References
  1. Bhurani, V.; Mohankrishnan, A.; Morrot, A.; Dalai, S. K.. Developing effective vaccines: cues from natural infection. Int Rev Immunol 2018, 37(5),249-265. doi: 10.1080/08830185.2018.1471479.
  2. Psichogiou, M.; Karabinis, A.; Poulakou, G.; Antoniadou, A.; Kotanidou, A.; Degiannis ,D.; Pavlopoulou, I.D.; Chaidaroglou, A.; Roussos, S.; Mastrogianni E.; et al. Comparative Immunogenicity of Bnt162b2 mRNA Vaccine with Natural COVID-19 Infection. Vaccines (Basel) 2021, 9(9), 1017. doi: 10.3390/vaccines9091017.
  3. Jhaveri, R. The COVID-19 mRNA Vaccines and the Pandemic: Do They Represent the Beginning of the End or the End of the Beginning? Clin Ther 2021,43(3), 549-556. doi: 10.1016/j.clinthera.2021.01.014
  4. Centers for Disease Control and Prevention. 2021. Coronavirus Disease 2019 (COVID-19). [online] Available at: <https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/vaccine-induced-immunity.html#anchor_1635540449320 [Accessed 28 November 2021].
  5. Ivanova, E.N.; Devlin, J.C.; Buus, T.B.; Koide, A.; Cornelius, A.; Samanovic, M.I.; Herrera, A.; Zhang, C.; Desvignes, L.; Odum, N.; Ulrich, R.; Mulligan, M.J.; Koide, S.; Ruggles, K.V.; Herati, R.S.; Koralov, S.B. Discrete immune response signature to SARS-CoV-2 mRNA vaccination versus infection. medRxiv preprint April 21, 2021 .doi: https://doi.org/10.1101/2021.04.20.21255677.
  6. Kwok, H. F. Review of COVID-19 vaccine clinical trials – A puzzle with missing pieces. Int J Biol Sci 2021, 7(6), 1461.
  7. Shrotri, M.; Navaratnam, A.M.; Nguyen, V.; Byrne, T.; Geismar, C.; Fragaszy, E.; Beale, S.; Fong, W.L.E.; Patel, P.; Kovar, J.; et al. Spike-antibody waning after second dose of BNT162b2 or ChAdOx1. The Lancet 2021, 398(10298), 385-387.
  8. Centers for Disease Control and Prevention. 2021. COVID-19 Booster Shot. [online] Available at: <https://www.cdc.gov/coronavirus/2019-ncov/vaccines/booster-shot.html> [Accessed 28 November 2021].
  9. Yahi, N.; Chahinian, H.; Fantini, J. Infection-enhancing anti-SARS-CoV-2 antibodies recognize both the original Wuhan/D614G strain and Delta variants. A potential risk for mass vaccination? J Infect 2021, 83(5), 607-635. doi: 10.1016/j.jinf.2021.08.010.
  10. Kampf, G. The epidemiological relevance of the COVID-19-vaccinated population is increasing.Lancet Reg Health – Europe 2021, 11 , 100272. Doi: 10.1016/j.lanepe.2021.100272.
  11. Subramanian, S.V.; Kumar, A. Increases in COVID-19 are unrelated to levels of vaccination across 68 countries and 2947 counties in the United States. Eur J Epidemiol 2021, 1-4. doi: 10.1007/s10654-021-00808-7.
  12. Shitrit, P.; Zuckerman, N.S.; Mor, O.; Gottesman, B.-S.; Chowers, M. Nosocomial outbreak caused by the SARS-CoV-2 Delta variant in a highly vaccinated population, Israel, July 2021. Euro Surveill 2021, 26(39),2100822. doi: 10.2807/1560-7917.ES.2021.26.39.2100822.
  13. Brosh-Nissimov, T.; Orenbuch-Harroch, E.; Chowers, M.; Elbaz, M.; Nesher, L.; Stein, M.; Maor, Y.; Cohen, R.; Hussein, K.; Weinberger, M.; et al. BNT162b2 vaccine breakthrough: clinical characteristics of 152 fully vaccinated hospitalized COVID-19 patients in Israel. Clin Microbiol Infect 2021, 27(11), 1652-1657. doi: 10.1016/j.cmi.2021.06.036.
  14. Lindenmann, J. From interference to interferon: a brief historical introduction. Philos Trans R Soc Lond B, Biol Sci 1982, 299(1094), 3-6.
  15. Wang, H.; Hu, H.; Zhang, K. Overview of interferon: characteristics, signaling and anti-cancer effect. Arch Biotechnol Biomed 2017, 1, 1-16.
  16. Passegu, E.; Ernst, P.A. IFN-alpha wakes up sleeping hematopoietic stem cells. Nat Med 2009, 15(6), 612613. doi: 10.1038/nm0609-612.
  17. Kaur, A.; Fang, C. M. (2020). An overview of the human immune system and the role of interferon regulatory factors (IRFs). Prog Microbes Mol Biol 2020, 3(1). doi: 10.36877/pmmb.a0000129.
  18. Alsamman, K.; El-Masry, O.S. (2018). Interferon regulatory factor 1 inactivation in human cancer.Biosci Reports 2018, 38(3), BSR20171672. doi: 10.1042/BSR20171672.
  19. Huang, F.T.; Sun, J.; Zhang, L.; He, X.; Zhu, Y.H.; Dong, H.J.; Wang, H.-Y.; Zhu, L.; Zou, Huang, J.-W.; et al. Role of SIRT1 in hematologic malignancies. J Zhejiang Univ-Sci B 2019, 20(5), 391-398. doi: 10.1631/jzus.B1900148.
  20. Zitvogel, L.; Galluzzi, L.; Kepp, O.; Smyth, M.J.; Kroemer, G. Type I interferons in anticancer immunity. Nat Rev Immunol 2015, 15(7), 405-414. doi: 10.1038/nri3845.
  21. Jego, G.A.; Palucka, K.; Blanck, J.-P.; Chalouni, C.; Pascual, V.; Banchereau, J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003, 19 , 225234. doi: 10.1016/s1074-7613(03)00208-5.
  22. De Andrea, M.; Ravera, R.; Gioia, D.; Gariglio, M.; Landolfo, S. The interferon system: an overview. Eur J Paedia Neurol 2002, 6 , A41-A46. doi: 10.1053/ejpn.2002.0573
  23. Feng, B.; Eknoyan, G.; Guo, Z.S.; Jadoul, M.; Rao, H.Y.; Zhang, W.; Wei, L. Effect of interferon- alpha-based antiviral therapy on hepatitis C virus-associated glomerulonephritis: a meta-analysis. Nephrol Dial Transplant 2012, 27(2 ), 640-646.
  24. Delannoy, A.S.; Hober, D.; Bouzidi, A.; Wattre, P. Role of interferon alpha (IFN‐α) and interferon gamma (IFN‐γ) in the control of the infection of monocyte‐like cells with Human Cytomegalovirus (HCMV). Microbiol Immunol 1999, 43(12), 1087-1096.
  25. Sakai, Y., Ohga, S., Tonegawa, Y., Takada, H., Nakao, F., Nakayama, H., Aoki, T.; Yamamori, S.; Hara, T. (1998). Interferon-alpha therapy for chronic active Epstein-Barr virus infection: potential effect on the development of T- lymphoproliferative disease. J Pediatr Hematol Oncol 1998, 20(4), 342-346.
  26. Ruther, U., Nunnensiek, C., Muller, H. A., Bader, H., May, U., Jipp, P. Interferon alpha (IFN alpha 2a) therapy for herpes virus-associated inflammatory bowel disease (ulcerative colitis and Crohn’s disease). Hepato-gastroenterology 1998, 45(21), 691-699. doi: 10.1111/j.1348-0421.1999.tb03365.x.
