive autism: The delays-plus-regression phenotype. Autism 2005; 9(5): 461-486. doi: https://doi.org/10.1177/1362361305057880.
  13. Seneff S. Toxic Legacy: How the Herbicide Glyphosate is Destroying Our Health and the Environment. Chelsea Green Publishers. River Junction VT. 2021.
  14. von Ehrenstein OS, Ling C, Cui X, Cockburn M, Park AS, Yu F, Wu J, Ritz B. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: population based case-control study. BMJ. 2019 Mar 20;364:l962. doi: https://doi.org/10.1136/bmj.l962.
  15. Ma M, Ren Q, Yang J, Zhang K, Xiong Z, Ishima T, Pu Y, Hwang SH, Toyoshima M, Iwayama Y, Hisano Y, Yoshikawa T, Hammock BD, Hashimoto K. Key role of soluble epoxide hydrolase in the neurodevelopmental disorders of offspring after maternal immune activation. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):7083-7088. doi: https://doi.org/10.1073/pnas.
  16. Morel C, Martinez Sanchez I, Cherifi Y, Chartrel N, Diaz Heijtz R. Perturbation of maternal gut microbiota in mice during a critical perinatal window influences early neurobehavioral outcomes in offspring. Neuropharmacology. 2023 May 15;229:109479. doi: https://doi.org/10.1016/j.neuropharm.2023.109479.
  17. Pu Y, Yang J, Chang L, Qu Y, Wang S, Zhang K, Xiong Z, Zhang J, Tan Y, Wang X, Fujita Y, Ishima T, Wang D, Hwang SH, Hammock BD, Hashimoto K. Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11753-11759. doi: https://doi.org/10.1073/pnas.1922287117.
  18. Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X, Cao X, Shen L. Oxidative stress in autism spectrum disorder-current progress of mechanisms and biomarkers. Front. Psychiatry 2022, 13, 813304. doi: https://doi.org/10.3389/fpsyt.2022.813304.
  19. Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry. 2012 Jul 10;2(7):e134. doi: https://doi.org/10.1038/tp.2012.61.
  20. Ghezzo A, Visconti P, Abruzzo PM, Bolotta A, Ferreri C, Gobbi G, Malisardi G, Manfredini S, Marini M, Nanetti L, Pipitone E, Raffaelli F, Resca F, Vignini A, Mazzanti L. Oxidative stress and erythrocyte membrane alterations in children with autism: Correlation with clinical features. PLoS One. 2013 Jun 19;8(6):e66418. doi: https://doi.org/10.1371/journal.pone.0066418.
  21. Belardo A, Gevi F, Zolla L. The concomitant lower concentrations of vitamins B6, B9 and B12 may cause methylation deficiency in autistic children. J Nutr Biochem. 2019 Aug; 70: 38-46. doi: https://doi.org/10.1016/j.jnutbio.2019.04.004.
  22. Dalto DB, Matte JJ. Pyridoxine (Vitamin B) and the Glutathione Peroxidase System; a Link between One-Carbon Metabolism and Antioxidation. Nutrients. 2017 Feb 24; 9(3): 189. doi: https://doi.org/10.3390/nu9030189.
  23. Goulding CW, Postigo D, Matthews RG. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine. Biochemistry. 1997; 36(26): 8082-91. doi: https://doi.org/10.1021/bi9705164.
  24. Kikuchi M, Kashii S, Honda Y, Tamura Y, Kaneda K, Akaike A. Protective effects of methylcobalamin, a vitamin B12 analog, against glutamate-induced neurotoxicity in retinal cell culture. Invest Ophthalmol Vis Sci. 1997 Apr; 38(5): 848-54. https://pubmed.ncbi.nlm.nih.gov/9112980/.
  25. Waring RH, Klovrza LV. Sulphur metabolism in autism. Journal of Nutritional & En- vironmental Medicine. 2000;10:2532. doi: https://doi.org/10.1080/13590840050000861.
  26. McCully KS. Chemical pathology of homocysteine. V. Thioretinamide, thioretinaco, and cystathionine synthase function in degenerative diseases. Ann Clin Lab Sci. 2011 Fall;41(4):301-14. https://pubmed.ncbi.nlm.nih.gov/22166499/.
  27. Guo M, Zhu J, Yang T, Lai X, Liu X, Liu J, Chen J, Li T. Vita- min A improves the symptoms of autism spectrum disorders and decreases 5- hydroxytryptamine (5-HT): A pilot study. Brain Res Bull. 2018 Mar;137:35-40. doi: https://doi.org/10.1016/j.brainresbull.2017.11.001.
  28. Yang L, Xia Z, Feng J, Zhang M, Miao P, Nie Y, Zhang X, Hao Z, Hu R. Retinoic acid supplementation rescues the social deficits in Fmr1 knockout mice. Front Genet. 2022 Jun 17; 13: 928393. doi: https://doi.org/10.3389/fgene.2022.928393.
  29. Margedari P, Goudarzi I, Sepehri H. The protective role of prenatal administration of ascorbic acid on autistic-like behavior in a rat model of autism. IBRO Neuroscience Reports 2024; 16: 78-85. doi: https://doi.org/10.1016/j.ibneur.2023.11.002.
  30. Alvarez-Moya C, Smano-Len AG, Reynoso-Silva M, R Ramírez-Velasco R, Ruiz-López MA, Villalobos-Armbula AR. Antigenotoxic Effect of Ascorbic Acid and Resveratrol in Erythrocytes of Ambystoma mexicanum, Oreochromis niloticus and Human Lympho- cytes Exposed to Glyphosate. Curr Issues Mol Biol. 2022 May 17;44(5):2230-2242. doi: https://doi.org/10.3390/cimb44050151.
  31. Tordjman S, Davlantis KS, Georgieff N, Geoffray MM, Speranza M, Anderson GM, Xavier J, Botbol M, Oriol C, Bellissant E, Vernay-Leconte J, Fougerou C, Hespel A, Tavenard A, Cohen D, Kermarrec S, Coulon N, Bonnot O, Dawson G. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives. Front Pediatr. 2015 Feb 23; 3: 1. doi: https://doi.org/10.3389/fped.2015.00001.
  32. Peres MF (2005) Melatonin, the pineal gland and their implications for headache disorders. Cephalalgia 25(6):403411, 15910564. doi: https://doi.org/10.1111/j.1468-2982.2005.00889.x.
  33. Tordjman S, Anderson GM, Pichard N, Charbuy H, Touitou Y. Nocturnal excretion of 6-sulphatoxymelatonin in children and adolescents with autistic disorder. Biol Psychiatry. 2005 Jan 15;57(2):134-8. doi: https://doi.org/10.1016/j.biopsych.2004.11.003.
  34. Bartakovicova K, Kemenyova P, Belica I, Janik Szapuova Z, Stebelova K, Waczulikova I, Ostatnikova D, Babinska K. Sleep problems and 6-sulfatoxymelatonin as possible predictors of symptom severity, adaptive and maladaptive behavior in children with autism spectrum disorder. Int J Environ Res Public Health. 2022 Jun 21;19(13):7594. doi: https://doi.org/10.3390/ijerph19137594.
  35. Vivancos PD, Driscoll SP, Bulman CA, Ying L, Emami K, Treumann A, Mauve C, Noctor G, Foyer CH. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration. Plant Physiol. 2011 Sep;157(1):256-68. doi: https://doi.org/10.1104/pp.111.181024.
  36. Samsel A, Seneff S. Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: Pathways to modern diseases. Entropy 2013; 15: 1416-1463. doi: https://doi.org/10.3390/e15041416.
  37. Kane MJ, Angoa-Peréz M, Briggs DI, Sykes CE, Francescutti DM, Rosenberg DR, Kuhn DM. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism. PLoS One. 2012;7(11):e48975. doi: https://doi.org/10.1371/journal.pone.0048975.
  38. Batllori M, Molero-Luis M, Arrabal L, Heras JL, Fernandez-Ramos JA, Gutiérrez-Solana LG, Ibáñez-Micó S, Domingo R, Campistol J, Ormazabal A, Sedel F, Opladen T, Zouvelou B, Pons R, Garcia-Cazorla A, Lopez-Laso E, Artuch R. Urinary sulphatoxymelatonin as a biomarker of serotonin status in biogenic amine-deficient patients. Sci Rep 7, 14675 (2017). doi: https://doi.org/10.1038/s41598-017-15063-8.
  39. Cattani D, Pierozan P, Zamoner A, Brittebo E, Karlsson O. Long-Term Effects of Perinatal Exposure to a Glyphosate-Based Herbicide on Melatonin Levels and Oxidative Brain Damage in Adult Male Rats. Antioxidants (Basel). 2023 Oct 3;12(10):1825. doi: https://doi.org/10.3390/antiox12101825.
  40. Zhang Y, Hodgson NW, Trivedi MS, Abdolmaleky HM, Fournier M, Cuenod M, Do KQ, Deth RC. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PLoS One. 2016 Jan 22; 11(1): e0146797. doi: https://doi.org/10.1371/journal.pone.0146797.
  41. Pezacka E, Green R, Jacobsen DW. Glutathionylcobalamin as an intermediate in the formation of cobalamin coenzymes. Biochem Biophys Res Commun. 1990 Jun 15; 169(2): 443-50. doi: https://doi.org/10.1016/0006-291x(90)90351-m.
