References
- Bhurani, V.; Mohankrishnan, A.;
Morrot, A.; Dalai, S. K.. Developing effective vaccines: cues from
natural infection. Int Rev Immunol 2018, 37(5),249-265. doi: 10.1080/08830185.2018.1471479.
- Psichogiou, M.; Karabinis, A.;
Poulakou, G.; Antoniadou, A.; Kotanidou, A.; Degiannis ,D.;
Pavlopoulou, I.D.; Chaidaroglou, A.; Roussos, S.; Mastrogianni E.; et
al. Comparative Immunogenicity of Bnt162b2 mRNA Vaccine with Natural
COVID-19 Infection. Vaccines (Basel) 2021, 9(9), 1017. doi: 10.3390/vaccines9091017.
- Jhaveri, R. The COVID-19 mRNA
Vaccines and the Pandemic: Do They Represent the Beginning of the End
or the End of the Beginning? Clin Ther 2021,43(3), 549-556. doi: 10.1016/j.clinthera.2021.01.014
- Centers for Disease Control and
Prevention. 2021. Coronavirus Disease 2019 (COVID-19).
[online] Available at:
<https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/vaccine-induced-immunity.html#anchor_1635540449320
[Accessed 28 November 2021].
- Ivanova, E.N.; Devlin, J.C.;
Buus, T.B.; Koide, A.; Cornelius, A.; Samanovic, M.I.; Herrera, A.;
Zhang, C.; Desvignes, L.; Odum, N.; Ulrich, R.; Mulligan, M.J.; Koide,
S.; Ruggles, K.V.; Herati, R.S.; Koralov, S.B. Discrete immune
response signature to SARS-CoV-2 mRNA vaccination versus infection.
medRxiv preprint April 21, 2021 .doi:
https://doi.org/10.1101/2021.04.20.21255677.
- Kwok, H. F. Review of COVID-19
vaccine clinical trials – A puzzle with missing pieces. Int J
Biol Sci 2021, 7(6), 1461.
- Shrotri, M.; Navaratnam, A.M.;
Nguyen, V.; Byrne, T.; Geismar, C.; Fragaszy, E.; Beale, S.; Fong,
W.L.E.; Patel, P.; Kovar, J.; et al. Spike-antibody waning after
second dose of BNT162b2 or ChAdOx1. The Lancet 2021, 398(10298), 385-387.
- Centers for Disease Control and
Prevention. 2021. COVID-19 Booster Shot. [online]
Available at:
<https://www.cdc.gov/coronavirus/2019-ncov/vaccines/booster-shot.html>
[Accessed 28 November 2021].
- Yahi, N.; Chahinian, H.;
Fantini, J. Infection-enhancing anti-SARS-CoV-2 antibodies recognize
both the original Wuhan/D614G strain and Delta variants. A potential
risk for mass vaccination? J Infect 2021, 83(5), 607-635. doi: 10.1016/j.jinf.2021.08.010.
- Kampf, G. The epidemiological
relevance of the COVID-19-vaccinated population is increasing.Lancet Reg Health – Europe 2021, 11 , 100272.
Doi: 10.1016/j.lanepe.2021.100272.
- Subramanian, S.V.; Kumar, A.
Increases in COVID-19 are unrelated to levels of vaccination across 68
countries and 2947 counties in the United States. Eur J
Epidemiol 2021, 1-4. doi: 10.1007/s10654-021-00808-7.
- Shitrit, P.; Zuckerman, N.S.;
Mor, O.; Gottesman, B.-S.; Chowers, M. Nosocomial outbreak caused by
the SARS-CoV-2 Delta variant in a highly vaccinated population,
Israel, July 2021. Euro Surveill 2021, 26(39),2100822. doi: 10.2807/1560-7917.ES.2021.26.39.2100822.
- Brosh-Nissimov, T.;
Orenbuch-Harroch, E.; Chowers, M.; Elbaz, M.; Nesher, L.; Stein, M.;
Maor, Y.; Cohen, R.; Hussein, K.; Weinberger, M.; et al. BNT162b2
vaccine breakthrough: clinical characteristics of 152 fully vaccinated
hospitalized COVID-19 patients in Israel. Clin Microbiol Infect 2021, 27(11), 1652-1657. doi:
10.1016/j.cmi.2021.06.036.
- Lindenmann, J. From interference
to interferon: a brief historical introduction. Philos Trans R
Soc Lond B, Biol Sci 1982, 299(1094), 3-6.
- Wang, H.; Hu, H.; Zhang, K.
Overview of interferon: characteristics, signaling and anti-cancer
effect. Arch Biotechnol Biomed 2017, 1, 1-16.
- Passegu, E.; Ernst, P.A.
IFN-alpha wakes up sleeping hematopoietic stem cells. Nat Med 2009, 15(6), 612613. doi: 10.1038/nm0609-612.
- Kaur, A.; Fang, C. M. (2020). An
overview of the human immune system and the role of interferon
regulatory factors (IRFs). Prog Microbes Mol Biol 2020, 3(1). doi: 10.36877/pmmb.a0000129.
- Alsamman, K.; El-Masry, O.S.
(2018). Interferon regulatory factor 1 inactivation in human cancer.Biosci Reports 2018, 38(3), BSR20171672. doi:
10.1042/BSR20171672.
- Huang, F.T.; Sun, J.; Zhang, L.; He, X.; Zhu, Y.H.; Dong, H.J.; Wang,
H.-Y.; Zhu, L.; Zou, Huang, J.-W.; et al. Role of SIRT1 in hematologic
malignancies. J Zhejiang Univ-Sci B 2019, 20(5), 391-398. doi: 10.1631/jzus.B1900148.
- Zitvogel, L.; Galluzzi, L.;
Kepp, O.; Smyth, M.J.; Kroemer, G. Type I interferons in anticancer
immunity. Nat Rev Immunol 2015, 15(7), 405-414.
doi: 10.1038/nri3845.
- Jego, G.A.; Palucka, K.; Blanck,
J.-P.; Chalouni, C.; Pascual, V.; Banchereau, J. Plasmacytoid
dendritic cells induce plasma cell differentiation through type I
interferon and interleukin 6. Immunity 2003, 19 ,
225234. doi: 10.1016/s1074-7613(03)00208-5.
- De Andrea, M.; Ravera, R.;
Gioia, D.; Gariglio, M.; Landolfo, S. The interferon system: an
overview. Eur J Paedia Neurol 2002, 6 , A41-A46.
doi: 10.1053/ejpn.2002.0573
- Feng, B.; Eknoyan, G.; Guo,
Z.S.; Jadoul, M.; Rao, H.Y.; Zhang, W.; Wei, L. Effect of interferon-
alpha-based antiviral therapy on hepatitis C virus-associated
glomerulonephritis: a meta-analysis. Nephrol Dial Transplant 2012, 27(2 ), 640-646.
- Delannoy, A.S.; Hober, D.;
Bouzidi, A.; Wattre, P. Role of interferon alpha (IFN‐α) and
interferon gamma (IFN‐γ) in the control of the infection of
monocyte‐like cells with Human Cytomegalovirus (HCMV). Microbiol
Immunol 1999, 43(12), 1087-1096.
- Sakai, Y., Ohga, S., Tonegawa,
Y., Takada, H., Nakao, F., Nakayama, H., Aoki, T.; Yamamori, S.; Hara,
T. (1998). Interferon-alpha therapy for chronic active Epstein-Barr
virus infection: potential effect on the development of T-
lymphoproliferative disease. J Pediatr Hematol Oncol 1998, 20(4), 342-346.
- Ruther, U., Nunnensiek, C.,
Muller, H. A., Bader, H., May, U., Jipp, P. Interferon
alpha (IFN alpha 2a) therapy for herpes virus-associated inflammatory
bowel disease (ulcerative colitis and Crohn’s disease).
Hepato-gastroenterology 1998, 45(21), 691-699. doi:
10.1111/j.1348-0421.1999.tb03365.x.
- Musella, M.; Manic, G.; de
Maria, R.; Vitale, I.; Sistigue, A. Type-I-interferons in infection
and cancer: Unanticipated dynamics with therapeutic implications.Oncoimmunology 2017, 6(5), e1314424. doi:
10.1080/2162402X.2017.1314424.