  27. Musella, M.; Manic, G.; de Maria, R.; Vitale, I.; Sistigue, A. Type-I-interferons in infection and cancer: Unanticipated dynamics with therapeutic implications.Oncoimmunology 2017, 6(5), e1314424. doi: 10.1080/2162402X.2017.1314424.
  28. Matsuoka, M.; Tani, K.; Asano, S. Interferon-alpha-induced G1 phase arrest through upregulated expression of CDK inhibitors, p19Ink4D and p21Cip1 in mouse macrophages. Oncogene 1998, 16 , 2075-86. doi: 10.1038/sj.onc.1201745.
  29. Heise, R.; Amann, P.M.; Ensslen, S.; Marquardt, Y.; Czaja, K.; Joussen, S.; Beer, D.; Abele, R.; Plewnia, G.; Tampé, R.; et al. Interferon alpha signaling and its relevance for the upregulatory effect of transporter proteins associated with antigen processing (TAP) in patients with malignant melanoma. PLoS One 2016, 11(1), e0146325. doi: 10.1371/journal.pone.0146325.
  30. Sundstedt, A.; Celander, M.; Hedlund, G. (2008). Combining tumor-targeted superantigens with interferon-alpha results in synergistic anti-tumor effects. Int Immunopharmacol 2008, 8(3), 442- 452. doi: 10.1016/j.intimp.2007.11.006.
  31. Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-stimulated genes: a complex web of host defenses. Anni Rev Immunol 2014, 32 , 513-545.
  32. Asmana Ningrum, R. Human interferon α-2b: a therapeutic protein for cancer treatment.Scientifica (Cairo) 2014, 2014 , 970315. doi: 10.1155/2014/970315.
  33. Takaoka, A.; Tamura, T.; Taniguchi, T. Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Science 2008, 99(3), 467-478. doi: 10.1111/j.1349-7006.2007.00720.
  34. Tsuno, T.; Mejido, J.; Zhao, T.; Morrow, A.; Zoon, K.C. IRF9 is a key factor for eliciting the antiproliferative activity of IFN-α. J Immunother 2009, 32(8), 803. doi: 10.1097/CJI.0b013e3181ad4092.
  35. Honda, K.; Takaoka, A.; Taniguchi, T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors.Immunity 2006, 25(3 ), 349-360. doi: 10.1016/j.immuni.2006.08.009.
  36. Sayers, T.J. Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother 2011 , 60(8), 1173-1180. doi: 10.1007/s00262-011-1008-4.
  37. Testa, U. TRAIL/TRAIL‐R in hematologic malignancies. J Cell Biochem 2010, 110(1), 21-34. doi: 10.1002/jcb.22549
  38. Finnberg, N.K.; El-Deiry, W.S. TRAIL death receptors as tumor suppressors and drug targets.Cell Cycle 2008, 7(11) , 1525-1528. doi: 10.4161/cc.7.11.5975
  39. Dunn, G.P.; Bruce, A.T.; Sheehan, K.C.F.; Shankaran, V.; Uppaluri, R.; Bui, J.D.; Diamond, M.S.; Koebel, C.M.; Arthur, C.; White, J.M. et al. A critical function for type I interferons in cancer immunoediting.Nat Immunol 2005, 6(7), 722-9. doi: 10.1038/ni1213.
  40. Bidwell, B.N.; Slaney, C.Y.; Withana, N.P.; Forster, S.; Cao, Y.; Loi, S.; Andrews, D.; Mikeska, T.; Mangan, N.E.; Samarajiwa, S.A.; et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape.Nature Med 2012, 18(8), 1224-1231. doi: 10.1038/nm.2830.
  41. Li, Y.; Huang, R.; Wang, L.; Hao, J.; Zhang, Q.,; Ling, R.; Yun, J. micro RNA‐762 promotes breast cancer cell proliferation and invasion by targeting IRF7 expression. Cell Prolif 201548(6), 643-649. doi: 10.1111/cpr.12223.
  42. Zhao, Y.; Chen, W.; Zhu, W.; Meng, H.; Chen, J.; Zhang, J. Overexpression of interferon regulatory factor 7 (IRF7) reduces bone metastasis of prostate cancer cells in mice. Oncol Res 2017, 25(4), 511. doi: 10.3727/096504016X14756226781802.
  43. Solis, M.; Goubau, D.; Romieu-Mourez, R.; Genin, P.; Civas, A.; Hiscott, J. Distinct functions of IRF-3 and IRF-7 in IFN-alpha gene regulation and control of anti-tumor activity in primary macrophages. Biochem Pharmacol 2006, 72(11), 1469-1476. doi: 10.1016/j.bcp.2006.06.002.
  44. Erb, H.H.; Langlechner, R.V.; Moser, P.L; Handle, F.; Casneuf, T.; Verstraeten, K.; Schlick, B.; Schäfer, G.; Hall, B.; Sasser, K.; Culig, Z.; Santer, F.R.; et al. IL6 sensitizes prostate cancer to the antiproliferative effect of IFNα2 through IRF9. Endocrine-related Cancer 2013, 20(5), 677. doi: 10.1530/ERC-13-0222.
  45. Tian , W.-L.; Guo, R.; Wang, F.; Jiang, Z.-X.; Tang, P.; Huang, Y.-M.; Sun, L. The IRF9-SIRT1-P53 axis is involved in the growth of human acute myeloid leukemia. Exper Cell Res 2018, 365 , 185-193. doi: 10.1016/j.yexcr.2018.02.036.
  46. Mittal, M.K.; Chaudhuri, G. Abstracts: First AACR International Conference on Frontiers in Basic Cancer Research–Oct 8–11, 2009 . Boston, MA. 2009. doi: 10.1158/0008-5472.FBCR09-A16. https://cancerres.aacrjournals.org/content/69/23_Supplement/A16.short
  47. Buckley, N.E.; Hosey, A.M.; Gorski, J.J.; Purcell, J.W.; Mulligan, J.M.; Harkin, D.P.; Mullan, P.B. BRCA1 regulates IFN-γ signaling through a mechanism involving the type I IFNs. Mol Cancer Res 2007, 5(3),261-270. doi: 10.1158/1541-7786.MCR-06-0250.
  48. Mamoor, S. Transcriptional induction of IRF7 and IRF9 in coronavirus infections. Preprint Aug 2020.  doi: 10.31219/osf.io/7ad45.
  49. Rasmussen, S.A.; Abul-Husn, N.S.; Casanova, J.L; Daly, M.J.; Rehm, H.L; Murray, M.F. The intersection of genetics and COVID-19 in 2021: preview of the 2021 Rodney Howell Symposium. Genetics in Medicine 2021, 23(6), 1001-1003. doi: 10.1038/s41436-021-01113-0.
  50. Mishra, R.; Banerjea, A.C. SARS-CoV-2 Spike targets USP33-IRF9 axis via exosomal miR-148a to activate human microglia. Front Immunol 2021, 12 , 656700. doi: 10.3389/fimmu.2021.656700.
  51. National Cancer Institute.2021. BRCA Gene Mutations: Cancer Risk and Genetic Testing Fact Sheet. [online] Available at: https://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet#what-other-cancers-are-linked-to-harmful-variants-in-brca1-and-brca2. [Accessed 27 November 2021].
  52. Liu, J.; Wang, J.; Xu, J.; Xia, H.; Wang, Y.; Zhang, C.; Chen, W.; Zhang, H.; Liu, Q.; Zhu, R.; et al. Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discov 2021, 7(1), 99. doi: 10.1038/s41421-021-00329-3.