  42. Ikeda M, Asai M, Moriya T, Sagara M, Inou S, Shibata S. Methylcobalamin amplifies melatonin-induced circadian phase shifts by facilitation of melatonin synthesis in the rat pineal gland. Brain Res. 1998 Jun 8;795(1-2):98-104. doi: https://doi.org/10.1016/s0006-8993(98)00262-5.
  43. Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU, Xu J, Kuang J, Kirschner MW, Fischer G, Cantley LC, and Lu KP. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 1997; 278, 1957-1960. doi: https://doi.org/10.1126/science.278.5345.1957.
  44. Liou YC, Zhou XZ, Lu KP. Prolyl isomerase PIN1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci. 2011 Oct;36(10):501-14. doi: https://pubmed.ncbi.nlm.nih.gov/21852138/.
  45. Makinwa Y, Musich PR, Zou Y. Phosphorylation-dependent PIN1 isomerization of ATR: Its role in regulating ATR’s anti-apoptotic function at mitochondria, and the implications in cancer. Front Cell Dev Biol. 2020 Apr 30;8:281. doi: https://doi.org/10.3389/fcell.2020.00281.
  46. Lu KP, Hanes SD, Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 1996; 380: 544–547. doi: https://doi.org/10.1038/380544a0
  47. Lu KP. Phosphorylation-dependent prolyl isomerization: a novel cell cycle regulatory mechanism. Prog Cell Cycle Res. 2000;4:83-96. doi: https://doi.org/10.1007/978-1-4615-4253-7 8.
  48. Fagiani F, Govoni S, Racchi M, Lanni C. The peptidyl-prolyl isomerase PIN1 in neuronal signaling: From neurodevelopment to neurodegeneration. Mol Neurobiol. 2021 Mar;58(3):1062-1073. doi: https://doi.org/10.1007/s12035-020-02179-8.
  49. Yu JH, Im CY, Min SH. Function of PIN1 in cancer development and its inhibitors as cancer therapeutics. Front Cell Dev Biol. 2020 Mar 17;8:120. doi: https://doi.org/10.3389/fcell.2020.00120.
  50. Sandal P, Jong CJ, Merrill RA, Song J, Strack S. Protein phosphatase 2A - structure, function and role in neurodevelopmental disorders. J Cell Sci. 2021 Jul 1;134(13):jcs248187. doi: https://doi.org/10.1242/jcs.248187.
  51. Schwartz PA, Murray BW. Protein kinase biochemistry and drug discovery. Bioorg Chem. 2011 Dec;39(5-6):192-210. doi: https://doi.org/10.1016/j.bioorg.2011.07.004.
  52. Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne). (2020) 11:2525. doi: https://doi.org/10.3389/fendo.2020.00025.
  53. Appleton J. The gut-brain axis: Influence of microbiota on mood and mental health. Integr Med (Encinitas). 2018 Aug;17(4):28-32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469458/.
  54. Barnett JA, Bandy ML, Gibson DL. Is the use of glyphosate in modern agriculture resulting in increased neuropsychiatric conditions through modulation of the gut-brain-microbiome axis? Front Nutr. 2022 Mar 8; 9: 827384. doi: https://doi.org/10.3389/fnut.2022.827384.
  55. Szentirmai , Millican NS, Massie AR, Kaps L. Butyrate, a metabolite of intestinal bacteria, enhances sleep. Sci Rep. (2019) 9:7035. doi: https://doi.org/10.1038/s41598-019-43502-1
  56. Devnani PA, Hegde AU. Autism and sleep disorders. J Pediatr Neurosci. 2015;10(4):304-7. doi: https://doi.org/10.4103/1817-1745.174438.
  57. Swanson NL, Leu A, Abrahamson J, Wallet B. Genetically engineered crops, glyphosate and the deterioration of health in the United States of America. Journal of Organic Systems 2014;9(2):6-37. https://www.organic-systems.org/journal/92/abstracts/Swanson-et-al.html.
  58. Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, Deng M, Wang X. Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health. 2023 Feb 24;11:1140786. doi: https://doi.org/10.3389/fpubh.2023.
  59. Kim JY, Choi MJ, Ha S, Hwang J, Koyanagi A, Dragioti E, Radua J, Smith L, Jacob L, Salazar de Pablo G, Lee SW, Yon DK, Thompson T, Cortese S, Lollo G, Liang CS, Chu CS, Fusar-Poli P, Cheon KA, Shin JI, Solmi M. Association between autism spectrum disorder and inflammatory bowel disease: A systematic review and meta-analysis. Autism Res. 2022 Feb;15(2):340-352. doi: https://doi.org/10.1002/aur.2656.
  60. Vargas MM, Artigiani Neto R, Sdepanian VL. Quantitative histology as a diagnostic tool for celiac disease in children and adolescents. Ann Diagn Pathol. 2022 Dec;61:152031. doi: https://doi.org/10.1016/j.anndiagpath.2022.
  61. Tang Q, Tang J, Ren X, Li C. Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats. Environ Pollut. 2020 Jun;261:114129. doi: https://doi.org/10.1016/j.envpol.2020.114129.
  62. Chen YC, Lin HY, Chien Y, Tung YH, Ni YH, Gau SS. Altered gut microbiota correlates with behavioral problems but not gastrointestinal symptoms in individuals with autism. Brain Behav Immun. 2022 Nov;106:161-178. doi: https://doi.org/10.1016/j.bbi.2022.08.015.
  63. Croall ID, Hoggard N, Hadjivassiliou M. Gluten and autism spectrum disorder. Nutrients. 2021 Feb 9;13(2):572. doi: https://doi.org/10.3390/nu13020572
  64. Genuis SJ, Bouchard TP. Celiac disease presenting as autism. J Child Neurol. 2010 Jan;25(1):114-9. doi: https://doi.org/10.1177/0883073809336127.
  65. Barnett JA, Gibson DL. Separating the empirical wheat from the pseudoscientific chaff: A critical review of the literature surrounding glyphosate, dysbiosis and wheat-sensitivity. Front Microbiol. 2020 Sep 25;11:556729. doi: https://doi.org/10.3389/fmicb.2020.556729.
  66. Samsel A, Seneff S. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdiscip Toxicol. 2013 Dec;6(4):159-84. doi: https://doi.org/10.2478/intox-2013-002.
  67. Avila-Vazquez M, Difilippo FS, MacLean B, Maturano E. Environmental exposure to glyphosate and risk of asthma in an ecological study. Global Journal of Medical Research: F Diseases 2021; 21(1): 15-23. Doi: https://doi.org/10.34257/GJMRFVOL21IS1PG15.
  68. Croen LA, Ames JL, Qian Y, Alexeeff S, Ashwood P, Gunderson EP, Wu YW, Boghossian AS, Yolken R, Van de Water J, Weiss LA. Inflammatory conditions during pregnancy and risk of autism and other neurodevelopmental disorders. Biol Psychiatry Glob Open Sci. 2023 Oct 11;4(1):39-50. doi: https://doi.org/10.1016/j.bpsgos.2023.09.008.
  69. Hoppin JA, Umbach DM, Long S, London SJ, Henneberger PK, Blair A, Alavanja M, Freeman LE, Sandler DP. Pesticides are associated with allergic and non-allergic wheeze among male farmers. Environ Health Perspect. 2017 Apr;125(4):535-543. doi: https://doi.org/10.1289/EHP315.
  70. Kumar S, Khodoun M, Kettleson EM, McKnight C, Reponen T, Grinshpun SA, Adhikari A. Glyphosate-rich air samples induce IL-33, TSLP and generate IL-13 dependent airway inflammation. Toxicology. 2014 Nov 5;325:42-51. doi: https://doi.org/10.1016/j.tox.2014.08.008.
  71. Dellon ES, Hirano I. Epidemiology and Natural History of Eosinophilic Esophagitis. Gastroenterology. 2018;154(2):31932.e3. doi: https://doi.org/https://doi.org/10.1053/j.gastro.2017.06.067.
  72. Soto G, Sasaki M, Karakasheva T, Muir A. The Impact of Early Life Exposure to Glyphosate. The FASEB Journal 2022; 36(S1). doi: https://doi.org/10.1096/faseb j.2022.36.S1.R5628.
  73. Sohn JK, Barnes BH, Al-Hazaymeh A, Sauer BG, McGowan EC. High prevalence of developmental disorders in pediatric eosinophilic esophagitis (EoE): A single-center observational study. J Allergy Clin Immunol Pract. 2021 Feb;9(2):1032-1034.e1. doi: https://doi.org/10.1016/j.jaip.2020.09.032.
  74. Anderson J, Moonie S, Hogan MB, Scherr R, Allenback G. Eosinophilic esophagitis: comorbidities and atopic disease in Nevada. Dis Esophagus. 2020 May 15;33(5):doz105. doi: https://doi.org/10.1093/dote/doz105.
  75. Kamionkowski S, Shibli F, Ganocy S, Fass R. The relationship between gastroesophageal reflux disease and autism spectrum disorder in adult patients in the United States. Neurogastroenterol Motil. 2022 Jul;34(7):e14295. doi: https://doi.org/10.1111/nmo.14295.
  76. Dharmaraj R, Hagglund K, Lyons H. Eosinophilic esophagitis associated with celiac disease in children. BMC Res Notes. 2015 Jun 26;8:263. doi: https://doi.org/10.1186/s13104-015-1256-z.
  77. Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks a possible new overlap syndrome. Pediatric Health, Medicine and Therapeutics 2015; 6: 153-166. doi: https://doi.org/10.2147/PHMT.S85717.