- Matsuoka, M.; Tani, K.; Asano,
S. Interferon-alpha-induced G1 phase arrest through upregulated
expression of CDK inhibitors, p19Ink4D and p21Cip1 in mouse
macrophages. Oncogene 1998, 16 , 2075-86. doi:
10.1038/sj.onc.1201745.
- Heise, R.; Amann, P.M.; Ensslen,
S.; Marquardt, Y.; Czaja, K.; Joussen, S.; Beer, D.; Abele, R.;
Plewnia, G.; Tampé, R.; et al. Interferon alpha signaling and its
relevance for the upregulatory effect of transporter proteins
associated with antigen processing (TAP) in patients with malignant
melanoma. PLoS One 2016, 11(1), e0146325. doi:
10.1371/journal.pone.0146325.
- Sundstedt, A.; Celander, M.;
Hedlund, G. (2008). Combining tumor-targeted superantigens with
interferon-alpha results in synergistic anti-tumor effects. Int
Immunopharmacol 2008, 8(3), 442- 452. doi:
10.1016/j.intimp.2007.11.006.
- Schneider, W.M.; Chevillotte,
M.D.; Rice, C.M. Interferon-stimulated genes: a complex web of host
defenses. Anni Rev Immunol 2014, 32 , 513-545.
- Asmana Ningrum, R. Human
interferon α-2b: a therapeutic protein for cancer treatment.Scientifica (Cairo) 2014, 2014 , 970315. doi:
10.1155/2014/970315.
- Takaoka, A.; Tamura, T.;
Taniguchi, T. Interferon regulatory factor family of transcription
factors and regulation of oncogenesis. Cancer Science 2008, 99(3), 467-478. doi:
10.1111/j.1349-7006.2007.00720.
- Tsuno, T.; Mejido, J.; Zhao, T.;
Morrow, A.; Zoon, K.C. IRF9 is a key factor for eliciting the
antiproliferative activity of IFN-α. J Immunother 2009, 32(8), 803. doi: 10.1097/CJI.0b013e3181ad4092.
- Honda, K.; Takaoka, A.;
Taniguchi, T. Type I interferon [corrected] gene induction by the
interferon regulatory factor family of transcription factors.Immunity 2006, 25(3 ), 349-360. doi:
10.1016/j.immuni.2006.08.009.
- Sayers, T.J. Targeting the
extrinsic apoptosis signaling pathway for cancer therapy. Cancer
Immunol Immunother 2011 , 60(8), 1173-1180. doi:
10.1007/s00262-011-1008-4.
- Testa, U. TRAIL/TRAIL‐R in
hematologic malignancies. J Cell Biochem 2010, 110(1), 21-34. doi: 10.1002/jcb.22549
- Finnberg, N.K.; El-Deiry, W.S.
TRAIL death receptors as tumor suppressors and drug targets.Cell Cycle 2008, 7(11) , 1525-1528. doi:
10.4161/cc.7.11.5975
- Dunn,
G.P.; Bruce, A.T.; Sheehan, K.C.F.; Shankaran, V.; Uppaluri, R.; Bui,
J.D.; Diamond, M.S.; Koebel, C.M.; Arthur, C.; White, J.M. et al. A
critical function for type I interferons in cancer immunoediting.Nat Immunol 2005, 6(7), 722-9. doi:
10.1038/ni1213.
- Bidwell, B.N.; Slaney, C.Y.;
Withana, N.P.; Forster, S.; Cao, Y.; Loi, S.; Andrews, D.; Mikeska,
T.; Mangan, N.E.; Samarajiwa, S.A.; et al. Silencing of Irf7 pathways
in breast cancer cells promotes bone metastasis through immune escape.Nature Med 2012, 18(8), 1224-1231. doi:
10.1038/nm.2830.
- Li, Y.; Huang, R.; Wang, L.;
Hao, J.; Zhang, Q.,; Ling, R.; Yun, J. micro RNA‐762 promotes
breast cancer cell proliferation and invasion by targeting IRF7
expression. Cell Prolif 2015, 48(6), 643-649.
doi: 10.1111/cpr.12223.
- Zhao, Y.; Chen, W.; Zhu, W.;
Meng, H.; Chen, J.; Zhang, J. Overexpression of interferon regulatory
factor 7 (IRF7) reduces bone metastasis of prostate cancer cells in
mice. Oncol Res 2017, 25(4), 511. doi:
10.3727/096504016X14756226781802.
- Solis, M.; Goubau, D.;
Romieu-Mourez, R.; Genin, P.; Civas, A.; Hiscott, J. Distinct
functions of IRF-3 and IRF-7 in IFN-alpha gene regulation and control
of anti-tumor activity in primary macrophages. Biochem
Pharmacol 2006, 72(11), 1469-1476. doi:
10.1016/j.bcp.2006.06.002.
- Erb, H.H.; Langlechner, R.V.;
Moser, P.L; Handle, F.; Casneuf, T.; Verstraeten, K.; Schlick, B.;
Schäfer, G.; Hall, B.; Sasser, K.; Culig, Z.; Santer, F.R.; et al. IL6
sensitizes prostate cancer to the antiproliferative effect of IFNα2
through IRF9. Endocrine-related Cancer 2013, 20(5), 677. doi: 10.1530/ERC-13-0222.
- Tian , W.-L.; Guo, R.; Wang, F.;
Jiang, Z.-X.; Tang, P.; Huang, Y.-M.; Sun, L. The IRF9-SIRT1-P53 axis
is involved in the growth of human acute myeloid leukemia. Exper
Cell Res 2018, 365 , 185-193. doi:
10.1016/j.yexcr.2018.02.036.
- Mittal, M.K.; Chaudhuri, G.
Abstracts: First AACR International Conference on Frontiers in
Basic Cancer Research–Oct 8–11, 2009 . Boston, MA. 2009. doi: 10.1158/0008-5472.FBCR09-A16.
https://cancerres.aacrjournals.org/content/69/23_Supplement/A16.short
- Buckley, N.E.; Hosey, A.M.;
Gorski, J.J.; Purcell, J.W.; Mulligan, J.M.; Harkin, D.P.; Mullan,
P.B. BRCA1 regulates IFN-γ signaling through a mechanism involving the
type I IFNs. Mol Cancer Res 2007, 5(3),261-270. doi: 10.1158/1541-7786.MCR-06-0250.
- Mamoor, S. Transcriptional
induction of IRF7 and IRF9 in coronavirus infections. Preprint Aug 2020. doi: 10.31219/osf.io/7ad45.
- Rasmussen, S.A.; Abul-Husn,
N.S.; Casanova, J.L; Daly, M.J.; Rehm, H.L; Murray, M.F. The
intersection of genetics and COVID-19 in 2021: preview of the 2021
Rodney Howell Symposium. Genetics in Medicine 2021, 23(6), 1001-1003. doi: 10.1038/s41436-021-01113-0.
- Mishra, R.; Banerjea, A.C.
SARS-CoV-2 Spike targets USP33-IRF9 axis via exosomal miR-148a to
activate human microglia. Front Immunol 2021, 12 , 656700. doi: 10.3389/fimmu.2021.656700.
- National Cancer Institute.2021. BRCA Gene Mutations: Cancer Risk and Genetic Testing
Fact Sheet. [online] Available at:
https://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet#what-other-cancers-are-linked-to-harmful-variants-in-brca1-and-brca2.
[Accessed 27 November 2021].
- Liu, J.; Wang, J.; Xu, J.; Xia,
H.; Wang, Y.; Zhang, C.; Chen, W.; Zhang, H.; Liu, Q.; Zhu, R.; et al.
Comprehensive investigations revealed consistent pathophysiological
alterations after vaccination with COVID-19 vaccines. Cell
Discov 2021, 7(1), 99. doi:
10.1038/s41421-021-00329-3.
- Cancer risk and BRCA1 gene
mutations. 2021. Available at:
https://www.facingourrisk.org/info/hereditary-cancer-and-genetic-testing/hereditary-cancer-genes-and-risk/genes-by-name/brca1/cancer-risk
[Accessed 27 November 2021].
- Zhang, W.; Luo, J.; Yang, F.;
Wang, Y.; Yin, Y.; Strom, A.; Gustafsson, J.Å.;, Guan, X. BRCA1
inhibits AR-mediated proliferation of breast cancer cells through the
activation of SIRT1. Sci Reports 2016, 6 ,
22034. doi: 10.1038/srep22034.
