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Abstract
[bookmark: _Hlk85105254]	Accurate simulation of plant water use across agricultural ecosystems is essential for various applications, including precision agriculture, quantifying groundwater recharge, and optimizing irrigation rates. Previous approaches to integrating plant water use data into hydrologic models have relied on evapotranspiration (ET) observations. Recently, the flux variance similarity approach has been developed to partition ET to transpiration (T) and evaporation, providing an opportunity to use T data to parameterize models. To explore the value of T/ET data in improving hydrologic model performance, we examined multiple approaches to incorporate these observations for vegetation parameterization. We used ET observations from 5 eddy covariance towers located in the San Joaquin Valley, California, to parameterize orchard crops in an integrated land surface – groundwater model. We find that a simple approach of selecting the best parameter sets based on ET and T performance metrics works best at these study sites. Selecting parameters based on performance relative to observed ET creates an uncertainty of 27% relative to the observed value. When parameters are selected using both T and ET data, this uncertainty drops to 24%. Similarly, the uncertainty in potential groundwater recharge drops from 63% to 58% when parameters are selected with ET or T and ET data, respectively. Additionally, using crop type parameters results in similar levels of simulated ET as using site-specific parameters. Different irrigation schemes create high amounts of uncertainty and highlight the need for accurate estimates of irrigation when performing water budget studies.