  53. Cancer risk and BRCA1 gene mutations. 2021. Available at: https://www.facingourrisk.org/info/hereditary-cancer-and-genetic-testing/hereditary-cancer-genes-and-risk/genes-by-name/brca1/cancer-risk [Accessed 27 November 2021].
  54. Zhang, W.; Luo, J.; Yang, F.; Wang, Y.; Yin, Y.; Strom, A.; Gustafsson, J.Å.;, Guan, X. BRCA1 inhibits AR-mediated proliferation of breast cancer cells through the activation of SIRT1. Sci Reports 2016, 6 , 22034. doi: 10.1038/srep22034.
  55. Suberbielle, E.; Djukic, B.; Evans, M.; Kim, D.H.; Taneja, P.; Wang, X.; Finucane, M.; Knox, J.; Ho, K.; Devidze, N.; et al. DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice. Nat Comm 2015, 6, 8897. doi: 10.1038/ncomms9897.
  56. Goldman, S.; Bron, D.; Tousseyn, T.; Vierasu, I.; Dewispelaere, L.; Heimann, P.; Cogan, E.; Goldman, M. Rapid progression of angioimmunoblastic T cell lymphoma following BNT162b2 mRNA vaccine booster shot: A case report. Front Med 2021, 8, 798095. doi: 10.3389/fmed.2021.798095.
  57. MacFarlane, M.; Kohlhaas, S.L.; Sutcliffe, M.J.; Dyer, M.J.; Cohen, G.M. TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies. Cancer Res 2005, 65(24 ), 11265-11270. doi: 10.1158/0008-5472.CAN-05-2801.
  58. Kaczmarek, R.; El Ekiaby, M.; Hart, D. P.; Hermans, C.; Makris, M.; Noone, D.; O’Mahony, B.; Page, D.; Peyvandi, F.; Pipe, S.W.; et al. Vaccination against COVID‐19: Rationale, modalities and precautions for patients with haemophilia and other inherited bleeding disorders. Haemophilia 2021, 7(4), 515-518. doi: 10.1111/hae.14271.
  59. Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA recognition by toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity 200523 , 165175. doi: 10.1016/j.immuni.2005.06.008.
  60. de Beuckelaer, A.; Pollard, C.; Van Lint, S.; Roose, K.; Van Hoecke,L.V.; Naessens, T.; Udhayakumar, V.K.; Smet, M.; Sanders, N.; Lienenklaus, S.; et al. Type I interferons interfere with the capacity of mRNA lipoplex vaccines to elicit cytolytic T cell responses. Mol Ther 2016, 24(11 ), 2012-2020. doi: 10.1038/mt.2016.161.
  61. Andries, O.; Mc Cafferty, S.; De Smedt, S.C.; Weiss, R.; Sanders, N.N.; Kitada, T. (2015). N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release 2015, 217 , 337-344. doi: 10.1016/j.jconrel.2015.08.051.
  62. Park, J.W.; Lagniton, P.; Liu, Y.; Xu, R.H. (2021). mRNA vaccines for COVID-19: what, why and how.Int J Biol Sci 2021, 17(6), 1446–1460. doi: 10.7150/ijbs.59233
  63. Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 2021, 6, 1078-1094.. doi: 10.1038/s41578-021-00358-0.
  64. Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367(6483 ), 1260-1263. doi: 10.1126/science.abb2507.
  65. Kyriakopoulos, A.M.;McCullough, P.A. Synthetic mRNAs; Their Analogue Caps and Contribution to Disease.Diseases 2021, 9, 57. doi: 10.3390/diseases9030057.
  66. Orlandini von Niessen, A.G.; Poleganov, M.A.; Rechner, C.; Plaschke, A.; Kranz, L.M.; Fesser, S.; Diken, M.; Löwer, M.; Vallazza, B.; Beissert, T.; et al. Improving mRNA-based therapeutic gene delivery by expression-augmenting 3’ UTRs identified by cellular library screening. Mol Ther 2019, 27(4), 824-836. doi: 10.1016/j.ymthe.2018.12.011.
  67. Xia, X. Detailed dissection and critical evaluation of the Pfizer/BioNTech and Moderna mRNA vaccines.Vaccines 2021, 9, 734. doi: 10.3390/vaccines9070734.
  68. Williams, G.D.; Gokhale, N.S.; Snider, D.L.; Horner, S.M. The mRNA cap 2’-O-methyltransferase CMTR1 regulates the expression of certain interferon-stimulated genes.mSphere 20205(3), e00202-20. doi: 10.1128/mSphere.00202-20.
  69. Leung, D.W.; Amarasinghe, G.K. When your cap matters: structural insights into self vs non-self recognition of 5’ RNA by immunomodulatory host proteins. Curr Opin Struct Biol 2016, 36, 133-141. doi: 10.1016/j.sbi.2016.02.001.
  70. Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 2021, 20, 817–838. doi: 10.1038/s41573-021-00283-5.
  71. McKernan, K.; Kyriakopoulos, A.M.; McCullough, P.A. Differences in vaccine and SARS-CoV-2 replication derived mRNA: Implications for cell biology and future disease. OSF Preprints November 26, 2021 . doi: 10.31219/osf.io/bcsa6.
  72. Mauro , V.P.; Chappell, S.A. A critical analysis of codon optimization in human therapeutics.Trends Mol Med 2014, 20(11 ), 604-13. doi: 10.1016/j.molmed.2014.09.003.
  73. Shabalina, S.A.; Spiridonov, N.A.; Kashina, A. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res 2013, 41(4), 2073-94. doi: 10.1093/nar/gks1205.
  74. Zhou, M.; Guo, J.; Cha, J.; Chae, M.; Chen, S.; Barral, J.M.; Sachs, M.S.; Liu, Y. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 2013, 495(7439), 111-5. doi: 10.1038/nature11833.
  75. Agashe, D.; Martinez-Gomez, N.C.; Drummond, D.A.;Marx, C.J. Good codons, bad transcript: large reductions in gene expression and fitness arising from synonymous mutations in a key enzyme. Mol Biol Evol 2013, 30, 549-560. doi: 10.1093/molbev/mss273
  76. McCarthy, C.; Carrea, A.; Diambra, L.Bicodon bias can determine the role of synonymous SNPs in human diseases. BMC Genomics 2017, 18(1), 227. doi: 10.1186/s12864-017-3609-6.
  77. Kudla, G.; Lipinski, L.; Caffin, F.; Helwak, A.; Zylicz, M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol 2006, 4(6), e180. doi: 10.1371/journal.pbio.0040180.
  78. Otsuka, H.; Fukao , A.; Funakami , Y.; Duncan, K.E.; Fujiwara, T. Emerging evidence of translational control by AU-rich element-binding proteins. Front. Genet 2019, 10 , 332. doi: 10.3389/fgene.2019.00332.g.
  79. Wang, E.; Thombre, R.; Shah, Y.; Latanich, R.; Wang, J. G-Quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Research 2021, 49(9), 4816-4830. doi: 10.1093/nar/gkab164.
  80. Olsthoorn, R.C. G-quadruplexes within prion mRNA: the missing link in prion disease? Nucleic Acids Res 2014 , 42 , 9327-9333. doi: 10.1093/nar/gku559.
  81. Seneff, S.; Nigh, G. Worse Than the Disease? Reviewing Some Possible Unintended Consequences of the mRNA Vaccines Against COVID-19. IJVTPR 2021, 2(1), 38-79.