- Suberbielle, E.; Djukic, B.;
Evans, M.; Kim, D.H.; Taneja, P.; Wang, X.; Finucane, M.; Knox, J.;
Ho, K.; Devidze, N.; et al. DNA repair factor BRCA1 depletion occurs
in Alzheimer brains and impairs cognitive function in mice. Nat
Comm 2015, 6, 8897. doi: 10.1038/ncomms9897.
- Goldman, S.; Bron, D.; Tousseyn,
T.; Vierasu, I.; Dewispelaere, L.; Heimann, P.; Cogan, E.; Goldman, M.
Rapid progression of angioimmunoblastic T cell lymphoma following
BNT162b2 mRNA vaccine booster shot: A case report. Front Med 2021, 8, 798095. doi:
10.3389/fmed.2021.798095.
- MacFarlane, M.; Kohlhaas, S.L.;
Sutcliffe, M.J.; Dyer, M.J.; Cohen, G.M. TRAIL receptor-selective
mutants signal to apoptosis via TRAIL-R1 in primary lymphoid
malignancies. Cancer Res 2005, 65(24 ),
11265-11270. doi: 10.1158/0008-5472.CAN-05-2801.
- Kaczmarek, R.; El Ekiaby, M.;
Hart, D. P.; Hermans, C.; Makris, M.; Noone, D.; O’Mahony, B.; Page,
D.; Peyvandi, F.; Pipe, S.W.; et al. Vaccination against COVID‐19:
Rationale, modalities and precautions for patients with haemophilia
and other inherited bleeding disorders. Haemophilia 2021, 7(4), 515-518. doi: 10.1111/hae.14271.
- Karikó, K.; Buckstein, M.; Ni,
H.; Weissman, D. Suppression of RNA recognition by toll-like
receptors: The impact of nucleoside modification and the evolutionary
origin of RNA. Immunity 2005, 23 , 165175. doi:
10.1016/j.immuni.2005.06.008.
- de Beuckelaer, A.; Pollard, C.;
Van Lint, S.; Roose, K.; Van Hoecke,L.V.; Naessens, T.; Udhayakumar,
V.K.; Smet, M.; Sanders, N.; Lienenklaus, S.; et al. Type I
interferons interfere with the capacity of mRNA lipoplex vaccines to
elicit cytolytic T cell responses. Mol Ther 2016, 24(11 ), 2012-2020. doi: 10.1038/mt.2016.161.
- Andries, O.; Mc Cafferty, S.; De
Smedt, S.C.; Weiss, R.; Sanders, N.N.; Kitada, T. (2015).
N1-methylpseudouridine-incorporated mRNA outperforms
pseudouridine-incorporated mRNA by providing enhanced protein
expression and reduced immunogenicity in mammalian cell lines and
mice. J Control Release 2015, 217 , 337-344.
doi: 10.1016/j.jconrel.2015.08.051.
- Park, J.W.; Lagniton, P.; Liu,
Y.; Xu, R.H. (2021). mRNA vaccines for COVID-19: what, why and how.Int J Biol Sci 2021, 17(6), 1446–1460. doi:
10.7150/ijbs.59233
- Hou, X.; Zaks, T.; Langer, R.;
Dong, Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 2021, 6, 1078-1094.. doi: 10.1038/s41578-021-00358-0.
- Wrapp, D.; Wang, N.; Corbett,
K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.;
McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the
prefusion conformation. Science 2020, 367(6483 ), 1260-1263. doi: 10.1126/science.abb2507.
- Kyriakopoulos, A.M.;McCullough,
P.A. Synthetic mRNAs; Their Analogue Caps and Contribution to Disease.Diseases 2021, 9, 57. doi:
10.3390/diseases9030057.
- Orlandini von Niessen, A.G.;
Poleganov, M.A.; Rechner, C.; Plaschke, A.; Kranz, L.M.; Fesser, S.;
Diken, M.; Löwer, M.; Vallazza, B.; Beissert, T.; et al. Improving
mRNA-based therapeutic gene delivery by expression-augmenting 3’ UTRs
identified by cellular library screening. Mol Ther 2019, 27(4), 824-836. doi:
10.1016/j.ymthe.2018.12.011.
- Xia, X. Detailed dissection and
critical evaluation of the Pfizer/BioNTech and Moderna mRNA vaccines.Vaccines 2021, 9, 734. doi:
10.3390/vaccines9070734.
- Williams, G.D.; Gokhale, N.S.;
Snider, D.L.; Horner, S.M. The mRNA cap 2’-O-methyltransferase CMTR1
regulates the expression of certain interferon-stimulated genes.mSphere 2020, 5(3), e00202-20. doi:
10.1128/mSphere.00202-20.
- Leung, D.W.; Amarasinghe, G.K.
When your cap matters: structural insights into self vs non-self
recognition of 5’ RNA by immunomodulatory host proteins. Curr
Opin Struct Biol 2016, 36, 133-141. doi:
10.1016/j.sbi.2016.02.001.
- Chaudhary, N.; Weissman, D.;
Whitehead, K.A. mRNA vaccines for infectious diseases: principles,
delivery and clinical translation. Nat Rev Drug Discov 2021, 20, 817–838. doi: 10.1038/s41573-021-00283-5.
- McKernan, K.; Kyriakopoulos,
A.M.; McCullough, P.A. Differences in vaccine and SARS-CoV-2
replication derived mRNA: Implications for cell biology and future
disease. OSF Preprints November 26, 2021 . doi:
10.31219/osf.io/bcsa6.
- Mauro , V.P.; Chappell, S.A. A
critical analysis of codon optimization in human therapeutics.Trends Mol Med 2014, 20(11 ), 604-13. doi:
10.1016/j.molmed.2014.09.003.
- Shabalina, S.A.; Spiridonov,
N.A.; Kashina, A. Sounds of silence: synonymous nucleotides as a key
to biological regulation and complexity. Nucleic Acids Res 2013, 41(4), 2073-94. doi: 10.1093/nar/gks1205.
- Zhou,
M.; Guo, J.; Cha, J.; Chae, M.; Chen, S.; Barral, J.M.; Sachs, M.S.;
Liu, Y. Non-optimal codon usage affects expression, structure and
function of clock protein FRQ. Nature 2013, 495(7439), 111-5. doi: 10.1038/nature11833.
- Agashe, D.; Martinez-Gomez,
N.C.; Drummond, D.A.;Marx, C.J. Good codons, bad transcript: large
reductions in gene expression and fitness arising from synonymous
mutations in a key enzyme. Mol Biol Evol 2013, 30, 549-560. doi: 10.1093/molbev/mss273
- McCarthy, C.; Carrea, A.;
Diambra, L.Bicodon bias can determine the role of synonymous SNPs in
human diseases. BMC Genomics 2017, 18(1), 227.
doi: 10.1186/s12864-017-3609-6.
- Kudla, G.; Lipinski, L.; Caffin,
F.; Helwak, A.; Zylicz, M. High guanine and cytosine content increases
mRNA levels in mammalian cells. PLoS Biol 2006, 4(6), e180. doi: 10.1371/journal.pbio.0040180.
- Otsuka, H.; Fukao , A.; Funakami
, Y.; Duncan, K.E.; Fujiwara, T. Emerging evidence of translational
control by AU-rich element-binding proteins. Front. Genet 2019, 10 , 332. doi: 10.3389/fgene.2019.00332.g.
- Wang, E.; Thombre, R.; Shah, Y.;
Latanich, R.; Wang, J. G-Quadruplexes as pathogenic drivers in
neurodegenerative disorders. Nucleic Acids Research 2021, 49(9), 4816-4830. doi: 10.1093/nar/gkab164.
- Olsthoorn, R.C. G-quadruplexes
within prion mRNA: the missing link in prion disease? Nucleic
Acids Res 2014 , 42 , 9327-9333. doi:
10.1093/nar/gku559.
- Seneff, S.; Nigh, G. Worse Than
the Disease? Reviewing Some Possible Unintended Consequences of the
mRNA Vaccines Against COVID-19. IJVTPR 2021, 2(1), 38-79.