1 Introduction
Globally, evapotranspiration (ET) is the largest flux from the terrestrial hydrologic cycle, and as global temperatures rise, ET fluxes are rising (Pascolini-Campbell et al., 2021). Thus, the accurate quantification of ET is necessary to understand water budgets, particularly in agricultural settings where maximizing plant water use and irrigation efficiency is desired. In the United States, irrigated agriculture in water-limited environments is common and includes several economically important regions, including the highly productive Central Valley of California. In arid and semi-arid regions, irrigated agriculture dramatically alters the water budget by supplying excess water for ET, groundwater recharge (R), and runoff. Irrigation management in these systems is a complex challenge to balance crop growth, soil salinity, runoff, and recharge, with limited water resources. Besides surface water, groundwater is also widely used for irrigation, and many aquifers are heavily overdrafted to meet the irrigation demand (Faunt, 2009; Siebert et al., 2010). In irrigated agriculture, return flow often constitutes a significant source of groundwater recharge, but quantifying irrigation recharge and projecting its future changes remains a critical challenge (Hanson et al., 2012; Meixner et al., 2016). As the largest component of the water budget is ET, accurate quantification of the ET is required to improve the accuracy of recharge estimates from agricultural settings (Baldocchi et al., 2019).
Land surface models (LSMs) are commonly used to simulate ET at regional scales and investigate the impact of agricultural practices on water use (Bohn et al., 2018; Dickinson et al., 2006). One of the most common ET modeling approaches in LSMs, hydrologic models, and crop models is the Penman-Monteith equation that parameterizes canopy resistance to ET via stomatal conductance parameters (Bohn & Vivoni, 2016; Fisher et al., 2005; Grant et al., 2006; Ivanov et al., 2004; Monteith & Unsworth, 1990). A common method to parameterize stomatal resistence is with the Ball-Berry empirical model, widely used in LSMs such as the Common Land Model (CLM) (Collatz et al., 1991). The Ball-Berry method relies on the rate of photosynthesis, which can be limited by light, the rate of carboxylation, or the export of products from the reaction center (Collatz et al., 1991; Jefferson et al., 2017). The stomatal resistance from the Ball-Berry approach is combined with plant-specific parameters and atmospheric variables to calculate transpiration. Due to the number of parameters and the difficulty in measuring many of them, the parameters that control transpiration are assumed constant across all vegetation types within the LSMs, even though evidence exists that this is not accurate (Boas et al., 2021; Kattage et al., 2009; Lombardozzi et al., 2020). Due to this limitation, many studies have focused on generic croplands or row crops such as corn and soybean to predict ET in agricultural settings (Lombardozzi et al., 2020; Rajib et al., 2018; Srivastava et al., 2020). The ParFlow.CLM model that couples the CLM LSM with a fully integrated surface water – groundwater model (Kollet & Maxwell, 2006; Maxwell, 2013; Maxwell & Miller, 2005) has been used to study hydrologic processes in several agricultural regions (Gilbert & Maxwell, 2017; Maxwell & Condon, 2016). In all previous applications, however, generic cropland plant functional type parameters have been used for cropland sites. 
Although all hydrologic models contain simplifications, the existing modeling approaches can be classified into physically-based distributed models, semi-distributed, or empirical, lumped models (Beven, 2012; Wagener et al., 2003). Most uncertainty quantification studies have focused on using the lumped models due to their computational efficiency to perform thousands of simulations using a large number of parameter sets (Avanzi et al., 2020). Furthermore, most model parameterization approaches use a single objective function to assess model performance and select a single or multiple parameter sets (i.e., behavioral parameter sets) that best match the observations. The single objective parameter selection approach tends to overfit and skew parameter selection toward fitting the single variable of interest while neglecting the internal processes that those parameters represent (Wagener & Gupta, 2005). Similar challenges may occur when parameterizing plant functional types (PFTs) in LSMs because vegetation parameters are typically selected to match ET observations, rather than the plant-controlled portion of ET, transpiration (T). This parameter selection approach can result in inaccurate ET estimates by neglecting processes that control T and soil evaporation (E).