  82. Babendure, J.R.; Babendure, J.L.; Ding, J.H.; Tsien, R.Y. Control of mammalian translation by mRNA structure near caps. RNA 2006, 12(5), 851-861. doi:10.1261/rna.2309906
  83. Herdy, B.; Mayer, C.; Varshney, D.; Marsico, G.; Murat, P.; Taylor, C.; D’Santos, C.; Tannahill , D.; Balasubramanian, S. Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts. Nucleic Acids Res 2018 ,46(21), 11592-11604. doi: 10.1093/nar/gky861.
  84. Fay, M.M.; Lyons , S.M.; Ivanov, P. RNA G-quadruplexes in biology: principles and molecular mechanisms.J Mol Biol 2017, 429(14), 2127–2147. doi: 10.1016/j.jmb.2017.05.017.
  85. Zhang, R.; Xiao, K.; Gu, Y.; Liu, H.; Sun, X. Whole genome identification of potential G-quadruplexes and analysis of the G-quadruplex binding domain for SARS-CoV-2. Front Genet 2020, 11 , 587829. doi: 10.3389/fgene.2020.587829.
  86. Schmidt, N.; Lareau, C.A.; Keshishian, H.; Ganskih, S.; Schneider, C.; Hennig, T.; Melanson, R.; Werner, S.; Wei, Y.; Zimmer, M.; et al. The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat Microbiol 2021, 6(3), 339-353. doi: 10.1038/s41564-020-00846-z.
  87. Rouleau, S.; Glouzon, J.S.; Brumwell, A.; Bisaillon, M.; Perreault, J.P. 3’ UTR G-quadruplexes regulate miRNA binding. RNA , 2017, 23(8), 1172-1179. doi:10.1261/rna.060962.117.
  88. Bezzi, G.; Piga, E.J.; Binolfi, A.; Armas, P. CNBP binds and unfolds in vitro G-quadruplexes formed in the SARS-CoV-2 positive and negative genome strands. Int J Mol Sci 2021, 22(5), 2614. doi: 10.3390/ijms22052614.
  89. Sola, I.; Almazán, F.; Zúñiga, S.; Enjuanes , L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu Rev Virol 2015, 2(1),265-88. doi: 10.1146/annurev-virology-100114-055218.
  90. Jaubert , C.; Bedrat , A.; Bartolucci, L.; Di Primo, C.; Ventura, M.; Mergny, J.-L.; Amrane, S.; Andreola, M.-L RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand. Sci Rep 2018, 8, 8120. https://doi.org/10.1038/s41598-018-26582-3.
  91. Spiegel, J.; Adhikari, S.;Balasubramanian, S. The structure and function of DNA G-quadruplexes. Trends Chem 2020, 2(2),123-136. doi: 10.1016/j.trechm.2019.07.002.
  92. Rouleau, S.G.; Garant, J.-M.; Balduc, F.; Bisaillon, M.; Perreault, J.-P. G-Quadruplexes influence pri-microRNA processing. RNA Biology 2018, 15(2), 198-206. doi: 10.1080/15476286.2017.1405211.
  93. Chan, K.L.; Peng, B.; Umar, M.I.; Chan, C.Y.; Sahakyan, A.B.; Le, M.T.N.; Kwok, C.K. Structural analysis reveals the formation and role of RNA G-quadruplex structures in human mature microRNAs. Chem Commun (Camb) 2018, 54(77), 10878-10881. doi: 10.1039/c8cc04635b.
  94. Al-Khalaf, H.H.; Aboussekhra, A. p16 controls p53 protein expression through miR-dependent destabilization of MDM2. Mol Cancer Res 2018, 16(8), 1299-1308. doi: 10.1158/1541-7786.MCR-18-0017.
  95. Weldon, C.; Dacanay, J.G.; Gokhale, V.; Boddupally, P.V.L.; Behm-Ansmant, I.; Burley, G.A.; Branlant, C.; Hurley, L.M.; Dominguez, C.; Eperon, I.C. Specific G-quadruplex ligands modulate the alternative splicing of Bcl-X.Nucleic Acids Res 2018, 46(2), 886-896. doi: 10.1093/nar/gkx1122.
  96. Small, E.M.; Olson, E.N. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011, 469(7330), 336-342. doi:10.1038/nature09783.
  97. Abe, M.; Bonini, N.M. MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol 2013, 23(1), 30-6. doi: 10.1016/j.tcb.2012.08.013.
  98. Farazi, T.A.; Hoell, J.I.; Morozov, P.; Tuschl, T. MicroRNAs in human cancer. Adv Exp Med Biol 2013, 774, 1-20. doi: 10.1007/978-94-007-5590-1_1.
  99. Ozaki, T.; Nakagawara, A. Role of p53 in Cell Death and Human Cancers. Cancers (Basel) 2011 , 3(1), 994-1013. doi:10.3390/cancers3010994.
  100. Janeway, C.A., Jr.; Medzhitov, R. Innate immune recognition. Annu Rev Immunol 2002, 20, 197-216. doi: 10.1146/annurev.immunol.20.083001.084359.
  101. Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369(6504), 718-724. doi: 10.1016/j.cell.2020.04.026.
  102. Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell2020, 181(5), 1036-1045 e9.
  103. Hoagland, D.A.; Møller, R.; Uhl, S.A.; Oishi, K.; Frere, J.; Golynker, T.; Horiuchi, S.; Panis, M.; Blanco-Melo, D.; Sachs, D.; et al. Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity 2021, 54, 557570. doi: 10.1016/j.immuni.2021.01.017.
  104. Wang, N.; Zhan, Y.; Zhu, L.; Hou, Z.; Liu, F.; Song, P.; Qiu, F.; Wang, X.; Zou, X.; Wan, D.; et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe 2020, 28(3),455-464.e2. doi: 10.1016/j.chom.2020.07.005.
  105. van der Wijst, M.G.P.; Vazquez, S.E.; Hartoularos, G.C.; Bastard, P.; Grant, T.; Bueno, R>; Lee, D.S.; Greenland, J.R.; Sun, Y.; Perez, R.; et al. Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Sci Transl Med 2021, 13(612), eabh2624. doi: 10.1126/scitranslmed.abh2624.
  106. Troya, J.; Bastard, P.; Planas-Serra, L.; Ryan, P.; Ruiz, M.; de Carranza, M.; Torres, J.; Martnez, A.; Abel, L.; Casanova, J.-L.; Pujol, A. Neutralizing autoantibodies to type I IFNs in >10% of patients with severe COVID-19 pneumonia hospitalized in Madrid, Spain. J Clin Immunol 2021, 41, 914922. doi: 10.1007/s10875-021-01036-0.
  107. Stertz, S.; Hale, B.G. Interferon system deficiencies exacerbating severe pandemic virus infections. Trends Microbiol 2021, 29(11), 973-982. doi: 10.1016/j.tim.2021.03.001.
  108. Yang, C.; Hu, Y.; Zhou, B.; Bao, Y.; Li, Z.; Gong, C.; Yang, H.; Wang, S.; Xiao, Y. The role of m6A modification in physiology and disease. Cell Death Dis 2020, 11, 960. https://doi.org/10.1038/s41419-020-03143-z
  109. Knuckles, P.; Bühler , M. Adenosine methylation as a molecular imprint defining the fate of RNA.FEBS Lett 2018, 592(17), 2845-2859. doi:10.1002/1873-3468.13107.
  110. Koo, J.W.; Russo, S.J.; Ferguson, D.; Nestler, E.J.; Duman, R.S. Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A 2010, 107(6), 2669-2674. doi:10.1073/pnas.0910658107.
  111. Meyer, K.D.; Patil, D.P.; Zhou, J.; Zinoviev, A.; Skabkin, M.A.; Elemento, O.; Pestova, T.V.; Qian, S.-B.; Jaffrey, S.R. 5’ UTR m(6)A promotes cap-independent translation. Cell 2015, 163(4), 999-1010. doi: 10.1016/j.cell.2015.10.012.