  78. Cattani D, de Liz Oliveira Cavalli VL, Heinz Rieg CE. Domingues JT, Dal-Cim T, Tasca CI, Mena Barreto Silva FR, Zamoner A. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity. Toxicology. 2014;320:3445. doi: https://doi.org/10.1016/j.tox.2014.03.001.
  79. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P. The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013 Feb 10;18(5):522-55. doi: https://doi.org/10.1089/ars.2011.4391.
  80. Cattani D, Cesconetto PA, Tavares MK, Parisotto EB, De Oliveira PA, Rieg CEH, Leite MC, Prediger RDS, Wendt NC, Razzera G, Filho DW, Zamoner A. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology. 2017;387:6780. doi: https://doi.org/10.1016/j.tox.2017.06.001.
  81. Tomova A, Kemnyov P, Filkov D, Szapuov , Kov A, Babinsk K, Ostatnkov D. Plasma levels of glial cell marker S100B in children with autism. Physiol Res. 2019 Dec 20;68(Suppl 3):S315-S323. doi: https://doi.org/10.33549/physiolres.934350.
  82. Patel O, Syamlal G, Henneberger PK, Alarcon WA, Mazurek JM. Pesticide use, allergic rhinitis, and asthma among US farm operators. J Agromedicine. 2018; 23(4):327-335. doi: https://doi.org/10.1080/1059924X.2018.1501451
  83. Lee JW, Choi YJ, Park S, Gil HW, Song HY, Hong SY. Serum S100 protein could predict altered consciousness in glyphosate or glufosinate poisoning patients. Clin Toxicol (Phila). 2017;55(5):357-359. doi: https://doi.org/10.1080/15563650.2017.1286013.
  84. Lushchak OV, Kubrak OI, Storey JM, Storey KB, Lushchak VI. Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere. 2009 Aug;76(7):932-7. doi: https://doi.org/10.1016/j.chemosphere.2009.04.045.
  85. Costas-Ferreira C, Durán R, Faro LRF. Toxic effects of glyphosate on the nervous system: A systematic review. Int J Mol Sci. 2022 Apr 21;23(9):4605. doi: https://doi.org/10.3390/ijms23094605
  86. Singh P, Ravanan P, Talwar P. Death Associated Protein Kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Front Mol Neurosci. 2016 Jun 23;9:46. doi: https://doi.org/10.3389/fn- mol.2016.00046.
  87. Chen D, Mei Y, Kim N, Lan G, Gan CL, Fan F, Zhang T, Xia Y, Wang L, Lin C, Ke F, Zhou XZ, Lu KP, Lee TH. Melatonin directly binds and inhibits death-associated protein kinase 1 function in Alzheimer’s disease. J Pineal Res. 2020 Sep;69(2):e12665. doi: https://doi.org/10.1111/jpi.12665.
  88. Souza SS, Santos AA, Ribeiro-Paz, EED, Crdoba-Moreno M, Trevisan IL, Caldeira W, Muxel SM, Sousa KDS. Markus RP. Melatonin synthesized by activated microglia orchestrates the progression of microglia from a pro-inflammatory to a recovery/repair phenotype. Melatonin Res. 2022, Vol 5 (1) 55-67; doi: https://doi.org/10.32794/mr112500120.
  89. Gou Z, Su X, Hu X, Zhou Y, Huang L, Fan Y, Li J, Lu L. Melatonin improves hypoxic-ischemic brain damage through the Akt/Nrf2/Gpx4 signaling pathway. Brain Res Bull. 2020 Oct;163:40-48. doi: https://doi.org/10.1016/j.brainresbull.2020.07.011.
  90. Jung KH, Hong SW, Zheng HM, Lee DH, Hong SS. Melatonin downregulates nuclear erythroid 2-related factor 2 and nuclear factor-kappaB during prevention of oxidative liver injury in a dimethylnitrosamine model. J Pineal Res. (2009) 47:17383. doi: https://doi.org/10.1111/j.1600-079X.2009.00698.x.
  91. Innes BT, Sowole MA, Gyenis L, Dubinsky M, Konermann L, Litchfield DW, Brandl CJ, Shilton BH. Peroxide-mediated oxidation and inhibition of the peptidyl-prolyl isomerase Pin1. Biochim Biophys Acta. 2015 May;1852(5):905-12. doi: https://doi.org/10.1016/j.bbadis.2014.12.025.
  92. Fatemi SH. The hyperglutamatergic hypothesis of autism. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2008;32:912913. doi: https://doi.org/10.1016/j.pnpbp.2007.11.004.
  93. Montanari M, Martella G, Bonsi P, Meringolo M. Autism spectrum disorder: Focus on glutamatergic neurotransmission. Int J Mol Sci. 2022 Mar 31;23(7):3861. doi: https://doi.org/10.3390/ijms23073861.
  94. Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology. 2001 Nov 13;57(9):1618-28. doi: https://doi.org/10.1212/wnl.57.9.1618.
  95. Egbenya DL, Aidoo E, Kyei G. Glutamate receptors in brain development. Childs Nerv Syst. 2021 Sep;37(9):2753-2758. doi: https://doi.org/10.1007/s00381-021-05266-w.
  96. Aldred S, Moore KM, Fitzgerald M, Waring RH. Plasma amino acid levels in children with autism and their families. J Autism Dev Disord. 2003 Feb;33(1):93-7. doi: https://doi.org/10.1023/a:1022238706604.
  97. Yap HM, Lye K-L and Tan LT-H. Comprehensive insight of neurodegenerative diseases and the role of neurotoxin agents Glutamate. Prog Mircobes Mol Bio1 2020; 3(1):a0000070. doi: https://doi.org/10.3687/pddbs.a0000070.
  98. Kau KS, Madayag A, Mantsch JR, Grier MD, Abdulhameed O, Baker DA. Blunted cystine-glutamate antiporter function in the nucleus accumbens promotes cocaine-induced drug seeking. Neuroscience. 2008 Aug 13;155(2):530-7. doi: https://doi.org/10.1016/j.neuroscience.2008.06.010.
  99. Ghanizadeh A, Derakhshan N. N-acetylcysteine for treatment of autism, a case report. J Res Med Sci. 2012 Oct;17(10):985-7. https://pubmed.ncbi.nlm.nih.gov/23826003/.
  100. Lee TM, Lee KM, Lee CY, Lee HC, Tam KW, Loh EW. Effectiveness of N-acetylcysteine in autism spectrum disorders: A meta-analysis of randomized controlled trials. Aust N Z J Psychiatry. 2021 Feb;55(2):196-206. doi: https://doi.org/10.1177/0004867420952540.
  101. Prasad M, Gatasheh MK, Alshuniaber MA, Krishnamoorthy R, Rajagopal P, Krishnamoorthy K, Periyasamy V, Veeraraghavan VP, Jayaraman S. Impact of glyphosate on the development of insulin resistance in experimental diabetic rats: Role of NFB signalling pathways. Antioxidants (Basel). 2022 Dec 9;11(12):2436. doi: https://doi.org/10.3390/antiox11122436.
  102. Kong L, Chen X, Gissler M, Lavebratt C. Relationship of prenatal maternal obesity and diabetes to offspring neurodevelopmental and psychiatric disorders: a narrative review. Int J Obes (Lond). 2020 Oct;44(10):1981-2000. doi: https://doi.org/10.1038/s41366-020-0609-4.
  103. Amaral FG, Turati AO, Barone M, Scialfa JH, do Carmo Buonfiglio D, Peres R, Peliciari-Garcia RA, Afeche SC, Lima L, Scavone C, Bordin S, Reiter RJ, Menna-Barreto L, Cipolla-Neto J. Melatonin synthesis impairment as a new deleterious outcome of diabetes-derived hyperglycemia. J Pineal Res. 2014 Aug;57(1):67-79. doi: https://doi.org/10.1111/jpi.12144.
  104. Bach A, Mühlbauer E, Peschke E. Adrenoceptor expression and diurnal rhythms of melatonin and its precursors in the pineal gland of type 2 diabetic gotokakizaki rats. Endocrinology. 2010; 151(6): 2483-93.. doi: https://doi.org/10.1210/en.2009-1299.
  105. Nadeem MS, Hosawi S, Alshehri S, Ghoneim MM, Imam SS, Murtaza BN, Kazmi I. Symptomatic, Genetic, and mechanistic overlaps between autism and Alzheimer’s disease. Biomolecules. 2021 Nov 4;11(11):1635. doi: https://doi.org/10.3390/biom11111635.
  106. Driver JA, Zhou XZ, Lu KP. Pin1 dysregulation helps to explain the inverse association between cancer and Alzheimer’s disease. Biochim Biophys Acta. 2015 Oct;1850(10):2069-76. doi: https://doi.org/10.1016/j.bbagen.2014.12.025.
  107. Wen Y, Herbert MR. Connecting the dots: Overlaps between autism and cancer suggest possible common mechanisms regarding signaling pathways related to metabolic alterations. Med Hypotheses. 2017 Jun;103:118-123. doi: https://doi.org/10.1016/j.mehy.2017.05.004.
  108. Crawley JN, Heyer WD, LaSalle JM. Autism and cancer share risk genes, pathways, and drug targets. Trends Genet. 2016 Mar;32(3):139-146. doi: https://doi.org/10.1016/j.tig.2016.01.001.
  109. He K, Aizenman E. ERK signaling leads to mitochondrial dysfunction in pextracellular zinc-induced neurotoxicity. J Neurochem 2010;114(2):45261. doi: https://doi.org/10.1111/j.1471-4159.2010.06762.x.