- Babendure, J.R.; Babendure,
J.L.; Ding, J.H.; Tsien, R.Y. Control of mammalian translation by mRNA
structure near caps. RNA 2006, 12(5), 851-861.
doi:10.1261/rna.2309906
- Herdy, B.; Mayer, C.; Varshney,
D.; Marsico, G.; Murat, P.; Taylor, C.; D’Santos, C.; Tannahill , D.;
Balasubramanian, S. Analysis of NRAS RNA G-quadruplex binding proteins
reveals DDX3X as a novel interactor of cellular G-quadruplex
containing transcripts. Nucleic Acids Res 2018 ,46(21), 11592-11604. doi: 10.1093/nar/gky861.
- Fay, M.M.; Lyons , S.M.; Ivanov,
P. RNA G-quadruplexes in biology: principles and molecular mechanisms.J Mol Biol 2017, 429(14), 2127–2147. doi:
10.1016/j.jmb.2017.05.017.
- Zhang, R.; Xiao, K.; Gu, Y.;
Liu, H.; Sun, X. Whole genome identification of potential
G-quadruplexes and analysis of the G-quadruplex binding domain for
SARS-CoV-2. Front Genet 2020, 11 , 587829. doi:
10.3389/fgene.2020.587829.
- Schmidt, N.; Lareau, C.A.;
Keshishian, H.; Ganskih, S.; Schneider, C.; Hennig, T.; Melanson, R.;
Werner, S.; Wei, Y.; Zimmer, M.; et al. The SARS-CoV-2 RNA-protein
interactome in infected human cells. Nat Microbiol 2021, 6(3), 339-353. doi: 10.1038/s41564-020-00846-z.
- Rouleau, S.; Glouzon, J.S.;
Brumwell, A.; Bisaillon, M.; Perreault, J.P. 3’ UTR G-quadruplexes
regulate miRNA binding. RNA , 2017, 23(8), 1172-1179. doi:10.1261/rna.060962.117.
- Bezzi, G.; Piga, E.J.; Binolfi,
A.; Armas, P. CNBP binds and unfolds in vitro G-quadruplexes formed in
the SARS-CoV-2 positive and negative genome strands. Int J Mol
Sci 2021, 22(5), 2614. doi: 10.3390/ijms22052614.
- Sola, I.; Almazán, F.; Zúñiga,
S.; Enjuanes , L. Continuous and discontinuous RNA synthesis in
coronaviruses. Annu Rev Virol 2015, 2(1),265-88. doi: 10.1146/annurev-virology-100114-055218.
- Jaubert , C.; Bedrat , A.;
Bartolucci, L.; Di Primo, C.; Ventura, M.; Mergny, J.-L.; Amrane, S.;
Andreola, M.-L RNA synthesis is modulated by G-quadruplex formation in
Hepatitis C virus negative RNA strand. Sci Rep 2018, 8, 8120. https://doi.org/10.1038/s41598-018-26582-3.
- Spiegel, J.; Adhikari,
S.;Balasubramanian, S. The structure and function of DNA
G-quadruplexes. Trends Chem 2020, 2(2),123-136. doi: 10.1016/j.trechm.2019.07.002.
- Rouleau, S.G.; Garant, J.-M.;
Balduc, F.; Bisaillon, M.; Perreault, J.-P. G-Quadruplexes influence
pri-microRNA processing. RNA Biology 2018, 15(2), 198-206. doi:
10.1080/15476286.2017.1405211.
- Chan, K.L.; Peng, B.; Umar,
M.I.; Chan, C.Y.; Sahakyan, A.B.; Le, M.T.N.; Kwok, C.K. Structural
analysis reveals the formation and role of RNA G-quadruplex structures
in human mature microRNAs. Chem Commun (Camb) 2018, 54(77), 10878-10881. doi: 10.1039/c8cc04635b.
- Al-Khalaf, H.H.; Aboussekhra, A.
p16 controls p53 protein expression through miR-dependent
destabilization of MDM2. Mol Cancer Res 2018, 16(8), 1299-1308. doi: 10.1158/1541-7786.MCR-18-0017.
- Weldon, C.; Dacanay, J.G.;
Gokhale, V.; Boddupally, P.V.L.; Behm-Ansmant, I.; Burley, G.A.;
Branlant, C.; Hurley, L.M.; Dominguez, C.; Eperon, I.C. Specific
G-quadruplex ligands modulate the alternative splicing of Bcl-X.Nucleic Acids Res 2018, 46(2), 886-896. doi:
10.1093/nar/gkx1122.
- Small, E.M.; Olson, E.N.
Pervasive roles of microRNAs in cardiovascular biology. Nature 2011, 469(7330), 336-342. doi:10.1038/nature09783.
- Abe, M.; Bonini, N.M. MicroRNAs
and neurodegeneration: role and impact. Trends Cell Biol 2013, 23(1), 30-6. doi: 10.1016/j.tcb.2012.08.013.
- Farazi, T.A.; Hoell, J.I.;
Morozov, P.; Tuschl, T. MicroRNAs in human cancer. Adv Exp Med
Biol 2013, 774, 1-20. doi:
10.1007/978-94-007-5590-1_1.
- Ozaki, T.; Nakagawara, A. Role
of p53 in Cell Death and Human Cancers. Cancers (Basel) 2011 , 3(1), 994-1013. doi:10.3390/cancers3010994.
- Janeway, C.A., Jr.; Medzhitov,
R. Innate immune recognition. Annu Rev Immunol 2002, 20, 197-216. doi:
10.1146/annurev.immunol.20.083001.084359.
- Hadjadj,
J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.;
Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al.
Impaired type I interferon activity and inflammatory responses in
severe COVID-19 patients. Science 2020, 369(6504), 718-724. doi:
10.1016/j.cell.2020.04.026.
- Blanco-Melo, D.; Nilsson-Payant,
B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.;
Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced host response to
SARS-CoV-2 drives development of COVID-19. Cell . 2020, 181(5), 1036-1045 e9.
- Hoagland, D.A.; Møller, R.; Uhl,
S.A.; Oishi, K.; Frere, J.; Golynker, T.; Horiuchi, S.; Panis, M.;
Blanco-Melo, D.; Sachs, D.; et al. Leveraging the antiviral type I
interferon system as a first line of defense against SARS-CoV-2
pathogenicity. Immunity 2021, 54, 557570. doi:
10.1016/j.immuni.2021.01.017.
- Wang, N.; Zhan, Y.; Zhu, L.;
Hou, Z.; Liu, F.; Song, P.; Qiu, F.; Wang, X.; Zou, X.; Wan, D.; et
al. Retrospective multicenter cohort study shows early interferon
therapy is associated with favorable clinical responses in COVID-19
patients. Cell Host Microbe 2020, 28(3),455-464.e2. doi: 10.1016/j.chom.2020.07.005.
- van der Wijst, M.G.P.; Vazquez,
S.E.; Hartoularos, G.C.; Bastard, P.; Grant, T.; Bueno,
R>; Lee, D.S.; Greenland, J.R.; Sun, Y.; Perez, R.; et
al. Type I interferon autoantibodies are associated with systemic
immune alterations in patients with COVID-19. Sci Transl Med 2021, 13(612), eabh2624. doi:
10.1126/scitranslmed.abh2624.
- Troya, J.; Bastard, P.;
Planas-Serra, L.; Ryan, P.; Ruiz, M.; de Carranza, M.; Torres, J.;
Martnez, A.; Abel, L.; Casanova, J.-L.; Pujol, A. Neutralizing
autoantibodies to type I IFNs in >10% of patients with
severe COVID-19 pneumonia hospitalized in Madrid, Spain. J Clin
Immunol 2021, 41, 914922. doi: 10.1007/s10875-021-01036-0.
- Stertz, S.; Hale, B.G.
Interferon system deficiencies exacerbating severe pandemic virus
infections. Trends Microbiol 2021, 29(11), 973-982. doi: 10.1016/j.tim.2021.03.001.
- Yang, C.; Hu, Y.; Zhou, B.; Bao,
Y.; Li, Z.; Gong, C.; Yang, H.; Wang, S.; Xiao, Y. The role of m6A
modification in physiology and disease. Cell Death Dis 2020, 11, 960.
https://doi.org/10.1038/s41419-020-03143-z
- Knuckles, P.; Bühler , M.
Adenosine methylation as a molecular imprint defining the fate of RNA.FEBS Lett 2018, 592(17), 2845-2859.
doi:10.1002/1873-3468.13107.