  112. Shatsky, I.N.; Terenin, I.M.; Smirnova, V.V.; Andreev, D.E.. Cap-independent translation: What’s in a name? Trends Biochem Sci 2018, 43(11 ), 882-895. doi: 10.1016/j.tibs.2018.04.011.
  113. Svitkin, U.V.; Herdy, B.; Costa-Mattioli, M.; Gingras, A.-C.; Raught, B.; Sonenberg, N. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol 2005, 25(23), 10556-65. doi: 10.1128/MCB.25.23.10556-10565.2005.
  114. Han, S.H.; Choe, J. Diverse molecular functions of m6A mRNA modification in cancer. Exp Mol Med 2020, 52(5), 738-749. doi:10.1038/s12276-020-0432-y.
  115. Yoshikawa, F.S.; Teixeira, F.M.; Sato, M.N.; Oliveira, L.M.Delivery of microRNAs by extracellular vesicles in viral infections: Could the news be packaged? Cells 2019, 8((6) , 611. doi: 10.3390/cells8060611.
  116. Ratajczak, M.Z.; Ratajczak, J. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin Trans Med 2016, 5 , 7. doi: 10.1186/s40169-016-0087-4.
  117. Chahar, H.S.; Bao, X.; Casola, A. Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses 2015, 7 , 3204-3225; doi: 10.3390/v7062770.
  118. Bansal, S.; Perincheri, S.; Fleming, T.; Poulson, C.; Tiffany, B.; Bremner, R.M.; Mohanakumar, T.. Cutting edge: circulating exosomes with COVID spike protein are induced by BNT162b2 (PfizerBioN-Tech) vaccination prior to development of antibodies: A novel mechanism for immune activation by mRNA vaccines. J Immunol 2021, 207(10), 2405-2410. doi: 10.4049/jimmunol.2100637.
  119. Decker , C.J.; Parker, R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 2012, 4(9), a012286. doi:10.1101/cshperspect.a012286.
  120. Kothandan, V.K.; Kothandan, S.; Kim, D.H.; Byun, Y.; Lee, Y.-K.; Park, I.-K.; Hwang, S.R. Crosstalk between stress granules, exosomes, tumour antigens, and immune cells: Significance for cancer immunity. Vaccines 2020, 8(2), 172, doi:10.3390/vaccines8020172.
  121. Borbolis, F.; Syntichaki, P. Cytoplasmic mRNA turnover and ageing. Mech Ageing Dev 2015, 152 , 32-42. doi:10.1016/j.mad.2015.09.006.
  122. Girardi, T.; De Keersmaecker, K. T-ALL: ALL a matter of translation?. Haematologica 2015, 100(3), 293-295. doi: 10.3324/haematol.2014.118562.
  123. Jang, S.K.; Pestova, T.V.; Hellen, C.U.T.; Witherell, G.W.; Wimmer, E. Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 1990, 44 , 292-309. doi: 10.1159/000468766.
  124. Zoll, J.; Erkens Hulshof, S.; Lanke, K.; Verduyn Lunel. F.; Melchers, W.J.; Schoondermark-van de Ven, E.; Roivainen, M.; Galama, J.M.; van Kuppeveld, F.J. Saffold virus, a human Theiler’s-like cardiovirus, is ubiquitous and causes infection early in life. PLoS Pathog 2009, 5(5), e1000416. doi: 10.1371/journal.ppat.1000416.
  125. Rusk, N. When microRNAs activate translation. Nat Methods 2008, 5, 122–123. doi: 10.1038/nmeth0208-122a.
  126. De Paolis, V.; Lorefice, E.; Orecchini, E.; Carissimi, C.; Laudadio, I.; Fulci, V.. Epitranscriptomics: A new layer of microRNA regulation in cancer.Cancers (Basel). 2021, 13(13), 3372. doi:10.3390/cancers13133372.
  127. Yu, X.; Odenthal, M.; Fries, J.W.U. Exosomes as miRNA carriers: formation–function–future.Int J Mol Sci 2016, 17, 2028. doi: 10.3390/ijms17122028.
  128. Wei, H.; Chen, Q.; Lin, L.; Sha, C.; Li, T.; Liu, Y.; Yin, X.; Xu, Y.; Chen, L.; Gao, W.; Li, Y.; Zhu, X.. Regulation of exosome production and cargo sorting. Int J Biol Sci 2021, 17(1), 163–177. doi: 10.7150/ijbs.53671.
  129. de Gonzalo-Calvo, D.; Benítez, I.D.; Pinilla, L.; Carratalá, A.; Moncusí-Moix, A.; Gort-Paniello, C.; Molinero, M.; González, J.; Torres, G.; Bernal, M.; et al. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients. Transl Res 2021, 236 , 147-159. doi: 10.1016/j.trsl.2021.05.004.
  130. Bahl, K.; Senn, J.J.; Yuzhakov, O.; Bulychev, A.; Brito, L.A.; Hassett, K.J.; Laska M.E.; Smith, M.; Almarsson, Ö.; Thompson, J.; et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Molecular Therapy 2017, 25(6), 1316-1327. doi: 10.1016/j.ymthe.2017.03.035.
  131. Gould, F.D.H.; Lammers, A.R.; Mayer, C.J.; German, R.Z. Specific vagus nerve lesion have distinctive physiologic ,echanisms of dysphagia. Front Neurol 2019, 10 , 1301. doi: 10.3389/fneur.2019.01301.
  132. Erman, A.B.; Kejner, A.E.; Norman, B.S.; Hogikyan, D.; Feldman, E.L.. Disorders of cranial nerves IX and X. Semin Neurol 2009, 29(1), 8592. doi: 10.1055/s-0028-1124027.
  133. Shaw, G.; Morse. S.; Ararat, M.; Graham, F.L. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 2002, 16(8) , 869-71. doi: 10.1096/fj.01-0995fje.
  134. Kolumam, G.A.; Thomas, S.; Thompson, L.J.; Sprent, J.; Murali-Krishna, K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med 2005, 202(5), 637650. doi: 10.1084/jem.20050821.
  135. Liu, T.; Khanna, K.M.; Chen, X.; Fink, D.J.; Hendricks, R.L.. CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons.J Exp Med 2000, 191(9), 1459-66. doi: 10.1084/jem.191.9.1459.
  136. Katsikas Triantafyllidis, K.; Giannos, P.; Mian, I. T.; Kyrtsonis, G.; Kechagias, K.S.). Varicella zoster virus reactivation following COVID-19 vaccination: a systematic review of case reports. Vaccines 2021, 9(9),1013. doi: 10.3390/vaccines9091013.
  137. Fathy, R.A.; McMahon, D.E.; Lee, C.; Chamberlin, G.C.; Rosenbach, M.; Lipoff, J.B.; Tyagi, A.; Desai, S.R.; French, L.E.; Lim. H.W.; et al. Varicella-zoster and herpes simplex virus reactivation post-COVID-19 vaccination: a review of 40 cases in an International Dermatology Registry. JEADV 2022, 36(1), e6-e9. doi: 10.1111/jdv.17646.
  138. Psichogiou, M.; Samarkos, M.; Mikos, N.; Hatzakis, A. Reactivation of Varicella zoster virus after vaccination for SARS-CoV-2. Vaccines 2021, 9,572. doi: 10.3390/vaccines9060572.
  139. Iwanaga, J.; Fukuoka, H.; Fukuoka, N.; Yutori, H.; Ibaragi, S.; Tubbs, R.S.A narrative review and clinical anatomy of Herpes zoster infection following COVID‐19 vaccination. Clin Anat 2021, 35(1), 45-51. doi: 10.1002/ca.23790.