  110. Pu W, Zheng Y, Peng Y. Prolyl isomerase Pin1 in human cancer: Function, mechanism, and significance. Front Cell Dev Biol. 2020 Mar 31;8:168. doi: https://doi.org/10.3389/fcell.2020.00168.
  111. Atabay KD, Karabay A. Pin1 inhibition activates cyclin D and produces neurodegenerative pathology. J Neurochem. 2012 Feb;120(3):430-9. doi: https://doi.org/10.1111/j.1471-4159.2011.07259.x.
  112. Butterfield D, Abdul H, Opii W, Newman S, Joshi G, Ansari M, Sultana R. (2006). Review: Pin1 in Alzheimer’s disease. Journal of Neurochemistry 2006; 98: 1697-1706. doi: https://doi.org/10.1111/j.1471-4159.2006.03995.x.
  113. Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis. 2009 Jan;30(1):2-10. doi: https://doi.org/10.1093/carcin/bgn250.
  114. Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: Regulator of cell death. Cell Death Dis 2023; 14: 648. doi: https://doi.org/10.1038/s41419-023-06154-8.
  115. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A, Yue Z, Arancio O, Peterson BS, Champagne F, Dwork AJ, Goldman J, Sulzer D. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014 Sep 3;83(5):1131-43. doi: https://doi.org/10.1016/j.neuron.2014.07.040.
  116. Kim HJ, Cho MH, Shim WH, Kim JK, Jeon EY, Kim DH, Yoon SY. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry. 2017 Nov;22(11):1576-1584. doi: https://doi.org/10.1038/mp.2016.103.
  117. Caracci MO, Avila ME, Espinoza-Cavieres FA, Lpez HR, Ugarte GD, De Ferrari GV. Wnt/β-catenin-dependent transcription in autism spectrum disorders. Front Mol Neurosci. 2021 Nov 11;14:764756. doi: https://doi.org/10.3389/fnmol.2021.
  118. Coullery RP, Ferrari ME, Rosso SB. Neuronal development and axon growth are altered by glyphosate through a WNT non-canonical signaling pathway. Neurotoxicology. 2016 Jan;52:150-61. doi: https://doi.org/10.1016/j.neuro.2015.12.004.
  119. Sun X, Kato H, Sato H, Torio M, Han X, Zhang Y, Hirofuji Y, Kato TA, Sakai Y, Ohga S, Fukumoto S, Masuda K. Impaired neurite development and mitochondrial dysfunction associated with calcium accumulation in dopaminergic neurons differentiated from the dental pulp stem cells of a patient with metatropic dysplasia. Biochem Biophys Rep. 2021 Mar 9;26:100968. doi: https://doi.org/10.1016/j.bbrep.2021.100968.
  120. Stephenson JR, Wang X, Perfitt TL, Parrish WP, Shonesy BC, Marks CR, Mortlock DP, Nakagawa T, Sutcliffe JS, Colbran RJ. A novel human CAMK2A mutation disrupts dendritic morphology and synaptic transmission, and causes ASD-related behaviors. J Neurosci. 2017 Feb 22;37(8):2216-2233. doi: https://doi.org/10.1523/JNEUROSCI.2068-16.2017.
  121. Coullery R, Pacchioni AM, Rosso SB. Exposure to glyphosate during pregnancy induces neurobehavioral alterations and downregulation of Wnt5a-CaMKII pathway. Reprod Toxicol. 2020 Sep; 96: 390-398. doi: https://doi.org/10.1016/j.reprotox.2020.08.006.
  122. Hutchins BI, Li L, Kalil K. Wnt/calcium signaling mediates axon growth and guid- ance in the developing corpus callosum. Dev Neurobiol. 2011 Apr;71(4):269-83. doi: https://doi.org/10.1002/dneu.20846.
  123. Sosa LJ, Malter JS, Hu J, Bustos Plonka F, Oksdath M, Nieto Guil AF, Quiroga S, Pfenninger KH. Protein interacting with NIMA (never in mitosis A)-1 regulates axonal growth cone adhesion and spreading through myristoylated alanine-rich C kinase sub- strate isomerization. J Neurochem. 2016 Jun;137(5):744-55. doi: https://doi.org/10.1111/jnc.13612.
  124. Paul, L., Brown, W., Adolphs, R. et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8, 287299 (2007). https://doi.org/10.1038/nrn2107.
  125. Meyza KZ, Blanchard DC. The BTBR mouse model of idiopathic autism - Cur- rent view on mechanisms. Neurosci Biobehav Rev. 2017 May;76(Pt A):99-110. doi: https://doi.org/10.1016/j.neubiorev.2016.12.037.
  126. Lau YC, Hinkley LB, Bukshpun P, Strominger ZA, Wakahiro ML, Baron-Cohen S, Alli- son C, Auyeung B, Jeremy RJ, Nagarajan SS, Sherr EH, Marco EJ. Autism traits in indi- viduals with agenesis of the corpus callosum. J Autism Dev Disord. 2013 May;43(5):1106- 18. doi: https://doi.org/10.1007/s10803-012-1653-2.
  127. Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 1998 Feb 6; 279(5352): 870-3. doi: https://doi.org/10.1126/science.279.5352.870.
  128. Goodell DJ, Zaegel V, Coultrap SJ, Hell JW, Bayer KU. DAPK1 mediates LTD by making Camkii/GluN2B binding LTP specific. Cell Rep. 2017 Jun 13;19(11):2231-2243. doi: https://doi.org/10.1016/j.celrep.2017.05.068.
  129. Medina MA, Andrade VM, Caracci MO, Avila ME, Verdugo DA, Vargas MF, Ugarte GD, Reyes AE, Opazo C, De Ferrari GV. Wnt/β-catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene. Transl Psychiatry 8, 45 (2018). doi: https://doi.org/10.1038/s41398-018-0093-y.
  130. Nakamura K, Kosugi I, Lee DY, Hafner A, Sinclair DA, Ryo A, Lu KP. Prolyl isomerase Pin1 regulates neuronal differentiation via β-catenin. Mol Cell Biol. 2012 Aug;32(15):2966-78. doi: https://doi.org/10.1128/MCB.05688-11.
  131. Chen L, Liu H, Li Y, Lin X, Xia S, Wanggou S, Li X. Functional characterization of TSPAN7 as a novel indicator for immunotherapy in glioma. Front Immunol. 2023 Feb 9;14:1105489. doi: https://doi.org/10.3389/fimmu.2023.
  132. Wei H, Malik M, Sheikh AM, Merz G, Ted Brown W, Li X. Abnormal cell properties and down-regulated FAK-Src complex signaling in B lymphoblasts of autistic subjects. Am J Pathol. 2011 Jul;179(1):66-74. doi: https://doi.org/10.1016/j.ajpath.2011.03.034.
  133. Ivankovic-Dikic I, Grnroos E, Blaukat A, Barth BU, Dikic I. Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins. Nat Cell Biol. 2000 Sep;2(9):574-81. doi: https://doi.org/10.1038/35023515.
  134. Pang S, Luo Z, Dong W, Gao S, Chen W, Liu N, Zhang X, Gao X, Li J, Gao K, Shi X, Guan F, Zhang L, Zhang L. Integrin β1/FAK/SRC signal pathway is involved in autism spectrum disorder in Tspan7 knockout rats. Life Sci Alliance. 2022 Dec 20;6(3):e202201616. doi: https://doi.org/10.26508/lsa.202201616.
  135. Chen XR, Igumenova TI. Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase. Adv Biol Regul. 2023 Jan ;87: 100938. doi: https://doi.org/10.1016/j.jbior.2022.100938.
  136. Kim B, van Golen CM, Feldman EL. Degradation and dephosphorylation of focal adhesion kinase during okadaic acid-induced apoptosis in human neuroblastoma cells. Neoplasia. 2003 Sep-Oct;5(5):405-16. doi: https://doi.org/10.1016/s1476-5586(03)80043-x.
  137. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697-715. doi: https://doi.org/10.1146/annurev.cellbio.12.1.697.
  138. Szekacs I, Farkas E, Gemes BL, Takacs E, Szekacs A, Horvath R. Integrin targeting of glyphosate and its cell adhesion modulation effects on osteoblastic MC3T3-E1 cells revealed by label-free optical biosensing. Sci Rep. 2018 Nov 27;8(1):17401. doi: https://doi.org/10.1038/s41598-018-36081-0.
  139. Sakamoto S, Kyprianou N. Targeting anoikis resistance in prostate cancer metastasis. Mol Aspects Med. 2010 Apr;31(2):205-14. doi: https://doi.org/10.1016/j.mam.2010.02.001.
  140. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery. 2004 May;135(5):555-62. doi: https://doi.org/10.1016/j.surg.2003.10.017.
  141. Liu G, Meng X, Jin Y, Bai J, Zhao Y, Cui X, Chen F, Fu S. Inhibitory role of focal adhesion kinase on anoikis in the lung cancer cell A549. Cell Biol Int. 2008 Jun;32(6):663-70. doi: https://doi.org/10.1016/j.cellbi.2008.01.292.
  142. Coley AA, Gao WJ. PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Sci Rep 2019; 9: 9486. doi: https://doi.org/10.1038/s41598-019-45971-w.
  143. Coley AA, Gao WJ. PSD-95: A synaptic protein implicated in schizophrenia or autism? Prog Neuropsychopharmacol Biol Psychiatry. 2018 Mar 2;82:187-194. doi: https://doi.org/10.1016/j.pnpbp.2017.11.016.