- Koo, J.W.; Russo, S.J.;
Ferguson, D.; Nestler, E.J.; Duman, R.S. Nuclear factor-kappaB is a
critical mediator of stress-impaired neurogenesis and depressive
behavior. Proc Natl Acad Sci U S A 2010, 107(6), 2669-2674. doi:10.1073/pnas.0910658107.
- Meyer, K.D.; Patil, D.P.; Zhou,
J.; Zinoviev, A.; Skabkin, M.A.; Elemento, O.; Pestova, T.V.; Qian,
S.-B.; Jaffrey, S.R. 5’ UTR m(6)A promotes cap-independent
translation. Cell 2015, 163(4), 999-1010. doi:
10.1016/j.cell.2015.10.012.
- Shatsky, I.N.; Terenin, I.M.;
Smirnova, V.V.; Andreev, D.E.. Cap-independent translation: What’s in
a name? Trends Biochem Sci 2018, 43(11 ),
882-895. doi: 10.1016/j.tibs.2018.04.011.
- Svitkin, U.V.; Herdy, B.;
Costa-Mattioli, M.; Gingras, A.-C.; Raught, B.; Sonenberg, N.
Eukaryotic translation initiation factor 4E availability controls the
switch between cap-dependent and internal ribosomal entry
site-mediated translation. Mol Cell Biol 2005, 25(23), 10556-65. doi: 10.1128/MCB.25.23.10556-10565.2005.
- Han, S.H.; Choe, J. Diverse
molecular functions of m6A mRNA modification in cancer. Exp Mol
Med 2020, 52(5), 738-749.
doi:10.1038/s12276-020-0432-y.
- Yoshikawa, F.S.; Teixeira, F.M.;
Sato, M.N.; Oliveira, L.M.Delivery of microRNAs by extracellular
vesicles in viral infections: Could the news be packaged? Cells 2019, 8((6) , 611. doi: 10.3390/cells8060611.
- Ratajczak, M.Z.; Ratajczak, J.
Horizontal transfer of RNA and proteins between cells by extracellular
microvesicles: 14 years later. Clin Trans Med 2016, 5 , 7. doi: 10.1186/s40169-016-0087-4.
- Chahar, H.S.; Bao, X.; Casola,
A. Exosomes and their role in the life cycle and pathogenesis of RNA
viruses. Viruses 2015, 7 , 3204-3225; doi:
10.3390/v7062770.
- Bansal, S.; Perincheri, S.;
Fleming, T.; Poulson, C.; Tiffany, B.; Bremner, R.M.; Mohanakumar, T..
Cutting edge: circulating exosomes with COVID spike protein are
induced by BNT162b2 (PfizerBioN-Tech) vaccination prior to development
of antibodies: A novel mechanism for immune activation by mRNA
vaccines. J Immunol 2021, 207(10), 2405-2410.
doi: 10.4049/jimmunol.2100637.
- Decker , C.J.; Parker, R.
P-bodies and stress granules: possible roles in the control of
translation and mRNA degradation. Cold Spring Harb
Perspect Biol 2012, 4(9), a012286.
doi:10.1101/cshperspect.a012286.
- Kothandan, V.K.; Kothandan, S.;
Kim, D.H.; Byun, Y.; Lee, Y.-K.; Park, I.-K.; Hwang, S.R. Crosstalk
between stress granules, exosomes, tumour antigens, and immune cells:
Significance for cancer immunity. Vaccines 2020, 8(2), 172, doi:10.3390/vaccines8020172.
- Borbolis, F.; Syntichaki, P.
Cytoplasmic mRNA turnover and ageing. Mech Ageing Dev 2015, 152 , 32-42. doi:10.1016/j.mad.2015.09.006.
- Girardi, T.; De Keersmaecker, K.
T-ALL: ALL a matter of translation?. Haematologica 2015, 100(3), 293-295. doi:
10.3324/haematol.2014.118562.
- Jang, S.K.; Pestova, T.V.;
Hellen, C.U.T.; Witherell, G.W.; Wimmer, E. Cap-independent
translation of picornavirus RNAs: structure and function of the
internal ribosomal entry site. Enzyme 1990, 44 ,
292-309. doi: 10.1159/000468766.
- Zoll, J.; Erkens Hulshof, S.;
Lanke, K.; Verduyn Lunel. F.; Melchers, W.J.; Schoondermark-van de
Ven, E.; Roivainen, M.; Galama, J.M.; van Kuppeveld, F.J. Saffold
virus, a human Theiler’s-like cardiovirus, is ubiquitous and causes
infection early in life. PLoS Pathog 2009, 5(5), e1000416. doi: 10.1371/journal.ppat.1000416.
- Rusk, N. When microRNAs activate
translation. Nat Methods 2008, 5, 122–123.
doi: 10.1038/nmeth0208-122a.
- De Paolis, V.; Lorefice, E.;
Orecchini, E.; Carissimi, C.; Laudadio, I.; Fulci, V..
Epitranscriptomics: A new layer of microRNA regulation in cancer.Cancers (Basel). 2021, 13(13), 3372.
doi:10.3390/cancers13133372.
- Yu, X.; Odenthal, M.; Fries,
J.W.U. Exosomes as miRNA carriers: formation–function–future.Int J Mol Sci 2016, 17, 2028. doi:
10.3390/ijms17122028.
- Wei, H.; Chen, Q.; Lin, L.; Sha,
C.; Li, T.; Liu, Y.; Yin, X.; Xu, Y.; Chen, L.; Gao, W.; Li, Y.; Zhu,
X.. Regulation of exosome production and cargo sorting. Int J
Biol Sci 2021, 17(1), 163–177. doi:
10.7150/ijbs.53671.
- de Gonzalo-Calvo, D.; Benítez,
I.D.; Pinilla, L.; Carratalá, A.; Moncusí-Moix, A.; Gort-Paniello, C.;
Molinero, M.; González, J.; Torres, G.; Bernal, M.; et al. Circulating
microRNA profiles predict the severity of COVID-19 in hospitalized
patients. Transl Res 2021, 236 , 147-159.
doi: 10.1016/j.trsl.2021.05.004.
- Bahl, K.; Senn, J.J.; Yuzhakov,
O.; Bulychev, A.; Brito, L.A.; Hassett, K.J.; Laska M.E.; Smith, M.;
Almarsson, Ö.; Thompson, J.; et al. Preclinical and clinical
demonstration of immunogenicity by mRNA vaccines against H10N8 and
H7N9 influenza viruses. Molecular Therapy 2017, 25(6), 1316-1327. doi: 10.1016/j.ymthe.2017.03.035.
- Gould, F.D.H.; Lammers, A.R.;
Mayer, C.J.; German, R.Z. Specific vagus nerve lesion have distinctive
physiologic ,echanisms of dysphagia. Front Neurol 2019, 10 , 1301. doi: 10.3389/fneur.2019.01301.
- Erman, A.B.; Kejner, A.E.;
Norman, B.S.; Hogikyan, D.; Feldman, E.L.. Disorders of cranial nerves
IX and X. Semin Neurol 2009, 29(1), 8592. doi:
10.1055/s-0028-1124027.
- Shaw, G.; Morse. S.; Ararat, M.;
Graham, F.L. Preferential transformation of human neuronal cells by
human adenoviruses and the origin of HEK 293 cells. FASEB
J. 2002, 16(8) , 869-71. doi: 10.1096/fj.01-0995fje.
- Kolumam, G.A.; Thomas, S.;
Thompson, L.J.; Sprent, J.; Murali-Krishna, K. Type I interferons act
directly on CD8 T cells to allow clonal expansion and memory formation
in response to viral infection. J Exp Med 2005, 202(5), 637650. doi: 10.1084/jem.20050821.
- Liu, T.; Khanna, K.M.; Chen, X.;
Fink, D.J.; Hendricks, R.L.. CD8(+) T cells can block herpes simplex
virus type 1 (HSV-1) reactivation from latency in sensory neurons.J Exp Med 2000, 191(9), 1459-66. doi:
10.1084/jem.191.9.1459.
- Katsikas Triantafyllidis, K.;
Giannos, P.; Mian, I. T.; Kyrtsonis, G.; Kechagias, K.S.). Varicella
zoster virus reactivation following COVID-19 vaccination: a systematic
review of case reports. Vaccines 2021, 9(9),1013. doi: 10.3390/vaccines9091013.