Most efforts to parameterize PFTs in CLM rely on sensitivity analysis, observations of total ET, or a combination of the two for PFT parameter selection. Sensitivity analyses of the CLM showed that the maximum rate of carboxylation and the Ball-Berry stomatal resistance slope parameter are the most sensitive parameters that affect simulated ET (Göhler et al., 2013; Yamazaki et al., 2013). More recent efforts have added a crop tool to new versions of CLM (versions 4.5 and 5.0) and parameterized certain row crops using total ET estimated from flux towers, focusing on winter vegetation (Boas et al., 2021; Lu et al., 2017). To our knowledge, vegetation parameterization within CLM has only been done using the total ET, rather than T, which could bias the vegetation-specific parameterization.
To investigate agricultural water management in a holistic manner, integrated hydrologic models, such as ParFlow.CLM, are required that can simultaneously simulate plant water use, runoff, and groundwater recharge. Previous efforts to understand the sensitivity of simulated ET to vegetation parameters within ParFlow.CLM were performed using single column models at several sites (Jefferson et al., 2015). In a follow-up study, Jefferson et al. (2017) performed a sensitivity analysis to determine the parameters that most impact the transpiration rates. While these studies inform parameter selection and optimization, they do not use observed values of T or ET. The large amount of ET flux data that are collected via networks such as Ameriflux, and with the proliferation of ET partitioning techniques (Kool et al., 2014), there is an opportunity to improve LSMs vegetation parameterization using both T and ET. 
In agricultural ecosystems, the accuracy of simulated ET and soil moisture depends on irrigation parameterization (Ferguson & Maxwell, 2011; Lawston et al., 2017). However, detailed information about the total amount of applied irrigation, timing and irrigation practices are often not available (Foster et al., 2020), and it is difficult to evaluate the impacts of irrigation parametrization schemes in land surface models due to limited availability of high-resolution soil moisture and ET observations at large scale (Lawston et al., 2017).
In this study, we build ParFlow.CLM models at 5 eddy covariance tower sites in the California San Joaquin Valley. The sites are located in nut orchards, 3 in almond orchards and 2 in pistachio orchards. We employ the flux variance similarity method within the Fluxpart software to partition the observed ET into E and T components using eddy covariance data (Scanlon & Kustas, 2010; Skaggs et al., 2018). We then use this data to set vegetation parameters within the ParFlow.CLM model that have been found important in controlling photosynthesis rates and to develop new vegetation class parameter sets for nut orchard crops. We aim to answer the following questions. First, can we select optimal vegetation parameters considering parameter uncertainty and equifinality? Second, does transpiration data help improve vegetation parameterization relative to total ET data? Finally, what are the water budget uncertainties related to vegetation parameter selection, site-specific vs. class average vegetation parameter values, and irrigation implementation methods in orchards?
2 Methods
2.1 Study Sites and Observational Datasets
	Five commercial nut orchards within the California San Joaquin Valley with eddy covariance systems were selected for vegetation parameterization in ParFlow.CLM (Table 1). Mean annual precipitation (MAP) and mean air temperature (MAT) illustrate that the study sites are under semi-arid climatic conditions with high atmospheric water demand that rely on irrigation to meet crop water demand. The Central Valley is underlain by thousands of meters of sediments that form a productive groundwater aquifer from which irrigation water is drawn (Faunt, 2009). A detailed description of the sites can be found in Helalia et al. (2021)).  The sites are located on a gradient of soil salinity (see Table 1 from Helalia et al. (2021)) with a range of textures (Table 1). Here, we provide a short description relevant to this study. Eddy covariance (EC) towers were installed in three almond orchards and two pistachio orchards in 2016 and have data available for three water years (WY), WY2017-2019. Each site was instrumented with an open-path infrared gas analyzer (IRGA) and 3D sonic anemometer mounted on a tower above the canopy level. Canopy heights and measurement heights for the EC instruments are reported in Table 1. Eddy flux instruments were grouped by manufacturer with EC150/IRGASON (Campbell Scientific, Logan, UT, USA) at two pistachio sites (low salinity pistachio, US-PSL, and high salinity pistachio, US-PSH) and 7500/7500A (Licor Inc., Lincoln, NE, USA) at three almond sites (low salinity, US-ASL, medium salinity, US-ASM, and high salinity, US-ASH). The high-frequency data were processed to 30-min flux values using EddyPro software (v7.0; (Fratini & Mauder, 2014)). Data quality in Eddy Pro was flagged with the Mauder and Foken, 2004 system (Mauder & Foken, 2011). Gap-filling and energy budget closure were performed following Anderson et al., (2017), with gap-filling and u* filtering performed with the Max-Planck tool (Wutzler et al., 2018). Data can be accessed from the Ameriflux website (https://ameriflux.lbl.gov/).  