  144. Bonsi P, De Jaco A, Fasano L, Gubellini P. Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis. 2022 Jan;162:105564. doi: https://doi.org/10.1016/j.nbd.2021.105564.
  145. Luna S, Neila LP, Vena R, Borgatello C, Rosso SB. Glyphosate exposure induces synaptic impairment in hippocampal neurons and cognitive deficits in developing rats. Arch Toxicol. 2021 Jun;95(6):2137-2150. doi: https://doi.org/10.1007/s00204-021-03046-8.
  146. Antonelli R, De Filippo R, Middei S, Stancheva S, Pastore B, Ammassari-Teule M, Barberis A, Cherubini E, Zacchi P. Pin1 modulates the synaptic content of NMDA receptors via prolyl-isomerization of PSD-95. J Neurosci. 2016 May 18;36(20):5437-47. doi: https://doi.org/10.1523/JNEUROSCI.3124-15.2016.
  147. Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010 Jan 14;1309:83-94. doi: https://doi.org/10.1016/j.brainres.2009.09.120.
  148. Wang J, Gao Y, Xiao L, Lin Y, Huang L, Chen J, Liang G, Li W, Yi W, Lao J, Zhang B, Gao TM, Zhong M, Yang X. Increased NMDARs in neurons and glutamine synthetase in astrocytes underlying autistic-like behaviors of Gabrb1-/- mice. iScience. 2023 Jul 25;26(8):107476. doi: https://doi.org/10.1016/j.isci.2023.107476.
  149. Huang L, Wang J, Liang G, Gao Y, Jin SY,Hu J, Yang X, Lao J, Chen J, Luo ZC, Fan C, Xiong L, Zhu X, Gao TM, Zhong M, Yang X. Upregulated NMDAR-mediated GABAergic transmission underlies autistic-like deficits in Htr3a knockout mice. Theranostics. 2021 Sep 7;11(19):9296-9310. doi: https://doi.org/10.7150/thno.60531.
  150. Brignell A, Marraffa C, Williams K, May T. Memantine for autism spectrum disorder. Cochrane Database Syst Rev. 2022 Aug 25;8(8):CD013845. doi: https://doi.org/10.1002/14651858.CD013845.pub2.
  151. Rodríguez-Palmero A, Boerrigter MM, Gómez-Andrés D, Aldinger KA, Marcos-Alcalde Í, Popp B, Everman DB, Lovgren AK, Arpin S, Bahrambeigi V, Beunders G, Bisgaard AM, Bjerregaard VA, Bruel AL, Challman TD, Cogné B, Coubes C, de Man SA, Denommé-Pichon AS, Dye TJ, … Tümer Z. DLG4-related synaptopathy: A new rare brain disorder. Genet. Med. 2021; 23: 888-899. doi: https://doi.org/10.1038/s41436-020-01075-9.
  152. Zhang T, Xia Y, Hu L, Chen D, Gan CL, Wang L, Mei Y, Lan G, Shui X, Tian Y, Li R, Zhang M, Lee TH. Death-associated protein kinase 1 mediates Aβ42 aggregation-induced neuronal apoptosis and tau dysregulation in Alzheimer’s disease. Int J Biol Sci. 2022 Jan 1;18(2):693-706. doi: https://doi.org/10.7150/ijbs.66760.
  153. Won J, Lee S, Ahmad Khan Z, Choi J, Ho Lee T, Hong Y. Suppression of DAPK1 reduces ischemic brain injury through inhibiting cell death signaling and promoting neural remodeling. Brain Res. 2023 Dec 1;1820:148588. doi: https://doi.org/10.1016/j.brainres.
  154. Tereshko V, Teplova M, Brunzelle J, Watterson DM, Egli M. Crystal structures of the catalytic domain of human protein kinase associated with apoptosis and tumor suppression. Nat Struct Biol. 2001 Oct;8(10):899-907. doi: https://doi.org/10.1038/nsb1001-899.
  155. O’Neill GM. The coordination between actin filaments and adhesion in mesenchymal migration. Cell Adh Migr. 2009 Oct-Dec;3(4):355-7. doi: https://doi.org/10.4161/cam.3.4.9468.
  156. Qin R, Melamed S, Yang B, Saxena M, Sheetz MP, Wolfenson H. Tumor suppressor DAPK1 catalyzes adhesion assembly on rigid but anoikis on soft matrices. Front Cell Dev Biol. 2022 Jul 19;10:959521. doi: https://doi.org/10.3389/fcell.2022.959521.
  157. Kumar A, Balbach J. Folding and stability of ankyrin repeats control biological protein function. Biomolecules. 2021 Jun 5;11(6):840. doi: https://doi.org/10.3390/biom11060840.
  158. Jin Y, Blue EK, Dixon S, Shao Z, Gallagher PJ. A death-associated protein kinase (DAPK)-interacting protein, DIP-1, is an E3 ubiquitin ligase that promotes tumor necrosis factor-induced apoptosis and regulates the cellular levels of DAPK. J Biol Chem. 2002 Dec 6;277(49):46980-6. doi: https://doi.org/10.1074/jbc.M208585200.
  159. Kim N, Chen D, Zhou XZ, Lee TH. Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease. Int J Mol Sci. 2019 Jun 26;20(13):3131. doi: https://doi.org/10.3390/ijms20133131.
  160. Carreras FJ. Lessons from glaucoma: Rethinking the fluid-brain barriers in common neurodegenerative disorders. Neural Regen Res. 2019 Jun;14(6):962-966. doi: https://doi.org/10.4103/1673-5374.249215.
  161. Bao Y, Wang L, Liu H, Yang J, Yu F, Cui C, Huang D. A diagnostic model for Parkinson’s disease based on anoikis-related genes. Mol Neurobiol. 2023 Nov 25. doi: https://doi.org/10.1007/s12035-023-03753-6.
  162. Mehrabian M, Ehsani S, Schmitt-Ulms G. An emerging role of the cellular prion protein as a modulator of a morphogenetic program underlying epithelial-to-mesenchymal transition. Front Cell Dev Biol. 2014 Sep 18;2:53. doi: https://doi.org/10.3389/fcell.2014.00053.
  163. Zhou J, Yang S, Zhu D, Li H, Miao X, Gu M, Xu W, Zhang Y, Tang W, Shen R, Zha J, Zhu J, Yuan Z, Gu X. The crosstalk between anoikis and epithelial-mesenchymal transition and their synergistic roles in predicting prognosis in colon adenocarcinoma. Front Oncol. 2023 Jun 7;13:1184215. doi: https://doi.org/10.3389/fonc.2023.1184215.
  164. Mehrpour M, Codogno P. Prion protein: From physiology to cancer biology. Cancer Lett. 2010 Apr 1;290(1):1-23. doi: https://doi.org/10.1016/j.canlet.2009.07.009.
  165. Bianchi M, Manco M. Pin1 modulation in physiological status and neurodegeneration. Any contribution to the pathogenesis of type 3 diabetes? Int J Mol Sci. 2018 Aug 8;19(8):2319. doi: https://doi.org/10.3390/ijms19082319.
  166. Betancur C, Sakurai T, Buxbaum JD. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci. 2009 Jul;32(7):402-12. doi: https://doi.org/10.1016/j.tins.2009.04.003.
  167. Trobiani L, Meringolo M, Diamanti T, Bourne Y, Marchot P, Martella G, Dini L, Pisani A, De Jaco A, Bonsi P. The neuroligins and the synaptic pathway in Autism Spectrum Disorder. Neurosci Biobehav Rev. 2020 Dec;119:37-51. doi: https://doi.org/10.1016/j.neubiorev.2020.09.017.
  168. Guang S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology involved in autism spectrum disorder. Front Cell Neurosci. 2018 Dec 21;12:470. doi: https://doi.org/10.3389/fncel.2018.00470.
  169. Tullis JE, Bayer KU. Distinct synaptic pools of DAPK1 differentially regulate activity-dependent synaptic CaMKII accumulation. iScience. 2023 Apr 23;26(5):106723. doi: https://doi.org/10.1016/j.isci.2023.106723.
  170. Konno D, Ko JA, Usui S, Hori K, Maruoka H, Inui M, Fujikado T, Tano Y, Suzuki T, Tohyama K, Sobue K. The postsynaptic density and dendritic raft localization of PSD-Zip70, which contains an N-myristoylation sequence and leucine-zipper motifs. J Cell Sci. 2002 Dec 1;115(Pt 23):4695-706. doi: https://doi.org/10.1242/jcs.00127.
  171. Xu L, Ren Z, Chow FE, Tsai R, Liu T, Rizzolio F, Boffo S, Xu Y, Huang S, Lippa CF, Gong Y. Pathological role of peptidyl-prolyl isomerase Pin1 in the disruption of synaptic plasticity in Alzheimer’s disease. Neural Plast. 2017;2017:3270725. doi: https://doi.org/10.1155/2017/3270725.
  172. Wang SC, Hu XM, Xiong K. The regulatory role of Pin1 in neuronal death. Neural Regen Res. 2023 Jan;18(1):74-80. doi: https://doi.org/10.4103/1673-5374.341043.
  173. Marchionini DM, Collier TJ, Camargo M, McGuire S, Pitzer M, Sortwell CE. Interference with anoikis-induced cell death of dopamine neurons: implications for augmenting embryonic graft survival in a rat model of Parkinson’s disease. J Comp Neurol. 2003 Sep 15;464(2):172-9. doi: https://doi.org/10.1002/cne.10785.