- Fathy, R.A.; McMahon, D.E.; Lee,
C.; Chamberlin, G.C.; Rosenbach, M.; Lipoff, J.B.; Tyagi, A.; Desai,
S.R.; French, L.E.; Lim. H.W.; et al. Varicella-zoster and herpes
simplex virus reactivation post-COVID-19 vaccination: a review of 40
cases in an International Dermatology Registry. JEADV 2022, 36(1), e6-e9. doi: 10.1111/jdv.17646.
- Psichogiou, M.; Samarkos, M.;
Mikos, N.; Hatzakis, A. Reactivation of Varicella zoster virus after
vaccination for SARS-CoV-2. Vaccines 2021, 9,572. doi: 10.3390/vaccines9060572.
- Iwanaga, J.; Fukuoka, H.;
Fukuoka, N.; Yutori, H.; Ibaragi, S.; Tubbs, R.S.A narrative review
and clinical anatomy of Herpes zoster infection following COVID‐19
vaccination. Clin Anat 2021, 35(1), 45-51. doi:
10.1002/ca.23790.
- Lladó, I.; Fernández-Bernáldez,
A.; Rodríguez-Jiménez, P. Varicella zoster virus reactivation and mRNA
vaccines as a trigger. JAAD Case Reports 2021, 15, 62-63. doi:
10.1016/j.jdcr.2021.07.011.
- Verweij, M.C.; Wellish, M.;
Whitmer, T.; Malouli, D.; Lapel, M.; Jonjić, S.; Haas, J.G.;
DeFilippis, V.R.; Mahalingam, R.; Früh, K. Varicella viruses inhibit
interferon-stimulated JAK-STAT signaling through multiple mechanismsPLoS Pathog 2015, 11(5), e1004901. doi:
10.1371/journal.ppat.1004901.
- Lensen, R.; Netea, M.G.;
Rosendaal, F.R. Hepatitis C virus reactivation following COVID-19
vaccination – A case report. Int Med Case Rep J 2021 , 14, 573-575. doi: 10.2147/IMCRJ.S328482.
- Jiang , H.; Mei , Y.-F.
SARS-CoV-2 spike impairs DNA damage repair and inhibits V(D)J
recombination in vitro. Viruses 2021, 13, 2056. doi: 10.3390/v13102056.
- Kakarougkas, A.; Ismail, A.;
Klement, K.; Goodarzi, A.A.; Conrad, S.; Freire, R.; Shibata, A.;
Lobrich, M.; Jeggo, P.A. Opposing roles for 53BP1 during homologous
recombination. Nucleic Acids Res 2013, 41(21),9719-31. doi: 10.1093/nar/gkt729.
- Choi, H.S.; Lee, H.M.; Jang,
Y.-J.; Kim, C.-H.; Ryua, C.J. Heterogeneous nuclear ribonucleoprotein
A2/B1 regulates the self-renewal and pluripotency of human embryonic
stem cells via the control of the G1/S transition. Stem Cells 2013, 31 , 2647-2658. doi: 10.1002/stem.1366.
- Zhang, J.; Powell, S.N. The role
of the BRCA1 tumor suppressor in DNA double-strand break repair.Mol Cancer Res 2005, 3(10), 531-9. doi:
10.1158/1541-7786.MCR-05-0192.
- Panier, S.; Boulton, S.J.
Double-strand break repair: 53BP1 comes into focus. Nature
Reviews 2014, 15, 9. doi:
Ihttps://doi.org/10.1038/nrm3719.
- Choi, Y.E.; Pan, Y.; Park, E.;
Konstantinopoulos, P.; De, S.; D’Andrea, A.; Chowdhury, D. MicroRNAs
downregulate homologous recombination in the G1 phase of cycling cells
to maintain genomic stability. eLife 2014, 3 ,
e02445. doi: 10.7554/eLife.02445.
- Perricone, C.; Ceccarelli, F.;
Nesher, G.; Borella, E.; Odeh, Q.; Conti, F.; Shoenfeld, Y.; Valesini,
G. Immune thrombocytopenic purpura (ITP) associated with vaccinations:
a review of reported cases. Immunol Res 2014, 60, 226-35. 10.1007/s12026-014-8597-x
- Kelton , J.G.; Arnold, D.M.;
Nazy, I. Lessons from vaccine-induced immune thrombotic
thrombocytopenia. Nat Rev Immunol 2021, 21(12),753-755. doi: 10.1038/s41577-021-00642-8.
- Lee, E.-J.; Cines, D.B.;
Gernsheimer, T.; Kessler, C.; Michel, M.; Tarantino, M.D.; Semple,
J.W.; Arnold, D.M.; Godeau, B.; Lambert, M.P.; Bussel, J.B.
Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination.Am J Hematol 2021, 96(5), 534-537.
https://doi.org/10.1002/a jh.26132.
- Akiyama, H.; Kakiuchi, S.; Rikitake, J.; Matsuba, H.; Sekinada, D.;
Kozuki, Y.; Iwata, N.. Immune thrombocytopenia associated with
Pfizer-BioNTech’s BNT162b2 mRNA COVID-19 vaccine. IDCases 2021, 25, e01245. doi: 10.1016/j.idcr.2021.e01245.
- Zakaria, Z.; Sapiai, N.A.;
Izaini Ghani, A.R. Cerebral venous sinus thrombosis 2 weeks after the
first dose of mRNA SARS‐CoV‐2 vaccine. Acta Neurochir (Wien) 2021,
163(8), 2359-2362. doi: 10.1007/s00701-021-04860-w.
- Cines , D.B.; Bussel, J.B.
SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. N
Engl J Med 2021, 384 , 2254-2256. doi:
10.1056/NEJMe2106315.
- Wisnewski, A.V.; Campillo Luna,
J.; Redlich, C.A. Human IgG and IgA responses to COVID-19 mRNA
vaccines. PLoS ONE 2021, 16(6), e0249499. doi:
10.1371/journal.pone.0249499.
- Danese, E.; Montagnana, M.;
Salvagno, G.L.; Peserico, D.; Pighi, L.; De Nitto, S.; Henry B.M.;
Porru, S.; Lippi, G. Comprehensive assessment of humoral response
after Pfizer BNT162b2 mRNA Covid-19 vaccination: a three-case series.Clin Chem Lab Med 2021, 59(9),1585-1591. doi: 10.1515/cclm-2021-0339.
- Passariello, M.; Vetrei, C.;
Amato, F.; De Lorenzo, C. Interactions of Spike-RBD of SARS-CoV-2 and
Platelet Factor 4: New Insights in the Etiopathogenesis of Thrombosis.Int J Mol Sci 2021, 22 , 8562. doi:
10.3390/ijms22168562.
- Nevzorova, T.A.; Mordakhanova,
E.R.; Daminova, A.G.; Ponomareva, A.A.; Andrianova, I.A.; Minh, G.L.;
Rauova, L.; Litvinov, R.L.; Weisel, J.W. Platelet factor 4-containing
immune complexes induce platelet activation followed by
calpain-dependent platelet death. Cell Death Discov 2019, 5 , 106. doi: 10.1038/s41420-019-0188-0.
- McKenzie, S.E.; Taylor, S.M.;
Malladi, P.; Yuhan, H.; Cassel, D.L.; Chien, P.; Schwartz, E.;
Schreiber, A.D.; Surrey, S.; Reilly, M.P. The role of the human Fc
receptor FcRIIA in the immune clearance of platelets: A transgenic
mouse model. J Immunol 1999, 162 , 4311-4318.
http://www.jimmunol.org/content/162/7/4311.
- Crow, A.R.; Lazarus, A.H. Role
of Fcgamma receptors in the pathogenesis and treatment of idiopathic
thrombocytopenic purpura. J Pediatr Hematol Oncol 2003, 25(Suppl 1), S14S18. doi:
10.1097/00043426-200312001-00004.
- Lu, Y.; Harada, M.; Kamijo, Y.;
Nakajima, T.; Tanaka, N.; Sugiyama, E.; Kyogashima, M.; Gonzalez,
F.J.; Aoyama, T. Peroxisome proliferator-activated receptor attenuates
high-cholesterol diet-induced toxicity and pro-thrombotic effects in
mice. Arch Toxicol 2019, 93(1), 149161. doi:
10.1007/s00204-018-2335-4.