Table 1: Study sites and their characteristics. 
	Metric (units)
	US-ASH
	US-ASM
	US-ASL
	US-PSH
	US-PSL

	Latitude
	36.1697
	36.1777
	36.9466
	36.2347
	36.8276

	Longitude
	-120.2010
	-120.2026
	-120.1024
	-120.2026
	-120.1397

	Field Size (ha)
	81
	53
	16
	63
	16

	Canopy Height (m)
	6.77
	6.77
	7.41
	3.51
	5.18

	Measurement Height (m)
	7.92
	7.92
	9.41
	5.8
	7.5

	Year Planted
	1998
	2006
	2010
	2006
	2008

	Soil Texture Class1
	Clay Loam
	Clay
	Sandy Clay
	Silty Clay Loam
	Sandy Clay Loam

	MAP (mm)
	239
	239
	290
	243
	269

	MAT (º C)
	17.8
	17.8
	18.0
	17.8
	17.2


1Helalia et al. (2021)
2.2 Partitioning Evapotranspiration
	We partition total ET into the transpiration from vegetation (T) and evaporation from soil and leaf surfaces (E) by applying flux variance similarity (FVS) theory to the high-frequency measurements of wind velocity and water vapor (H2O) and carbon dioxide (CO2) concentrations (Scanlon & Kustas, 2010, 2012). Briefly, Monin-Obukhov similarity theory implies that concentrations of H2O and CO2 should exhibit perfect correlation when measured at the same point in the atmosphere. The actual correlations may deviate from this when there are multiple source/sinks of H2O and CO2, such as T and E impacting the H2O and CO2 fluxes. The premise of the FVS technique is that the deviation from perfect correlation and leaf-level water use efficiency (WUE) between water vapor and carbon dioxide can be used to determine the relative importance of the two sources of ET. 
	In this study, we use the Fluxpart software, which implements the FVS partitioning method, to partition ET into T and E components (Skaggs et al., 2018). Apart from the high-frequency EC data, the leaf-level WUE is the only other input to the FVS partitioning. We estimate the WUE following Scanlon & Sahu (2008) and (Campbell & Norman, (1998). Intercellular H2O is assumed to be at the saturation vapor pressure of the leaf temperature, and leaf temperature is assumed to be equal to the measured air temperature at the EC tower. The intercellular CO2 concentration is estimated by assuming a constant ratio (0.7) between the measured CO2 concentration in ambient air at the EC tower and the leaf (Skaggs et al., 2018). Data from periods when the FVS assumptions were not met and ET could not be partitioned were removed from the analysis. Figure 1 presents daily sums of the ET and results from the FVS technique. The gap-filled ET from Ameriflux is presented as a dashed line, while the solid lines present daily sums of ET, T, and E that exclude periods when FVS assumptions are not met and have not been gap-filled. Fluxpart does not attempt a partitioning analysis when the data are incompatible with the FVS method, or other quality checks are failed (Skaggs et al., 2018). These periods include time when the friction velocity (u*) value indicates insufficient turbulence for EC methods, the apparent atmospheric vapor pressure deficit is zero, the water vapor flux is negative or zero, the estimated WUE is non-negative, or errors or excessive missing data were found when reading high-frequency flux data (Skaggs et al., 2018). Figure 1 displays these periods as either gaps in the solid lines, or periods when the daily sums from Fluxpart are less than the gap-filled values from Ameriflux. These periods are excluded from comparisons with simulated values. 
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Figure 1: Observed evapotranspiration from five EC towers, as processed by Ameriflux (ET), and the FVS partitioning method where ET has been filtered when the FVS assumptions are not met (ET FVS). The Fluxpart program estimates transpiration (T) and evaporation (E) fluxes.

2.3 Transpiration Formulation in ParFlow.CLM
	We apply the ParFlow.CLM model, an integrated groundwater-surface water model that has been coupled with a modified version of the CLM 3.0 LSM (Kollet & Maxwell, 2006; Maxwell & Miller, 2005) to simulate ET and potential recharge from the root zone. We build a 1-D model to represent each orchard with an EC tower. ParFlow.CLM solves Richards’ equation for variably saturated subsurface flow and is fully integrated with the surface water flow equation following the kinematic wave approximation. Land surface fluxes are simulated with the CLM module and pressure head and saturation values in the soil layers are computed by ParFlow and exchanged to the CLM. 
	The equations used to simulate ET and T are described in detail in Jefferson et al. (2015, 2017) and are not completely reproduced here. We give a brief summary relevant to the work presented here. The CLM uses a mass transfer approach to simulate ET that is based on the proportional relationship between vapor flux and vapor pressure deficit (Oleson et al., 2004)

	,					(1)

where ρatm is the density of atmospheric air, qatm is the atmospheric specific humidity, qs is the specific humidity at the evaporating surface (at the ground or within the leaf), and raw is the aerodynamic resistance factor. The vapor pressure gradient and resistances are calculated separately for the canopy and the bare soil regions. In vegetated pixels, the total ET is calculated as the sum of evaporation from dry leaf surface via stomata (transpiration), evaporation from wetted leaf and stem surfaces (evaporation of intercepted water), and evaporation from the soil surface (bare soil evaporation). The evaporation from vegetation is the sum of transpiration and evaporation from wetted leaf and stem surfaces. Transpiration from the dry portion of the canopy (Ld) is calculated as:

,		(2)

where the potential transpiration (portion of equation 2 following the brackets) is defined by the leaf area index (LAI), stem area index (SAI), air density (ρatm), boundary layer resistance rb, and the gradient between specific humidity in the foliage (qf) and the canopy air (qc). The canopy is divided into the sunlit (sun) and shaded (sha) regions each with separate LAI and stomatal resistance (rs) values. 
	The daytime stomatal resistance is parameterized using the Ball-Berry approach:

,					(3)

where A is the rate of photosynthesis, cs is the concentration of CO2 at the leaf surface, es is the saturated vapor pressure at the leaf temperature, ei is the vapor pressure of the canopy air, and Patm is the atmospheric pressure. The m and b parameters form a linear relation between rs and the rate of photosynthesis, CO2 concentration, and atmospheric pressures. During the daytime hours in ParFlow.CLM (when photosynthetically active radiation > 10 W/m2), the photosynthesis rate can be limited by three factors, the RuBisCo enzyme, the buildup of products of the photosynthesis reaction, or light. During the nighttime hours, rs is set to an arbitrary maximum value to limit transpiration (Jefferson et al., 2017).
2.4 Hydrologic model setup and forcing data
	We build 1-D models at each of the 5 study sites using the ParFlow.CLM code. Each model domain is a 500x500x20 m single column represented by a 1x1x11 model grid. The top 2 m of the model column is divided into 10 layers, each 0.2 m thick to represent the root zone. We include a 20 m thick bottom layer to capture potential recharge leaking out of the root zone. Parameter values for saturated hydraulic conductivity (Ksat), porosity (ϕ), and Van Genuchten parameters α and n are assigned based on soil texture measurements (Helalia et al., 2021) using the ROSETTA algorithm (Schaap et al., 2001). Meteorological forcings at the EC tower locations are presented in Figure 2. Irrigation is calculated based on grower supplied irrigation rate and schedules, and is confirmed by manually checking soil moisture values at 5 cm depth. 
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Figure 2: Forcing data inputs for the ParFlow.CLM models at each of the 5 sites, (a) precipitation (P) + irrigation (I), (b) wind speed (US), (c) air temperature (TA), and (d) specific humidity (SPFH). Daily average values are presented, except for (a) where daily cumulative sum values are presented. 

2.5 Model Scenarios
	We build a ‘base case’ scenario at each study site using observed values of meteorological forcings and irrigation. Soil parameters are assigned by the observed soil texture and the pedotransfer function. The soil parameter values and total irrigation are presented in Table 2. All vegetation types are assigned to cropland plant functional type using the default CLM parameters for croplands. Next, we build ‘vegetation calibration scenarios’ to select optimum vegetation specific parameter values at each site. We build ‘soil parameter test scenarios’ to test the impact of soil parameters on the selection of vegetation parameters. Finally, we build ‘irrigation scenarios’ to test the impact of different approaches to apply irrigation on the simulated water budget.
Previous studies have found that the most sensitive vegetation parameters in CLM control the slope of the relationship between photosynthesis and rs and the carboxylation rate (Göhler et al., 2013; Jefferson et al., 2017; Li et al., 2013). Within the ParFlow.CLM code, those parameters are m (the slope value from Eqn. 3) and Vc,max (µmol CO2 m-2 s-1), the maximum carboxylation rate at 25 ºC. To calibrate the vegetation parameters for orchards, we use a Latin Hypercube approach (Pianosi et al., 2015) to generate 600 parameter sets for m and Vc,max. Parameter values are sampled across the uniform distribution of the entire range of values considered reasonable for any vegetation type; for m that range was 4 to 12 and for Vc,max that range was 20 to 120 (Göhler et al., 2013; Jefferson et al., 2017; Kattage et al., 2009; Yamazaki et al., 2013). As these parameters are hard coded in the ParFlow.CLM model and the model is computationally demanding, a larger set of parameters was deemed unnecessary. We then run the 600 vegetation parameter sets for each of the 5 sites with the observed soil texture and meteorological forcings. The scenarios resulting from this exercise are called the vegetation calibration scenarios. Parameter selection approaches are described in section 2.6. We select the top performing parameters from each site as the ‘site specific’ parameter values and select the top performing parameters for almonds, using the ASH, ASM, and ASL sites, and pistachios, using the PSH and PSL sites, separately. Finally, we run two model scenarios to test the impact of applying vegetation class average vegetation parameters vs. using site-specific parameters. 
As plants extract water from the soil during transpiration, soil parameters may influence the optimal vegetation parameters (Yang et al., 2021). We test the impact of soil parameters on the vegetation parameters selection by running the 600 vegetation parameters with two different sets of soil parameters at each of the five sites (total of 1200 simulations). For the first run, we set the Ksat value to 0.5 m/hr while keeping the same porosity and Van Genuchten parameters as the base case. For the second run, we changed the Ksat value to 0.005 m/hr. The range of Ksat values from our study sites was 0.0083 – 0.0159 m/hr, so we use extreme values of soil parameters in the soil parameter scenarios.  