  174. Biswas D, Cary W, Nolta JA. PPP2R5D-related intellectual disability and neurodevelopmental delay: A review of the current understanding of the genetics and biochemical basis of the disorder. Int J Mol Sci. 2020 Feb 14;21(4):1286. doi: https://doi.org/10.3390/ijms21041286.
  175. Samuels IS, Saitta SC, Landreth GE. MAP’ing CNS development and cognition: An ERKsome process. Neuron. 2009 Jan 29;61(2):160-7. doi: https://doi.org/10.1016/j.neuron.2009.01.001.
  176. Faridar A, Jones-Davis D, Rider E, Li J, Gobius I, Morcom L, Richards LJ, Sen S, Sherr EH. Mapk/Erk activation in an animal model of social deficits shows a possible link to autism. Mol Autism. 2014 Dec 22;5:57. doi: https://doi.org/10.1186/2040-2392-5-57.
  177. Lee KY, Wang H, Yook Y, Rhodes JS, Christian-Hinman CA, Tsai NP. Tumor suppressor p53 modulates activity-dependent synapse strengthening, autism-like behavior and hippocampus-dependent learning. Mol Psychiatry. 2023;28(9):3782-3794. doi: https://doi.org/10.1038/s41380-023-02268-9.
  178. Lewis PA. The function of ROCO proteins in health and disease. Biol Cell. 2009 Mar;101(3):183-91. doi: https://doi.org/10.1042/BC20080053.
  179. Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 2013 Jul 10;335(1):9-18. doi: https://doi.org/10.1016/j.canlet.2013.02.036.
  180. Zhou H, Luo W, Zeng C, Zhang Y, Wang L, Yao W, Nie C. PP2A mediates apoptosis or autophagic cell death in multiple myeloma cell lines. Oncotarget. 2017 Aug 23;8(46):80770-80789. doi: https://doi.org/10.18632/oncotarget.20415.
  181. Lee TH, Chen CH, Suizu F, Huang P, Schiene-Fischer C, Daum S, Zhang YJ, Goate A, Chen RH, Zhou XZ, Lu KP. Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function. Mol Cell. 2011 Apr 22;42(2):147-59. doi: https://doi.org/10.1016/j.molcel.2011.03.005.
  182. Montalto FI, De Amicis F. Cyclin D1 in cancer: A molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells. 2020 Dec 9;9(12):2648. doi: https://doi.org/10.3390/cells9122648.
  183. Nakagawa T, Hattori S, Nobuta R, Kimura R, Nakagawa M, Matsumoto M, Nagasawa Y, Funayama R, Miyakawa T, Inada T, Osumi N, Nakayama KI, Nakayama K. The autism-related protein SETD5 controls neural cell proliferation through epigenetic regulation of rDNA expression. iScience. 2020 Apr 24;23(4):101030. doi: https://doi.org/10.1016/j.isci.2020.101030.
  184. Antonelli R, Pizzarelli R, Pedroni A, Fritschy JM, Del Sal G, Cherubini E, Zacchi P. Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction. Nat Commun. 2014 Oct 9; 5: 5066. doi: https://doi.org/10.1038/ncomms6066.
  185. Wang WJ, Kuo JC, Ku W, Lee YR, Lin FC, Chang YL, Lin YM, Chen CH, Huang YP, Chiang MJ, Yeh SW, Wu PR, Shen CH, Wu CT, Chen RH. The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR. Mol Cell. 2007 Sep 7;27(5):701-16. doi: https://doi.org/10.1016/j.molcel.2007.06.037.
  186. Navarro AI, Rico B. Focal adhesion kinase function in neuronal development. Curr Opin Neurobiol. 2014 Aug;27:89-95. doi: https://doi.org/10.1016/j.conb.2014.03.002.
  187. Monje FJ, Kim EJ, Pollak DD, Cabatic M, Li L, Baston A, Lubec G. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory. Neurosignals. 2012;20(1):1-14. doi: https://doi.org/10.1159/000330193.
  188. László ZI, Lele Z, Zöldi M, Miczán V,Mógor F,Simon GM,Mackie K,Kacskovics IK, Cravatt BF, Katona I. ABHD4-dependent developmental anoikis safeguards the embryonic brain. Nature Communications 2020; 11: 4363. doi: https://doi.org/10.1038/s41467-020-18175-4.
  189. Paganelli A, Gnazzo V, Acosta H, López SL, Carrasco AE. Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chem Res Toxicol. 2010 Oct 18;23(10):1586-95. doi: https://doi.org/10.1021/tx1001749.
  190. Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF, Chen RH. Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J. 2005 Jan 26;24(2):294-304. doi: https://doi.org/10.1038/sj.emboj.7600510.
  191. Xiong W, Wu Y, Xian W, Song L, Hu L, Pan S, Liu M, Yao S, Pei L, Shang Y. DAPK1-ERK signal mediates oxygen glucose deprivation reperfusion induced apoptosis in mouse N2a cells. J Neurol Sci. 2018 Apr 15;387:210-219. doi: https://doi.org/10.1016/j.jns.2018.01.003.
  192. Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, Wu Y, Yao C, Wang X, Zhu LQ, Lu Y. DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci. 2014 May 7;34(19):6546-56. doi: https://doi.org/10.1523/JNEUROSCI.5119-13.2014.
  193. Araki T, Shinoda S, Schindler CK, Quan-Lan J, Meller R, Taki W, Simon RP, Henshall DC. Expression, interaction, and proteolysis of death-associated protein kinase and p53 within vulnerable and resistant hippocampal subfields following seizures. Hippocampus. 2004;14(3):326-36. doi: https://doi.org/10.1002/hipo.10184.
  194. Chen B, Jin W. A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci. 2023 Jun 7;17:1200061. doi: https://doi.org/10.3389/fnins.2023.1200061.
  195. Zhang M, Shui X, Zheng X, Lee JE, Mei Y, Li R, Tian Y, Zheng X, Wang Q, Wang L, Chen D, Zhang T, Kim BM, Kim J, Lee TH. Death-associated protein kinase 1 phosphorylates MDM2 and inhibits its protein stability and function. Arch Pharm Res. 2023 Oct 7. doi: https://doi.org/10.1007/s12272-023-01469-8.
  196. Hemann M, Lowe S. The p53-Bcl-2 connection. Cell Death Differ 2006; 13: 1256-1259. doi: https://doi.org/10.1038/sj.cdd.4401962.
  197. Park JH, Zhuang J, Li J, Hwang PM. p53 as guardian of the mitochondrial genome. FEBS Lett. 2016; 590(7): 924-34. doi: https://doi.org/10.1002/1873-3468.12061.
  198. Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G, Gu L, Tang X, Lu KP, Xiao ZX. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature. 2002; 419(6909):849-53. doi: https://doi.org/10.1038/nature01116.
  199. Raj N, Attardi LD. The transactivation domains of the p53 protein. Cold Spring Harb Perspect Med. 2017 Jan 3;7(1):a026047. doi: https://doi.org/10.1101/cshperspect.a026047.
  200. Izumi Y, O’Dell KA, Zorumski CF. The herbicide glyphosate inhibits hippocampal long-term potentiation and learning through activation of pro-inflammatory signaling. Sci Rep 2023; 13: 18005. doi: https://doi.org/10.1038/s41598-023-44121-7.
  201. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. 2008 May 16;133(4):612-26. doi: https://doi.org/10.1016/j.cell.2008.03.025.
  202. Mantovani F, Tocco F, Girardini J, Smith P, Gasco M, Lu X, Crook T, Del Sal G. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol. 2007 Oct;14(10):912-20. doi: https://doi.org/10.1038/nsmb1306.
  203. Dai CQ, Luo TT, Luo SC, Wang JQ, Wang SM, Bai YH, Yang YL, Wang YY. p53 and mitochondrial dysfunction: Novel insight of neurodegenerative diseases. J Bioenerg Biomembr. 2016 Aug;48(4):337-47. doi: https://doi.org/10.1007/s10863-016-9669-5.
  204. Baptiste N, Prives C. p53 in the cytoplasm: a question of overkill? Cell. 2004 Feb 20;116(4):487-9. doi: https://doi.org/10.1016/s0092-8674(04)00164-3.
  205. Chipuk JE, Green DR. p53’s believe it or not: Lessons on transcription-independent death. J Clin Immunol. 2003 Sep;23(5):355-61. doi: https://doi.org/10.1023/a:1025365432325.
  206. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015 Apr 2;520(7545):57-62. doi: https://doi.org/10.1038/nature14344.
  207. Green DR, Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature. 2009 Apr 30;458(7242):1127-30. doi: https://doi.org/10.1038/nature07986.
  208. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008 Jun;10(6):676-87. doi: https://doi.org/10.1038/ncb1730.
  209. Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015 Nov;88(Pt B):179-188. doi: https://doi.org/10.1016/j.freeradbiomed.2015.04.036.
  210. Ha KN, Chen Y, Cai J, Sternberg P Jr. Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2709-15. doi: https://doi.org/10.1167/iovs.05-1322.
  211. Chen L, Shi XJ, Liu H, Mao X, Gui LN, Wang H, Cheng Y. Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N=9109). Transl Psychiatry. 2021 Jan 5;11(1):15. doi: https://doi.org/10.1038/s41398-020-01135-3.
  212. Schrier MS, Zhang Y, Trivedi MS, Deth RC. Decreased cortical Nrf2 gene expression in autism and its relationship to thiol and cobalamin status. Biochimie. 2022 Jan;192:1-12. doi: https://doi.org/10.1016/j.biochi.2021.09.006.