- Kimura, T.; Nakajima, T.;
Kamijo, Y.; Tanaka, N.; Wang, L.; Hara, A.; Sugiyama, E.; Tanaka, E.;
Gonzalez, F.J.; Aoyama, T. Hepatic cerebroside sulfotransferase is
induced by PPAR activation in mice. PPAR Research 2012, 2012 , 174932. doi:
10.1155/2012/174932
- Wang, Y.; Nakajima, T.;
Gonzalez, F.J.; Tanaka, N. PPARs as metabolic regulators in the liver:
Lessons from liver-specific PPAR-null mice. Int J Mol Sci 2020, 21 , 2061. doi: 10.3390/ijms21062061.
- Wang, X.-A.; Zhang, R.; Jiang,
D.; Deng, W.; Zhang, S.; Deng, S.; Zhong, J.; Wang, T.; Zhu, L.-H.;
Yang, L.; et al. Interferon regulatory factor 9 protects against
hepatic insulin resistance and steatosis in male mice.Hepatology 2013, 58(2), 603-16. doi:
10.1002/hep.26368.
- Zin Tun, G.S.; Gleeson, D.;
Al-Joudeh, A.; Dube, A. Immune-mediated hepatitis with the Moderna
vaccine, no longer a coincidence but confirmed. J Hepatol 2021, Oct 5.
doi: 10.1016/j.jhep.2021.09.031 [Epub ahead of print].
- Dumortiera, J. Liver injury
after mRNA-based SARS-CoV-2 vaccination in a liver transplant
recipient. Clin Res Hepatol Gastroenterol 2022, 46 , 101743. doi: 10.1016/j.clinre.2021.101743.
- Mann, R.; Sekhon, S.; Sekhon, S.
Drug-induced liver injury after COVID-19 vaccine. Cureus 2021, 13(7), e16491. doi: 10.7759/cureus.16491.
- Créange, A. A role for
interferon-beta in Guillain-Barré Syndrome? BioDrugs 2000, 14(1), 1-11. doi:
10.2165/00063030-200014010-00001.
- Ilyas, A.A.; Mithen, F.A.;
Dalakas, M.C.; Wargo, M.; Chen, Z.W.; Bielory, L.; Cook, S.D.
Antibodies to sulfated glycolipids in Guillain-Barr syndrome. J
Neurol Sci 1991, 105(1), 108-17. doi:
10.1016/0022-510x(91)90126-r.
- Vanderlugt, C.L.; Miller, S.D.
Epitope spreading in immune-mediated diseases: Implications for
immunotherapy. Nat Rev Immunol 2002, 2 , 85-95.
doi: 10.1038/nri724.
- Kuwahara, M.; Kusunoki, S.
Mechanism and spectrum of anti-glycolipid antibody-mediated chronic
inflammatory demyelinating polyneuropathy. Clin Exper
Neuroimmunol 2018, 9(1), 65-74. doi:
10.1111/cen3.12452.
- Kalra, R.S.; Kandimalla, R.
Engaging the spikes: heparan sulfate facilitates SARS-CoV-2 spike
protein binding to ACE2 and potentiates viral infection. Signal
Transduct Target Ther 2021, 6 , 39. doi:
10.1038/s41392-021-00470-1.
- Honke, K. Biosynthesis and
biological function of sulfoglycolipids. Proc Jpn Acad Ser B
Phys Biol Sci 2013, 89(4), 129138. doi: 10.2183/pjab.89.129.
- Qiu, S.; Palavicini, J.P.; Wang,
J.; Gonzalez, N.S.; He, S.; Dustin, E.; Zou, C.; Ding, L.;
Bhattacharjee, A.; Van Skike, C.E.; et al. Adult-onset CNS myelin
sulfatide deficiency is sufficient to cause Alzheimers disease-like
neuroinflammation and cogni- tive impairment. Mol Neurodegen 2021, 16 , 64.. doi: 10.1186/s13024-021-00488-7.
- Marcus, J.; Honigbaum, S.;
Shroff, S.; Honke, K.; Rosenbluth, J.; Dupree, J.L. Sulfatide is
essential for the maintenance of CNS myelin and axon structure.Glia 2006, 53(4), 372-81. doi:
10.1002/glia.20292.
- Lanz. T.V.; Ding, Z.; Ho, P.P.;
Luo, J.; Agrawal, A.N.; Srinagesh, H.; Axtell, R.; Zhang, H.; Platten,
M.; Wyss-Coray, T.; Steinman, L. Angiotensin II sustains brain
inflammation in mice via TGF-beta. J Clin Invest 2010, 120(8), 2782-94. doi: 10.1172/JCI41709.
- Letarov,
A.V.; Babenko, V.V.; Kulikov, E.E.; Free SARS-CoV-2 spike protein S1
particles may play a role in the pathogenesis of COVID-19 infection.Biochemistry (Moscow) 2021, 86(3), 257-261.
doi: 10.1134/S0006297921030032.
- Rhea, E.M.; Logsdon, A.F.;
Hanse, K.M.; Williams, L.M.; Reed, M.J.; Baumann, K.K.; Holden, S.J.;
Raber, J.; Banks, W.A.; Erickson, M.A. The S1 protein of SARS-CoV-2
crosses the blood-brain barrier in mice. Nature Neurosci 2021, 24 , 368-378. doi: 10.1038/s41593-020-00771-8.
- Rodriguez-Perez, A.I.; Borrajo,
A.; Rodriguez-Pallares, J.; Guerra, M.J.; Labandeira-Garcia, J.L.
Interaction between NADPH-oxidase and Rho-kinase in angiotensin
II-induced microglial activation. Glia 2015, 63 , 466e482. doi: 10.1002/glia.22765.
- Guo, X.; Namekata, K.; Kimura,
A.; Harada, C.; Harada, T. The
renin-angiotensin system regulates neurodegeneration in a mouse model
of optic neuritis. Am J Pathol 2017, 187(12),2876-2885. doi: 10.1016/j.ajpath.2017.08.012.
- Maleki, A.
COVID-19 recombinant mRNA
vaccines and serious ocular inflammatory side effects: Real or
coincidence? J Ophthalmic Vis Res 2021, 16(3) ,
490501. doi: 10.18502/jovr.v16i3.9443.
- Barone, V.; Camilli, F.; Crisci,
M.; Scandellari, C.; Barboni, P.; Lugaresia, A.. Inflammatory optic
neuropathy following SARS-CoV-2 mRNA vaccine: Description of two
cases. J Neurol Sci 2021, 429 , 118186. doi:
10.1016/j.jns.2021.118186
- Kaulen, L.D.; Doubrovinskaia,
S.; Mooshage, C.; Jordan, B.; Purrucker, J.; Haubner, C.; Seliger, C.;
Lorenz, H.-M.; Nagel, S.; Wildemann, B.; Bendszus, M.; Wick, W.;
Schnenberger, S. Neurological autoimmune diseases following
vaccinations against SARS-CoV-2: a case series. Eur J Neurol 2021, 00, 1-9. doi: 10.1111/ene.15147. [Online ahead
of print]
- Khayat-Khoei, M.; Bhattacharyya,
S.; Katz, J.; Harrison, D.; Tauhid, S.; Bruso, P.; Houtchens, M.K.;
Edwards, K.R.; Bakshi, R.). COVID-19 mRNA vaccination leading to CNS
inflammation: a case series. J Neurol
2021 Sep 4, 1-14, doi:
10.1007/s00415-021-10780-7. [Online ahead of print.]
- Jeong, M.; Ocwieja, K.E.; Han,
D.; Wackym, P.A.; Zhang, Y.; Brown, A.; Moncada, C.; Vambutas, A.;
Kanne, T.; Crain, R.; et al. Direct SARS-CoV-2 infection of the human
inner ear may underlie COVID-19-associated audiovestibular
dysfunction. Comm Med 2021, 1, 44. doi: 10.1038/s43856-021-00044-w.
- Uranaka, T.; Kashio, A.; Ueha,
R.; Sato, T.; Bing, H.; Ying, G.; Kinoshita, M.; Kondo, K.; Yamasoba,
T. Expression of ACE2, TMPRSS2, and furin in mouse ear tissue, and the
implications for SARS-CoV-2 infection. Laryngoscope 2021, 131(6), E2013-E2017. doi: 10.1002/lary.29324.