Table 2: Model parameter values for the base case scenario from each of the five study sites. 
	Parameter (units)
	US-ASH
	US-ASM
	US-ASL
	US-PSH
	US-PSL

	Ksat (m/hr)
	0.0083
	0.0159
	0.0113
	0.0122
	0.0133

	porosity (-)
	0.442
	0.482
	0.387
	0.481
	0.387

	Van Genuchten n
	1.18
	1.39
	1.09
	1.78
	1.13

	Van Genuchten alpha
	2.4
	2.78
	4.21
	0.45
	0.7

	P + I (mm/yr)
	1392
	1236
	1799
	1235
	1497

	Crop Type
	Almond
	Almond
	Almond
	Pistachio
	Pistachio



	As actual irrigation rates are often variable and unknown to modelers, researchers typically need to estimate irrigation rates using various approaches (Foster et al., 2019). We test the impact of using a crop demand-based method provided by the California Department of Water Resources (CA DWR, 2020) and its timing against observed applied irrigation on the simulated fluxes. For the irrigation scenarios, we use the site-specific, calibrated vegetation parameters for each of the 5-sites. The soil parameters and meteorological forcings (excluding irrigation) are from the ‘base case’ scenario. First, we run ParFlow.CLM with the observed irrigation amounts. Because growers applied irrigation with no repeatable pattern, observed irrigation amounts are added to the precipitation forcing. The California Department of Water Resources (CA-DWR; https://water.ca.gov/Programs/Water-Use-And-Efficiency/Land-And-Water-Use/Agricultural-Land-And-Water-Use-Estimates) provides estimates of the average amount of irrigation per crop type, which is 1,128 mm/yr for almonds and pistachios in the study area. We use the estimated values from CA-DWR and apply them to fields in two ways. In both cases, the drip irrigation module of ParFlow.CLM is set to irrigate from 7 am to 5 pm local time, consistent with the grower-supplied irrigation schedules (12-24 hours at a time), and only irrigation season is modified. In the ‘constant irrigation’ scenario, irrigation is applied every day of the year, while for the ‘growing season’, it is applied only from April-September. Both approaches apply the same total amount of irrigation.  
2.6 Parameter Selection Approaches
	To select the optimum parameter values for each vegetation type, we employ three methods and evaluate their effectiveness in constraining final parameter values by using observed ET, T, or  T/ET values. We divide the study period into ‘calibration’ and ‘validation’ periods. The calibration period consists of WY 2017-2018 and is used for parameter selection. The validation period is WY2019 and is used to evaluate model performance. A water year starts on October 1 and ends on September 30 of the following year. In all the parameter selection approaches described here, we use 30-minute observed values from the Fluxpart software that are not gap filled. During 30-minute periods with data gaps, simulated values are removed and daily or weekly sums are calculated using only high-quality data. We use total weekly values of ET or T to calculate the model performance metrics in all of the parameter selection approaches, except for the Dynamic Identifiability (DYNIA) analysis (method 3) where we use daily values. 
The first parameter selection method is to select the single best parameter set based on a single or multiple performance metrics. We call this method (1), or the ‘Single Best Performance’ approach. The performance metrics are the Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970), the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009), and the rank-ordered mean of bias (defined as the sum of the simulated value divided by the sum of the observed value) and the Mean Absolute Error (MAE). The top performing parameter set for each metric is selected as the best parameter set for that site. Vegetation class (‘almond’ or ‘pistachio’) parameters are selected by averaging the performance metrics ranks from each of the sites, and selecting the parameter set with the highest average rank. 
	The second parameter selection approach is based on the Generalized Likelihood Uncertainty Estimation (GLUE) framework (Beven & Binley, 2014). We call this method (2), or the ‘Modified GLUE’ approach. In the GLUE framework, a large number of parameter sets are randomly generated from an a priori distribution of model parameters, and ‘behavioral’ or ‘non-behavioral’ parameter sets are defined based on a likelihood function (i.e., a performance metric) calculated using simulated and observed data. We run the vegetation calibration scenarios using the 600 parameter sets generated from the Latin Hypercube sampling approach. To identify the behavioral parameter sets, we apply the optimum-percentage threshold approach, which finds the percentage of parameter sets that maximizes reliability (fraction of observations captured by the prediction interval) and sharpness (width of posterior prediction interval) (Shafii et al., 2015). This is done by calculating the ‘distance to ideal’ (DTI). The ideal sharpness and reliability are both one, and the optimum percentage of simulations to include is determined by the number that results in the smallest Pythagorean distance to ideal conditions (Shafii et al., 2015). We use three different likelihood functions, the KGE, the NSE, and the ranked mean of the bias and MAE between simulated ET (or T) and observed ET (or T) from the eddy covariance tower. To calculate the ranked mean, we first rank the parameter sets by each performance metric, then take the mean of the ranks and re-sort the parameter sets based on the mean rank. Then, by plotting a histogram of the parameter values from the behavioral simulations, we select the parameter value representing the peak of the posterior distribution for both Vc,max and m. When selecting parameters for a vegetation class (i.e., almonds or pistachios), we combine the parameter values from all behavioral simulations from each of the sites in the posterior distribution and choose the parameter set with the largest peak.
To plot the 95% confidence interval of the GLUE prediction bounds (Beven & Binley, 2014)  for simulated ET, we apply a simple weighting scheme based on the KGE values of each simulation:

,					(4)

where wi is the weight for parameter set i and n is the number of behavioral parameter sets. As the rank mean of bias and MAE is not an absolute value, it is difficult to use this metric to calculate parameter set weights. Using the KGE as the likelihood function provides similar posterior distributions of parameter values as the MAE+Bias and NSE methods (see section 3.1), so we believe it is an appropriate measure to calculate uncertainty in simulated ET. 
	The third parameter selection approach accounts for potential temporal heterogeneity in parameter values. We call this method (3) or the ‘Median of DYNIA’ approach. We apply Dynamic Identifiability Analysis (DYNIA, see Wagener et al. (2003)) to calculate posterior distributions of parameter values for each simulation day. The DYNIA approach is a modified version of the GLUE approach. The likelihood function (KGE or the NSE) is calculated each day using a moving window of 21 days. For the DYNIA analysis, we define the behavioral simulations as the 10% of simulations with the best performance metrics for that day. We then plot a histogram of the parameter values from the behavioral simulations using 15 bins and select the distribution peak as the parameter value for that day. To select the final time-invariant parameter values, we select the median of the parameters selected for each individual day (Avanzi et al., 2020). Vegetation class parameters are selected by combining the individual day parameters from all sites in the vegetation class (almond or pistachio) and selecting the median value as the vegetation class parameter values. In addition to parameter selection, the DYNIA analysis estimates the information content (IC) for each time step (Avanzi et al., 2020). The IC at each time step is the amount that narrows the range of acceptable parameter values by comparison to observed data. So, the IC is defined as one minus the width of the posterior distribution divided by the width of the a priori distribution (Avanzi et al., 2020). As the DYNIA approach uses a moving window of 21 days to calculate performance metrics, the IC for each day is representative of a moving window of 3 weeks centered on that day. 
	When multi-objective performance metrics for parameter selection based on both ET and T/ET data (ET + T/ET) are desired, parameter sets are ranked based on performance metrics relative to ET and the T/ET ratio individually. Then, the mean value of the ranks is used to select the top-performing parameter sets. 
3 Results
3.1 Optimal Parameter Selection Approach Based on ET observations
	A major challenge for calibrating hydrologic models that has not been fully resolved, is how to select the best parameter sets for an application given the equifinality issue, i.e., many parameter combinations provide equally good results against observations (Beven, 2006). To answer our research question (1), we apply three parameter selection approaches using observed ET data to assess the performance of each parameter selection method. As the observed estimates of T contain more uncertainty than the ET estimates, we use only the most high-quality total ET data for this section. Table 2 presents the crop type parameter values for Vc,max and m that were selected from each of the three parameter selection approaches. For each method, we tested each performance metric (KGE, NSE, or Bias & MAE), except for method 3, median from DYNIA, where we only used KGE and NSE due to the need to a single performance metric in the algorithm. Both almond and pistachio classes have Vc,max and m values that are higher than calibrated values for most other vegetation types (Kattage et al., 2009). As higher parameter values result in higher simulated ET, this parameterization is consistent with the high water use observed from both crops. The choice of performance metric impacts the parameter selection, which is most clearly illustrated for method (1). In this case, using the KGE performance metric leads to the selection of a lower Vc,max value, which is compensated by a higher m value. The primary reason for this is to increase the bias in the simulated standard deviation relative to the parameter sets selected with NSE (which is below 1 for all sites in the top parameter class selected with NSE). This results in slightly higher ET during the summer growing season and improved simulation of the total annual ET. The bias for total annual ET averaged 1.003 for the parameters selected using KGE and 0.966 for the parameters selected with NSE. The different parameter selection methods also result in different parameter values, which is most obvious for the Vc,max parameter for pistachios as it systematically increases from method 1 to method 3. 