  213. Ma Q. Role of NRF2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401-26. doi: https://doi.org/10.1146/annurev-pharmtox-011112-140320.
  214. Ngo V, Karunatilleke NC, Brickenden A, Choy WY, Duennwald ML. Oxidative stress-induced misfolding and inclusion formation of Nrf2 and Keap1. Antioxidants (Basel). 2022 Jan 27;11(2):243. doi: https://doi.org/10.3390/antiox11020243.
  215. Pensabene KM, LaMorte J, Allender AE, Wehr J, Kaur P, Savage M, Eggler AL. Acute Oxidative stress can paradoxically suppress human NRF2 protein synthesis by inhibiting global protein translation. Antioxidants (Basel). 2023 Sep 7;12(9):1735. doi: https://doi.org/10.3390/antiox12091735.
  216. Saeidi S, Kim SJ, Guillen-Quispe YN, Jagadeesh ASV, Han HJ, Kim SH, Zhong X, Piao JY, Kim SJ, Jeong J, Shin YJ, Cha YJ, Lee HB, Han W, Min SH, Tian W, Kitamura H, Surh YJ. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 directly binds and stabilizes Nrf2 in breast cancer. FASEB J. 2022 Jan;36(1):e22068. doi: https://doi.org/10.1096/fj.202100776RR.
  217. Ishii T, Warabi E, Mann GE. Stress Activated MAP kinases and cyclin-dependent kinase 5 mediate nuclear translocation of Nrf2 via Hsp90-Pin1-dynein motor transport machinery. Antioxidants (Basel). 2023 Jan 26;12(2):274. doi: https://doi.org/10.3390/antiox12020274.
  218. Meyza KZ, Blanchard DC. The BTBR mouse model of idiopathic autism - Current view on mechanisms. Neurosci Biobehav Rev. 2017 May;76(Pt A):99-110. doi: https://doi.org/10.1016/j.neubiorev.2016.
  219. Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW. KEAP1 and Done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci Technol. 2017 Nov;69(Pt B):257-269. doi: https://doi.org/10.1016/j.tifs.2017.02.002.
  220. Nadeem A, Ahmad SF, Al-Harbi NO, Attia SM, Bakheet SA, Ibrahim KE, Alqahtani F, Alqinyah M. Nrf2 activator, sulforaphane ameliorates autism-like symptoms through suppression of Th17 related signaling and rectification of oxidant-antioxidant imbalance in periphery and brain of BTBR T+tf/J mice. Behav Brain Res. 2019 May 17;364:213-224. doi: https://doi.org/10.1016/j.bbr.2019.02.031.
  221. Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int. 2014;2014:925350. doi: https://doi.org/10.1155/2014/925350.
  222. Mori S, Nada S, Kimura H, Tajima S, Takahashi Y, Kitamura A, Oneyama C, Okada M. The mTOR pathway controls cell proliferation by regulating the FoxO3a transcription factor via SGK1 kinase. PLoS One. 2014 Feb 18;9(2):e88891. doi: https://doi.org/10.1371/journal.pone.0088891.
  223. Schäffner I, Minakaki G, Khan MA, Balta EA, Schltzer-Schrehardt U, Schwarz TJ, Beckervordersandforth R, Winner B, Webb AE, DePinho RA, Paik J, Wurst W, Klucken J, Lie DC. FoxO function Is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron. 2018 Sep 19;99(6):1188-1203.e6. doi: https://doi.org/10.1016/j.neuron.2018.08.017.
  224. Thomas SD, Jha NK, Ojha S, Sadek B. mTOR signaling disruption and its association with the development of autism spectrum disorder. Molecules. 2023 Feb 16;28(4):1889. doi: https://doi.org/10.3390/molecules28041889.
  225. Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I, Park Y, Hay N. FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell. 2010 Apr 20;18(4):592-604. doi: https://doi.org/10.1016/j.devcel.2010.03.008.
  226. Deng Z, Zhou X, Lu J -H. Yue Z. Autophagy deficiency in neurodevelopmental disorders. Cell Biosci 11, 214 (2021). doi: https://doi.org/10.1186/s13578-021-00726-x.
  227. Long J, Wang J, Dong Y, Yang J, Xie G,Tong Y, Prolyl isomerase Pin1 promotes autophagy and cancer cell viability through activating FoxO3 signalling, Cellular Signalling, Volume 113, 2024, 110940. doi: https://doi.org/10.1016/j.cellsig.2023.110940.
  228. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015 Jan;125(1):25-32. doi: https://doi.org/10.1172/JCI73939.
  229. Limanaqi F, Biagioni F, Gambardella S, Ryskalin L, Fornai F. Interdependency between autophagy and synaptic vesicle trafficking: Implications for dopamine release. Front Mol Neurosci. 2018 Aug 21;11:299. doi: https://doi.org/10.3389/fnmol.2018.00299.
  230. Dossou AS, Basu A. The emerging roles of mTORC1 in macromanaging autophagy. Cancers (Basel). 2019 Sep 24;11(10):1422. doi: https://doi.org/10.3390/cancers11101422.
  231. Rosenhall U, Nordin V, Sandstrm M, Ahlsn G, Gillberg C. Autism and hearing loss. J Autism Dev Disord. 1999 Oct;29(5):349-57. doi: https://doi.org/10.1023/a:1023022709710.
  232. Fu X, Sun X, Zhang L, Jin Y, Chai R, Yang L, Zhang A, Liu X, Bai X, Li J, Wang H, Gao J. Tuberous sclerosis complex-mediated mTORC1 over-activation promotes age-related hearing loss. J Clin Invest. 2018; 128(11): 49384955. doi: https://doi.org/10.1172/JCI98058.
  233. Lamming DW. Inhibition of the Mechanistic Target of Rapamycin (mTOR) –Rapamycin and beyond. Cold Spring Harb Perspect Med. 2016 May 2;6(5):a025924. doi: https://doi.org/10.1101/csh-perspect.a025924.
  234. Zhang Y, Lv Z, Liu Y, Cao H, Yang J, Wang B. PIN1 protects hair cells and auditory HEI-OC1 cells against senescence by inhibiting the PI3K/Akt/mTOR pathway. Oxid Med Cell Longev. 2021 Jun 2;2021:9980444. doi: https://doi.org/10.1155/2021/9980444.
  235. Kosillo P, Bateup HS. Dopaminergic dysregulation in syndromic autism spectrum disorders: Insights From genetic mouse models. Front Neural Circuits. 2021 Jul 23;15:700968. doi: https://doi.org/10.3389/fncir.2021.700968.
  236. Hernandez D, Torres CA, Setlik W, Cebrin C, Mosharov EV, Tang G, Cheng HC, Kholodilov N, Yarygina O, Burke RE, Gershon M, Sulzer D. Regulation of presynaptic neurotransmission by macroautophagy. Neuron. 2012 Apr 26;74(2):277-84. doi: https://doi.org/10.1016/j.neuron.2012.02.020.
  237. Yu G, Luo H, Zhang N, Wang Y, Li Y, Huang H, Liu Y, Hu Y, Liu H, Zhang J, Tang Y, Huang Y. Loss of p53 sensitizes cells to palmitic acid-induced apoptosis by reactive oxygen species accumulation. Int J Mol Sci. 2019;20(24):6268. doi: https://doi.org/10.3390/ijms20246268.
  238. Lee BH, Smith T, Paciorkowski AR. Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav. 2015 Jun;47:191-201. doi: https://doi.org/10.1016/j.yebeh.2015.03.017.
  239. Brooks-Kayal A. Epilepsy and autism spectrum disorders: Are there common develop- mental mechanisms? Brain and Dev. 2010; 32: 7318. doi: https://doi.org/10.1016/j.braindev.2010.04.010.
  240. Naraine AS, Aker R, Sweeney I, Kalvey M, Surtel A, Shanbhag V, Dawson-Scully K. Roundup and glyphosates impact on GABA to elicit extended proconvulsant behavior in Caenorhabditis elegans. Sci Rep 12, 13655 (2022). doi: https://doi.org/10.1038/s41598-022-17537-w.
  241. Perucca P, Smith G, Santana-Gomez C, Bragin A, Staba R. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury. Neurobiol Dis. 2019 Mar; 123:69-74. doi: https://doi.org/10.1016/j.nbd.2018.06.002.
  242. Vannini E, Restani L, Dilillo M, McDonnell LA, Caleo M, Marra V. Synaptic vesicles dynamics in neocortical epilepsy. Front Cell Neurosci. 2020 Dec 10;14:606142. doi: https://doi.org/10.3389/fncel.2020.606142.
  243. Chen Y, Hou X, Pang J, Yang F, Li A, Lin S, Lin N, Lee TH, Liu H. The role of peptidyl-prolyl isomerase Pin1 in neuronal signaling in epilepsy. Front Mol Neurosci. 2022 Oct 11;15:1006419. doi: https://doi.org/10.3389/fnmol.2022.1006419.
  244. Tang L, Zhang Y, Chen G, Xiong Y, Wang X, Zhu B. Down-regulation of Pin1 in temporal lobe epilepsy patients and mouse model. Neurochem Res. 2017 Apr;42(4):1211-1218. doi: https://doi.org/10.1007/s11064-016-2158-8.
  245. Hou X, Yang F, Li A, Zhao D, Ma N, Chen L, Lin S, Lin Y, Wang L, Yan X, Zheng M, Lee TH, Zhou XZ, Lu KP, Liu H. The Pin1-CaMKII-AMPA receptor axis regulates epileptic susceptibility. Cereb Cortex. 2021 May 10;31(6):3082-3095. doi: https://doi.org/10.1093/cercor/bhab004.