  140. Lladó, I.; Fernández-Bernáldez, A.; Rodríguez-Jiménez, P. Varicella zoster virus reactivation and mRNA vaccines as a trigger. JAAD Case Reports 2021, 15, 62-63. doi: 10.1016/j.jdcr.2021.07.011.
  141. Verweij, M.C.; Wellish, M.; Whitmer, T.; Malouli, D.; Lapel, M.; Jonjić, S.; Haas, J.G.; DeFilippis, V.R.; Mahalingam, R.; Früh, K. Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through multiple mechanismsPLoS Pathog 2015, 11(5), e1004901. doi: 10.1371/journal.ppat.1004901.
  142. Lensen, R.; Netea, M.G.; Rosendaal, F.R. Hepatitis C virus reactivation following COVID-19 vaccination – A case report. Int Med Case Rep J  2021 , 14, 573-575. doi: 10.2147/IMCRJ.S328482.
  143. Jiang , H.; Mei , Y.-F. SARS-CoV-2 spike impairs DNA damage repair and inhibits V(D)J recombination in vitro. Viruses 2021, 13, 2056. doi: 10.3390/v13102056.
  144. Kakarougkas, A.; Ismail, A.; Klement, K.; Goodarzi, A.A.; Conrad, S.; Freire, R.; Shibata, A.; Lobrich, M.; Jeggo, P.A. Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Res 2013, 41(21),9719-31. doi: 10.1093/nar/gkt729.
  145. Choi, H.S.; Lee, H.M.; Jang, Y.-J.; Kim, C.-H.; Ryua, C.J. Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the self-renewal and pluripotency of human embryonic stem cells via the control of the G1/S transition. Stem Cells 2013, 31 , 2647-2658. doi: 10.1002/stem.1366.
  146. Zhang, J.; Powell, S.N. The role of the BRCA1 tumor suppressor in DNA double-strand break repair.Mol Cancer Res 2005, 3(10), 531-9. doi: 10.1158/1541-7786.MCR-05-0192.
  147. Panier, S.; Boulton, S.J. Double-strand break repair: 53BP1 comes into focus. Nature Reviews 2014, 15, 9. doi: Ihttps://doi.org/10.1038/nrm3719.
  148. Choi, Y.E.; Pan, Y.; Park, E.; Konstantinopoulos, P.; De, S.; D’Andrea, A.; Chowdhury, D. MicroRNAs downregulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability. eLife 2014, 3 , e02445. doi: 10.7554/eLife.02445.
  149. Perricone, C.; Ceccarelli, F.; Nesher, G.; Borella, E.; Odeh, Q.; Conti, F.; Shoenfeld, Y.; Valesini, G. Immune thrombocytopenic purpura (ITP) associated with vaccinations: a review of reported cases. Immunol Res 2014, 60, 226-35. 10.1007/s12026-014-8597-x
  150. Kelton , J.G.; Arnold, D.M.; Nazy, I. Lessons from vaccine-induced immune thrombotic thrombocytopenia. Nat Rev Immunol 2021, 21(12),753-755. doi: 10.1038/s41577-021-00642-8.
  151. Lee, E.-J.; Cines, D.B.; Gernsheimer, T.; Kessler, C.; Michel, M.; Tarantino, M.D.; Semple, J.W.; Arnold, D.M.; Godeau, B.; Lambert, M.P.; Bussel, J.B. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination.Am J Hematol 2021, 96(5), 534-537. https://doi.org/10.1002/a jh.26132.
  152. Akiyama, H.; Kakiuchi, S.; Rikitake, J.; Matsuba, H.; Sekinada, D.; Kozuki, Y.; Iwata, N.. Immune thrombocytopenia associated with Pfizer-BioNTech’s BNT162b2 mRNA COVID-19 vaccine. IDCases 2021, 25, e01245. doi: 10.1016/j.idcr.2021.e01245.
  153. Zakaria, Z.; Sapiai, N.A.; Izaini Ghani, A.R. Cerebral venous sinus thrombosis 2 weeks after the first dose of mRNA SARS‐CoV‐2 vaccine. Acta Neurochir (Wien) 2021, 163(8), 2359-2362. doi: 10.1007/s00701-021-04860-w.
  154. Cines , D.B.; Bussel, J.B. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med 2021, 384 , 2254-2256. doi: 10.1056/NEJMe2106315.
  155. Wisnewski, A.V.; Campillo Luna, J.; Redlich, C.A. Human IgG and IgA responses to COVID-19 mRNA vaccines. PLoS ONE 2021, 16(6), e0249499. doi: 10.1371/journal.pone.0249499.
  156. Danese, E.; Montagnana, M.; Salvagno, G.L.; Peserico, D.; Pighi, L.; De Nitto, S.; Henry B.M.; Porru, S.; Lippi, G. Comprehensive assessment of humoral response after Pfizer BNT162b2 mRNA Covid-19 vaccination: a three-case series.Clin Chem Lab Med 2021, 59(9),1585-1591. doi: 10.1515/cclm-2021-0339.
  157. Passariello, M.; Vetrei, C.; Amato, F.; De Lorenzo, C. Interactions of Spike-RBD of SARS-CoV-2 and Platelet Factor 4: New Insights in the Etiopathogenesis of Thrombosis.Int J Mol Sci 2021, 22 , 8562. doi: 10.3390/ijms22168562.
  158. Nevzorova, T.A.; Mordakhanova, E.R.; Daminova, A.G.; Ponomareva, A.A.; Andrianova, I.A.; Minh, G.L.; Rauova, L.; Litvinov, R.L.; Weisel, J.W. Platelet factor 4-containing immune complexes induce platelet activation followed by calpain-dependent platelet death. Cell Death Discov 2019, 5 , 106. doi: 10.1038/s41420-019-0188-0.
  159. McKenzie, S.E.; Taylor, S.M.; Malladi, P.; Yuhan, H.; Cassel, D.L.; Chien, P.; Schwartz, E.; Schreiber, A.D.; Surrey, S.; Reilly, M.P. The role of the human Fc receptor FcRIIA in the immune clearance of platelets: A transgenic mouse model. J Immunol 1999, 162 , 4311-4318. http://www.jimmunol.org/content/162/7/4311.
  160. Crow, A.R.; Lazarus, A.H. Role of Fcgamma receptors in the pathogenesis and treatment of idiopathic thrombocytopenic purpura. J Pediatr Hematol Oncol 2003, 25(Suppl 1), S14S18. doi: 10.1097/00043426-200312001-00004.
  161. Lu, Y.; Harada, M.; Kamijo, Y.; Nakajima, T.; Tanaka, N.; Sugiyama, E.; Kyogashima, M.; Gonzalez, F.J.; Aoyama, T. Peroxisome proliferator-activated receptor attenuates high-cholesterol diet-induced toxicity and pro-thrombotic effects in mice. Arch Toxicol 2019, 93(1), 149161. doi: 10.1007/s00204-018-2335-4.
  162. Kimura, T.; Nakajima, T.; Kamijo, Y.; Tanaka, N.; Wang, L.; Hara, A.; Sugiyama, E.; Tanaka, E.; Gonzalez, F.J.; Aoyama, T. Hepatic cerebroside sulfotransferase is induced by PPAR activation in mice. PPAR Research 2012, 2012 , 174932. doi: 10.1155/2012/174932
  163. Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. Int J Mol Sci 2020, 21 , 2061. doi: 10.3390/ijms21062061.