- Rodrigues Figueiredo, R.;
Aparecida Azevedo, A.; De Oliveira Penido, N. Positive association
between tinnitus and arterial hypertension. Front Neurol 2016, 7 , 171. doi: 10.3389/fneur.2016.00171
- Sekiguchi, K.; Watanabe, N.;
Miyazaki, N.; Ishizuchi, K.; Iba, C.; Tagashira, Y.; Uno, S.; Shibata,
M.; Hasegawa, N.; Takemura, R.; et al. Incidence of headache after
COVID-19 vaccination in patients with history of headache: A
cross-sectional study. Cephalalgia 2021,
3331024211038654. doi: 10.1177/03331024211038654. [Online ahead of
print.]
- Consoli, S.; Dono, F.;
Evangelista, G.; D’Apolito, M.; Travaglini, D.; Onofrj, M.; Bonanni,
L. Status migrainosus: A potential adverse reaction to Comirnaty
(BNT162b2, BioNtech/Pfizer) COVID-19 vaccinea case report.Neurol Sci 2021 Nov 22, 1-4. doi:
.10.1007/s10072-021-05741-x. [Online ahead of print]
- Huang, Y.; Cai, X.; Song, X.;
Tang, H.; Huang, Y.; Xie, S.; Hu, Y. Steroids for preventing
recurrence of acute severe migraine headaches: a meta-analysis.Eur J Neurol. 2013, 20(8), 1184-1190. doi:
10.1111/ene.12155.
- Lemberger, T.; Staels, B.;
Saladin, R.; Desvergne, B.; Auwerx, J.; Wahli, W. Regulation of the
peroxisome proliferator-activated receptor alpha gene by
glucocorticoids. J Biol Chem 1994, 269(40), 24527-30.
- Dodick, D.; Silberstein, S.
Central sensitization theory of migraine: clinical implications.Headache 2006, 46(suppl 4), S18291. doi:
10.1111/j.1526-4610.2006.00602.x.
- Mungoven, T.J.; Meylakh, N.;
Marciszewski, K.K.; Macefield, V.G.; Macey, P.M.; Henderson, L.A.
Microstructural changes in the trigeminal nerve of patients with
episodic migraine assessed using magnetic resonance imaging. J
Headache Pain 2020, 21 , 59. doi:
10.1186/s10194-020-01126-1.
- Tronvik, E.; Stovner, L.J.;
Helde, G.; Sand, T.; Bovim, G. Prophylactic treatment of migraine with
an angiotensin II receptor-blocker: A randomized controlled trial.JAMA 2003, 289(1), 65-69.
doi:10.1001/jama.289.1.65.
- Nandha , R.; Singh, H. Renin
angiotensin system: A novel target for migraine prophylaxis.
Indian J Pharmacol 2012, 44(2), 157160. doi:
10.4103/0253-7613.93840.
- FDA. Vaccines and related
biological products advisory committee December 10, 2020 meeting
announcement; 2021.
https://www.fda.gov/advisory-committees/advisory-committee-
calendar/vaccines-and-related-biological-products-advisory-committee-december-10-2020-meeting-
announcement. [Accessed March 29, 2021].
- FDA. Vaccines and related
biological products advisory committee December 17, 2020 meeting
announcement; 2021.
https://www.fda.gov/advisory-committees/advisory-committee-calendar/vaccines-and-related-biological-products-advisory-committee-december-17-2020-meeting-announcement.
[Accessed March 29, 2021].
- Eviston, T.; Croxson, G.R.;
Kennedy, P.G.E.; Hadlock, T.; Krishnan, A.V. Bell’s palsy: aetiology,
clinical features and multidisciplinary care. J Neurol Neurosurg
Psychiatry 2015, 86, 13561361. doi:
10.1136/jnnp-2014-309563.
- Simone, A.; Herald, J.; Chen, A. Acute myocarditis following COVID-19
mRNA vaccination in adults aged 18 years or older. AMA Intern
Med October 4, 2021 . doi:10.1001/jamainternmed.2021.5511.
[Online ahead of print].
- Jain, S.S.; Steele, J.M.;
Fonseca, B.; Huang, S.; Shah, S.; Maskatia, S.A.; Buddhe, S.; Misra,
N.; Ramachandran, P.; Gaur, L.; et al. COVID-19
vaccination–associated myocarditis in adolescents. Pediatrics 2021, 148(5), e2021053427. doi:
10.1542/peds.2021-053427.
- Weikert. U.; Kühl, U.;
Schultheiss, H.-P.; Rauch, U. Platelet activation is increased in
patients with cardiomyopathy: myocardial inflammation and platelet
reactivity. Platelets 2002, 13(8), 487-91.
doi: 10.1080/0953710021000057857.
- Garg, A.; Seeliger, B.; Derda,
A.A.; Xiao, K.; Gietz, A.; Scherf, K.; Sonnenschein, K.; Pink, I.;
Hoeper, M.M.; Welte, T.; et al. Circulating cardiovascular microRNAs
in critically ill COVID-19 patients. Eur J Heart Fail.2021, 23(3), 468-475. doi: 10.1002/ejhf.2096.
- Qiu, X.-K., Ma, J. Alteration in
microRNA-155 level correspond to severity of coronary heart disease.Scand J Clin Lab Invest 2018, 78(3), 219-223.
doi: 10.1080/00365513.2018.1435904.
- Wang,
C.; Zhang, C.; Liu, L.; A, X.; Chen, B.; Li, Y.; Du, J.
Macrophage-derived mir-155-containing exosomes suppress fibroblast
proliferation and promote fibroblast inflammation during cardiac
injury. Mol Ther 2017, 25(1), 192-204. doi:
10.1016/j.ymthe.2016.09.001.
- Gavras, I.; Gavras, H.
Angiotensin II as a cardiovascular risk factor. J Hum Hypertens 2002, 16(Suppl 2), S2-6. doi: 10.1038/sj.jhh.1001392.
- Oudit, G.Y.; Kassiri, Z.; Jiang,
C.; Liu, P.P.; Poutanen, S.M.; Penninger, J.M.; Butany, J. SARS
coronavirus modulation of myocardial ACE2 expression and inflammation
in patients with SARS. Eur J Clin Invest 2009, 39(7), 618625. doi: 10.1111/j.1365-2362.2009.02153.
- Vaers Home. VAERS. (n.d.).
Retrieved December 5, 2021, from
https://vaers.hhs.gov/data/dataguide.html.
- Lazarus, R.; Klompas, M.;
Bernstein, S. Electronic Support for Public Health–Vaccine Adverse
Event Reporting System (ESP: VAERS). Grant. Final Report, Grant ID:
R18 HS, 17045. 2010 .
- Rose, J. Critical appraisal of
VAERS pharmacovigilance: is the U.S. vaccine adverse events reporting
system (VAERS) a Functioning pharmacovigilance system? Science,
Public Health Policy, and the Law 2021 , 3, 100-129.
- McLachlan, S.; Osman, M.; Dube,
K.; Chiketero, P.; Choi, Y.; Fenton, N. Analysis of COVID-19 vaccine
death reports from the Vaccine Adverse Events Reporting System (VAERS)
Database. Preprint. 2021 . doi: 10.13140/RG.2.2.26987.26402.
- Shin, D.H.; Kim, B.0.R.; Shin,
J.E.; Kim, C.-H. Clinical manifestations in patients with herpes
zoster oticus. Eur Arch Otorhinolaryngol 2016, 273 , 1739d—1743. doi: 10.1007/s00405-015-3756-9.
- Kim, C.-H.; Choi, H.; Shin, J.E.
Characteristics of hearing loss in patients with herpes zoster oticus.Medicine 2016, 95(46) , e5438. doi:
10.1097/MD.0000000000005438.
- Fenton, A.M.; Hammill, S.C.;
Rea, R.F.; Low, P.A.; Shen, W.-K. Vasovagal syncope. Annals
Intern Med 2000, 133(9), 714-725. doi:
10.7326/0003-4819-133-9-200011070-00014.
- Babic ,T.; Browning, K.N. The
role of vagal neurocircuits in the regulation of nausea and vomiting.Eur J Pharmacol. 2014, 722 , 38-47. doi:
10.1016/j.ejphar.2013.08.047.
- Kampf, G. The epidemiological
relevance of the COVID-19-vaccinated population is increasing.The Lancet Regional Health - Europe 2021, 11 ,
100272. doi: 10.1016/j.lanepe.2021.100272.