  246. Kim JW, Park K, Kang RJ, Gonzales ELT, Kim DG, Oh HA, Seung H, Ko MJ, Kwon KJ, Kim KC, Lee SH, Chung C, Shin CY. Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology. 2019 Jan;44(2):314-323. doi: https://doi.org/10.1038/s41386-018-0098-5.
  247. Oh J, Malter JS. Pin1-FADD interactions regulate Fas-mediated apoptosis in activated eosinophils. J Immunol. 2013 May 15;190(10):4937-45. doi: https://doi.org/10.4049/jimmunol.1202646.
  248. Shen ZJ, Esnault S, Schinzel A, Borner C, Malter JS. The peptidyl-prolyl isomerase Pin1 facilitates cytokine-induced survival of eosinophils by suppressing Bax activation. Nat Immunol. 2009 Mar;10(3):257-65. doi: https://doi.org/10.1038/ni.1697.
  249. Rådinger M, Lötvall J. Eosinophil progenitors in allergy and asthma - do they matter? Pharmacol Ther. 2009 Feb;121(2):174-84. doi: https://doi.org/10.1016/j.pharmthera.2008.10.008.
  250. Zheng Z, Zhang L, Zhu T, Huang J, Qu Y, Mu D. Association between asthma and autism spectrum disorder: A meta-analysis. PLoS One. 2016 Jun 3;11(6):e0156662. doi: https://doi.org/10.1371/journal.pone.0156662.
  251. Akintunde ME, Rose M, Krakowiak P, Heuer L, Ashwood P, Hansen R, Hertz-Picciotto I, Van de Water J. Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. J Neuroimmunol. 2015 Sep 15;286:33-41. doi: https://doi.org/10.1016/j.jneuroim.2015.07.003.
  252. Gong T, Lundholm C, Lundström S, Kuja-Halkola R, Taylor MJ, Almqvist C. Understanding the relationship between asthma and autism spectrum disorder: a population-based family and twin study. Psychol Med. 2023 May;53(7):3096-3104. doi: https://doi.org/10.1017/S0033291721005158.
  253. Guglielmi L, Servettini I, Caramia M, Catacuzzeno L, Franciolini F, D’Adamo MC, Pessia M. Update on the implication of potassium channels in autism: K(+) channelautism spectrum disorder. Front Cell Neurosci. 2015 Mar 2;9:34. doi: https://doi.org/10.3389/fncel.2015.00034.
  254. Hoffman DA, Magee JC, Colbert CM, Johnston D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature. 1997 Jun 26;387(6636):869-75. doi: https://doi.org/10.1038/43119.
  255. Lugo JN, Brewster AL, Spencer CM, Anderson AE. Kv4.2 knockout mice have hippocampal-dependent learning and memory deficits. Learn Mem. 2012 Apr 13;19(5):182-9. doi: https://doi.org/10.1101/lm.023614.111.
  256. Hu JH, Malloy C, Tabor GT, Gutzmann JJ, Liu Y, Abebe D, Karlsson RM, Durell S, Cameron HA, Hoffman DA. Activity-dependent isomerization of Kv4.2 by Pin1 regulates cognitive flexibility. Nat Commun. 2020 Mar 26;11(1):1567. doi: https://doi.org/10.1038/s41467-020-15390-x.
  257. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007 Jan;39(1):25-7. doi: https://doi.org/10.1038/ng1933.
  258. Shen ZJ, Esnault S, Rosenthal LA, Szakaly RJ, Sorkness RL, Westmark PR, Sandor M, Malter JS. Pin1 regulates TGF-beta1 production by activated human and murine eosinophils and contributes to allergic lung fibrosis. J Clin Invest. 2008 Feb;118(2):479-90. doi: https://doi.org/10.1172/JCI32789.
  259. Centers for Disease Control and Prevention. COVID-19 Vaccination. January 18, 2024. [Accessed January 23, 2024]. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html.
  260. Yonker LM, Swank Z, Bartsch YC, Burns MD, Kane A, Boribong BP, Davis JP, Loiselle M, Novak T, Senussi Y, Cheng CA, Burgess E, Edlow AG, Chou J, Dionne A, Balaguru D, Lahoud-Rahme M, Arditi M, Julg B, Randolph AG, Alter G, Fasano A, Walt DR. Circulating spike protein detected in post-COVID-19 mRNA vaccine myocarditis. Circulation. 2023 Mar 14;147(11):867-876. doi: https://doi.org/10.1161/CIRCULATIONAHA.122.061025.
  261. Hulscher N, Hodkinson R, Makis W, McCullough PA. Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis. ESC Heart Fail. 2024 Jan 14. doi: https://doi.org/10.1002/ehf2.14680.
  262. Seneff S, Kyriakopoulos AM, Nigh G, McCullough PA. A potential role of the spike protein in neurodegenerative diseases: A narrative review. Cureus. 2023 Feb 11;15(2):e34872. doi: https://doi.org/10.7759/cureus.34872.
  263. Morgun AV, Salmin VV, Boytsova EB, Lopatina OL, Salmina AB. Molecular Mechanisms of proteins - Targets for SARS-CoV-2 (Review). Sovrem Tekhnologii Med. 2021;12(6):98-108. doi: https://doi.org/10.17691/stm2020.12.6.11.
  264. Nance KD, Meier JL. Modifications in an emergency: The role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent Sci. 2021 May 26;7(5):748-756. doi: https://doi.org/10.1021/acscentsci.1c00197.
  265. Röltgen K, Nielsen SCA, Silva O, Younes SF, Zaslavsky M, Costales C, Yang F, Wirz OF, Solis D, Hoh RA, Wang A, Arunachalam PS, Colburg D, Zhao S, Haraguchi E, Lee AS, Shah MM, Manohar M, Chang I, Gao F, Mallajosyula V, Li C, Liu J, Shoura MJ, Sindher SB, Parsons E, Dashdorj NJ, Dashdorj ND, Monroe R, Serrano GE, Beach TG, Chinthrajah RS, Charville GW, Wilbur JL, Wohlstadter JN, Davis MM, Pulendran B, Troxell ML, Sigal GB, Natkunam Y, Pinsky BA, Nadeau KC, Boyd SD. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 2022 Mar 17;185(6):1025-1040.e14. doi: https://doi.org/10.1016/j.cell.2022.01.018.
  266. Siao WH, Chang FY, Chen YC. Memantine treats psychosis and agitation associated with Moderna COVID-19 vaccine. Schizophr Res. 2023 May;255:14-16. doi: https://doi.org/10.1016/j.schres.2023.03.011.
  267. Haroon E, Miller A, Sanacora G. Inflammation, glutamate, and glia: A trio of trouble in mood disorders. Neuropsychopharmacol 42, 193215 (2017). doi: https://doi.org/10.1038/npp.2016.199.
  268. Khanfar A, Al Qaroot B. Could glutathione depletion be the Trojan horse of COVID-19 mortality? Eur. Rev. Med. Pharmacol. Sci. 2020; 24, 12500–12509. doi: https://doi.org/10.26355/eurrev_202012_24046.
  269. Erdogan MA, Gurbuz O, Bozkurt MF, Erbas O. Prenatal exposure to COVID-19 mRNA vaccine BNT162b2 induces autism-like behaviors in male neonatal rats: Insights into WNT and BDNF signaling perturbations. Neurochem Res 2024; 49: 1034-1048. doi: https://doi.org/10.1007/s11064-023-04089-2.
  270. Petkova-Tuffy A, Gdecke N, Viotti J, Korte M, Dresbach T. Neuroligin-1 mediates presynaptic maturation through brain-derived neurotrophic factor signaling. BMC Biol. 2021 Sep 27;19(1):215. doi: https://doi.org/10.1186/s12915-021-01145-7.
  271. Sheikh AM, Malik M, Wen G, Chauhan A, Chauhan V, Gong CX, Liu F, Brown WT, Li X. BDNF-Akt-Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. J Neurosci Res. 2010 Sep;88(12):2641-7. doi: https://doi.org/10.1002/jnr.22416.
  272. Pagani M, Barsotti N, Bertero A, Trakoshis S, Ulysse L, Locarno A, Miseviciute I, De Felice A, Canella C, Supekar K, Galbusera A, Menon V, Tonini R, Deco G, Lombardo MV, Pasqualetti M, Gozzi A. mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nat Commun. 2021 Oct 19;12(1):6084. doi: https://doi.org/10.1038/s41467-021-26131-z.
  273. Li W, Greenough TC, Moore MJ, Vasilieva N, Somasundaran M, Sullivan JL, Farzan M, Choe H. Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. J Virol. 2004 Oct;78(20):11429-33. doi: https://doi.org/10.1128/JVI.78.20.11429-11433.2004.
  274. Souissi A, Dergaa I, Romdhani M, Ghram A, Irandoust K, Chamari K, Ben Saad H. Can melatonin reduce the severity of post-COVID-19 syndrome? EXCLI J. 2023 Feb 2;22:173-187. doi: https://doi.org/10.17179/excli2023-5864.
  275. Centers for Disease Control and Prevention. 6 Things to know about COVID-19 vaccination for children. August 8, 2023. Accessed February 28, 2024.
  276. Mawson AR. Measles, mumps, rubella vaccination and autism. Annals of Internal Medicine 2019; 171(5): 386-387. doi: https://doi.org/10.7326/L19-0382.