  164. Wang, X.-A.; Zhang, R.; Jiang, D.; Deng, W.; Zhang, S.; Deng, S.; Zhong, J.; Wang, T.; Zhu, L.-H.; Yang, L.; et al. Interferon regulatory factor 9 protects against hepatic insulin resistance and steatosis in male mice.Hepatology 2013, 58(2), 603-16. doi: 10.1002/hep.26368.
  165. Zin Tun, G.S.; Gleeson, D.; Al-Joudeh, A.; Dube, A. Immune-mediated hepatitis with the Moderna vaccine, no longer a coincidence but confirmed. J Hepatol 2021, Oct 5. doi: 10.1016/j.jhep.2021.09.031 [Epub ahead of print].
  166. Dumortiera, J. Liver injury after mRNA-based SARS-CoV-2 vaccination in a liver transplant recipient. Clin Res Hepatol Gastroenterol 2022, 46 , 101743. doi: 10.1016/j.clinre.2021.101743.
  167. Mann, R.; Sekhon, S.; Sekhon, S. Drug-induced liver injury after COVID-19 vaccine. Cureus 2021, 13(7), e16491. doi: 10.7759/cureus.16491.
  168. Créange, A. A role for interferon-beta in Guillain-Barré Syndrome? BioDrugs 2000, 14(1), 1-11. doi: 10.2165/00063030-200014010-00001.
  169. Ilyas, A.A.; Mithen, F.A.; Dalakas, M.C.; Wargo, M.; Chen, Z.W.; Bielory, L.; Cook, S.D. Antibodies to sulfated glycolipids in Guillain-Barr syndrome. J Neurol Sci 1991, 105(1), 108-17. doi: 10.1016/0022-510x(91)90126-r.
  170. Vanderlugt, C.L.; Miller, S.D. Epitope spreading in immune-mediated diseases: Implications for immunotherapy. Nat Rev Immunol 2002, 2 , 85-95. doi: 10.1038/nri724.
  171. Kuwahara, M.; Kusunoki, S. Mechanism and spectrum of anti-glycolipid antibody-mediated chronic inflammatory demyelinating polyneuropathy. Clin Exper Neuroimmunol 2018, 9(1), 65-74. doi: 10.1111/cen3.12452.
  172. Kalra, R.S.; Kandimalla, R. Engaging the spikes: heparan sulfate facilitates SARS-CoV-2 spike protein binding to ACE2 and potentiates viral infection. Signal Transduct Target Ther 2021, 6 , 39. doi: 10.1038/s41392-021-00470-1.
  173. Honke, K. Biosynthesis and biological function of sulfoglycolipids. Proc Jpn Acad Ser B Phys Biol Sci 2013, 89(4), 129138. doi: 10.2183/pjab.89.129.
  174. Qiu, S.; Palavicini, J.P.; Wang, J.; Gonzalez, N.S.; He, S.; Dustin, E.; Zou, C.; Ding, L.; Bhattacharjee, A.; Van Skike, C.E.; et al. Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimers disease-like neuroinflammation and cogni- tive impairment. Mol Neurodegen 2021, 16 , 64.. doi: 10.1186/s13024-021-00488-7.
  175. Marcus, J.; Honigbaum, S.; Shroff, S.; Honke, K.; Rosenbluth, J.; Dupree, J.L. Sulfatide is essential for the maintenance of CNS myelin and axon structure.Glia 2006, 53(4), 372-81. doi: 10.1002/glia.20292.
  176. Lanz. T.V.; Ding, Z.; Ho, P.P.; Luo, J.; Agrawal, A.N.; Srinagesh, H.; Axtell, R.; Zhang, H.; Platten, M.; Wyss-Coray, T.; Steinman, L. Angiotensin II sustains brain inflammation in mice via TGF-beta. J Clin Invest 2010, 120(8), 2782-94. doi: 10.1172/JCI41709.
  177. Letarov, A.V.; Babenko, V.V.; Kulikov, E.E.; Free SARS-CoV-2 spike protein S1 particles may play a role in the pathogenesis of COVID-19 infection.Biochemistry (Moscow) 2021, 86(3), 257-261. doi: 10.1134/S0006297921030032.
  178. Rhea, E.M.; Logsdon, A.F.; Hanse, K.M.; Williams, L.M.; Reed, M.J.; Baumann, K.K.; Holden, S.J.; Raber, J.; Banks, W.A.; Erickson, M.A. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nature Neurosci 2021, 24 , 368-378. doi: 10.1038/s41593-020-00771-8.
  179. Rodriguez-Perez, A.I.; Borrajo, A.; Rodriguez-Pallares, J.; Guerra, M.J.; Labandeira-Garcia, J.L. Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia 2015, 63 , 466e482. doi: 10.1002/glia.22765.
  180. Guo, X.; Namekata, K.; Kimura, A.; Harada, C.; Harada, T. The renin-angiotensin system regulates neurodegeneration in a mouse model of optic neuritis. Am J Pathol 2017, 187(12),2876-2885. doi: 10.1016/j.ajpath.2017.08.012.
  181. Maleki, A. COVID-19 recombinant mRNA vaccines and serious ocular inflammatory side effects: Real or coincidence? J Ophthalmic Vis Res 2021, 16(3) , 490501. doi: 10.18502/jovr.v16i3.9443.
  182. Barone, V.; Camilli, F.; Crisci, M.; Scandellari, C.; Barboni, P.; Lugaresia, A.. Inflammatory optic neuropathy following SARS-CoV-2 mRNA vaccine: Description of two cases. J Neurol Sci 2021, 429 , 118186. doi: 10.1016/j.jns.2021.118186
  183. Kaulen, L.D.; Doubrovinskaia, S.; Mooshage, C.; Jordan, B.; Purrucker, J.; Haubner, C.; Seliger, C.; Lorenz, H.-M.; Nagel, S.; Wildemann, B.; Bendszus, M.; Wick, W.; Schnenberger, S. Neurological autoimmune diseases following vaccinations against SARS-CoV-2: a case series. Eur J Neurol 2021, 00, 1-9. doi: 10.1111/ene.15147. [Online ahead of print]
  184. Khayat-Khoei, M.; Bhattacharyya, S.; Katz, J.; Harrison, D.; Tauhid, S.; Bruso, P.; Houtchens, M.K.; Edwards, K.R.; Bakshi, R.). COVID-19 mRNA vaccination leading to CNS inflammation: a case series. J Neurol 2021 Sep 4, 1-14, doi: 10.1007/s00415-021-10780-7. [Online ahead of print.]
  185. Jeong, M.; Ocwieja, K.E.; Han, D.; Wackym, P.A.; Zhang, Y.; Brown, A.; Moncada, C.; Vambutas, A.; Kanne, T.; Crain, R.; et al. Direct SARS-CoV-2 infection of the human inner ear may underlie COVID-19-associated audiovestibular dysfunction. Comm Med 2021, 1, 44. doi: 10.1038/s43856-021-00044-w.
  186. Uranaka, T.; Kashio, A.; Ueha, R.; Sato, T.; Bing, H.; Ying, G.; Kinoshita, M.; Kondo, K.; Yamasoba, T. Expression of ACE2, TMPRSS2, and furin in mouse ear tissue, and the implications for SARS-CoV-2 infection. Laryngoscope 2021, 131(6), E2013-E2017. doi: 10.1002/lary.29324.
  187. Rodrigues Figueiredo, R.; Aparecida Azevedo, A.; De Oliveira Penido, N. Positive association between tinnitus and arterial hypertension. Front Neurol 2016, 7 , 171. doi: 10.3389/fneur.2016.00171
  188. Sekiguchi, K.; Watanabe, N.; Miyazaki, N.; Ishizuchi, K.; Iba, C.; Tagashira, Y.; Uno, S.; Shibata, M.; Hasegawa, N.; Takemura, R.; et al. Incidence of headache after COVID-19 vaccination in patients with history of headache: A cross-sectional study. Cephalalgia 2021, 3331024211038654. doi: 10.1177/03331024211038654. [Online ahead of print.]
  189. Consoli, S.; Dono, F.; Evangelista, G.; D’Apolito, M.; Travaglini, D.; Onofrj, M.; Bonanni, L. Status migrainosus: A potential adverse reaction to Comirnaty (BNT162b2, BioNtech/Pfizer) COVID-19 vaccinea case report.Neurol Sci 2021 Nov 22, 1-4. doi: .10.1007/s10072-021-05741-x. [Online ahead of print]
  190. Huang, Y.; Cai, X.; Song, X.; Tang, H.; Huang, Y.; Xie, S.; Hu, Y. Steroids for preventing recurrence of acute severe migraine headaches: a meta-analysis.Eur J Neurol. 2013, 20(8), 1184-1190. doi: 10.1111/ene.12155.
  191. Lemberger, T.; Staels, B.; Saladin, R.; Desvergne, B.; Auwerx, J.; Wahli, W. Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids. J Biol Chem 1994, 269(40), 24527-30.
  192. Dodick, D.; Silberstein, S. Central sensitization theory of migraine: clinical implications.Headache 2006, 46(suppl 4), S18291. doi: 10.1111/j.1526-4610.2006.00602.x.
  193. Mungoven, T.J.; Meylakh, N.; Marciszewski, K.K.; Macefield, V.G.; Macey, P.M.; Henderson, L.A. Microstructural changes in the trigeminal nerve of patients with episodic migraine assessed using magnetic resonance imaging. J Headache Pain 2020, 21 , 59. doi: 10.1186/s10194-020-01126-1.
  194. Tronvik, E.; Stovner, L.J.; Helde, G.; Sand, T.; Bovim, G. Prophylactic treatment of migraine with an angiotensin II receptor-blocker: A randomized controlled trial.JAMA 2003, 289(1), 65-69. doi:10.1001/jama.289.1.65.
  195. Nandha , R.; Singh, H. Renin angiotensin system: A novel target for migraine prophylaxis. Indian J Pharmacol 2012, 44(2), 157160. doi: 10.4103/0253-7613.93840.
  196. FDA. Vaccines and related biological products advisory committee December 10, 2020 meeting announcement; 2021. https://www.fda.gov/advisory-committees/advisory-committee- calendar/vaccines-and-related-biological-products-advisory-committee-december-10-2020-meeting- announcement. [Accessed March 29, 2021].
  197. FDA. Vaccines and related biological products advisory committee December 17, 2020 meeting announcement; 2021. https://www.fda.gov/advisory-committees/advisory-committee-calendar/vaccines-and-related-biological-products-advisory-committee-december-17-2020-meeting-announcement. [Accessed March 29, 2021].
  198. Eviston, T.; Croxson, G.R.; Kennedy, P.G.E.; Hadlock, T.; Krishnan, A.V. Bell’s palsy: aetiology, clinical features and multidisciplinary care. J Neurol Neurosurg Psychiatry 2015, 86, 13561361. doi: 10.1136/jnnp-2014-309563.
  199. Simone, A.; Herald, J.; Chen, A. Acute myocarditis following COVID-19 mRNA vaccination in adults aged 18 years or older. AMA Intern Med October 4, 2021 . doi:10.1001/jamainternmed.2021.5511. [Online ahead of print].
  200. Jain, S.S.; Steele, J.M.; Fonseca, B.; Huang, S.; Shah, S.; Maskatia, S.A.; Buddhe, S.; Misra, N.; Ramachandran, P.; Gaur, L.; et al. COVID-19 vaccination–associated myocarditis in adolescents. Pediatrics 2021, 148(5), e2021053427. doi: 10.1542/peds.2021-053427.
  201. Weikert. U.; Kühl, U.; Schultheiss, H.-P.; Rauch, U. Platelet activation is increased in patients with cardiomyopathy: myocardial inflammation and platelet reactivity. Platelets 200213(8), 487-91. doi: 10.1080/0953710021000057857.
  202. Garg, A.; Seeliger, B.; Derda, A.A.; Xiao, K.; Gietz, A.; Scherf, K.; Sonnenschein, K.; Pink, I.; Hoeper, M.M.; Welte, T.; et al. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur J Heart Fail.2021, 23(3), 468-475. doi: 10.1002/ejhf.2096.
  203. Qiu, X.-K., Ma, J. Alteration in microRNA-155 level correspond to severity of coronary heart disease.Scand J Clin Lab Invest 2018, 78(3), 219-223. doi: 10.1080/00365513.2018.1435904.
  204. Wang, C.; Zhang, C.; Liu, L.; A, X.; Chen, B.; Li, Y.; Du, J. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther 2017, 25(1), 192-204. doi: 10.1016/j.ymthe.2016.09.001.
  205. Gavras, I.; Gavras, H. Angiotensin II as a cardiovascular risk factor. J Hum Hypertens 2002, 16(Suppl 2), S2-6. doi: 10.1038/sj.jhh.1001392.
  206. Oudit, G.Y.; Kassiri, Z.; Jiang, C.; Liu, P.P.; Poutanen, S.M.; Penninger, J.M.; Butany, J. SARS coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009, 39(7), 618625. doi: 10.1111/j.1365-2362.2009.02153.
  207. Vaers Home. VAERS. (n.d.). Retrieved December 5, 2021, from https://vaers.hhs.gov/data/dataguide.html.
  208. Lazarus, R.; Klompas, M.; Bernstein, S. Electronic Support for Public Health–Vaccine Adverse Event Reporting System (ESP: VAERS). Grant. Final Report, Grant ID: R18 HS, 17045. 2010 .
  209. Rose, J. Critical appraisal of VAERS pharmacovigilance: is the U.S. vaccine adverse events reporting system (VAERS) a Functioning pharmacovigilance system? Science, Public Health Policy, and the Law 2021 , 3, 100-129.
  210. McLachlan, S.; Osman, M.; Dube, K.; Chiketero, P.; Choi, Y.; Fenton, N. Analysis of COVID-19 vaccine death reports from the Vaccine Adverse Events Reporting System (VAERS) Database. Preprint. 2021 . doi: 10.13140/RG.2.2.26987.26402.
  211. Shin, D.H.; Kim, B.0.R.; Shin, J.E.; Kim, C.-H. Clinical manifestations in patients with herpes zoster oticus. Eur Arch Otorhinolaryngol 2016, 273 , 1739d—1743. doi: 10.1007/s00405-015-3756-9.
  212. Kim, C.-H.; Choi, H.; Shin, J.E. Characteristics of hearing loss in patients with herpes zoster oticus.Medicine 2016, 95(46) , e5438. doi: 10.1097/MD.0000000000005438.
  213. Fenton, A.M.; Hammill, S.C.; Rea, R.F.; Low, P.A.; Shen, W.-K. Vasovagal syncope. Annals Intern Med 2000, 133(9), 714-725. doi: 10.7326/0003-4819-133-9-200011070-00014.
  214. Babic ,T.; Browning, K.N. The role of vagal neurocircuits in the regulation of nausea and vomiting.Eur J Pharmacol. 2014, 722 , 38-47. doi: 10.1016/j.ejphar.2013.08.047.
  215. Kampf, G. The epidemiological relevance of the COVID-19-vaccinated population is increasing.The Lancet Regional Health - Europe 2021, 11 , 100272. doi: 10.1016/j.lanepe.2021.100272.