Table 2: Parameter values selected for each of the three methods for Almond and Pistachio orchards. 
	Method
	Metric
	Almond
	Pistachio

	
	
	Vc,max 
	m
	Vc,max
	m

	Default CLM
	-
	33.00
	9.00
	33.00
	9.00

	(1) Single Best Performance
	KGE
	79.99
	11.46
	72.40
	10.86

	
	NSE
	117.42
	9.14
	79.29
	10.06

	
	Bias + MAE
	117.42
	9.14
	79.29
	10.06

	(2) Modified GLUE
	KGE
	83.00
	10.90
	83.00
	10.00

	
	NSE
	83.00
	10.00
	99.00
	10.00

	
	Bias + MAE
	83.00
	11.40
	99.00
	11.40

	(3) Median from DYNIA
	KGE
	116.63
	11.56
	116.63
	11.47

	
	NSE
	90.02
	9.96
	99.99
	9.86



	To compare the impact of the different parameter selection approach on the simulated ET, we ran simulations with each of the parameter sets selected in Table 2 at each of the 5 study sites and compared simulated and observed ET during the validation period (WY2019). This comparison represents an independent validation of the parameter values because the final parameter values in Table 2 were not used in the parameter selection exercise for each site. Figure 3 presents the average KGE, NSE, Bias, and MAE across the 5 study sites for each of these simulations (vegetation class parameterization), relative to the observed ET, during the validation period. Across all parameter selection approaches, the performance metrics are quite good, though slightly lower than during the calibration period, with NSE and KGE values >0.75, and often >0.9, bias values are close to 1, and MAE values are lower than 2 mm/week for almonds and 1 mm/week for pistachios (Figure 3). The performance of different parameter selection techniques is similar, particularly for the pistachios. Model performance for the almonds, however, is slightly better for method 1, the single best parameter set. 
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Figure 3: Performance metrics values based on validation simulations (WY2019) from each of the three parameter selection methods. Metrics are calculated with the simulated ET and the observed ET from eddy covariance towers. Parameter values were assessed for (a) almond and (b) pistachio vegetation classes separately. Bars are grouped by the parameter selection method (separated by dashed lines), then by the applied metric for the parameter selection. The KGE, NSE, and bias values are all unitless, while the MAE has units of mm/week.  

	As plants extract water from the soil, an important consideration is how soil moisture and soil properties impact the parameter selection. Figure 4 displays posterior distributions of behavioral simulations from the soil parameter test scenarios. The distributions of Vc,max and m parameter values are consistent even though the Ksat changed by 2 orders of magnitude. Additionally, the distributions of daily soil moisture from the top 10% of best-performing vegetation parameter sets (based on the single best performance method) at each of the study sites were similar. This result suggests that the soil parameters do not dramatically influence the simulated ET for our sites. 
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Figure 4: Probability distributions of behavioral parameter values obtained from GLUE analysis of 1200 simulations using ET based performance metrics for two values of saturated hydraulic conductivity (Ks). Parameter distributions from Almond (a,b) and Pistachio (c,d) sites are shown for the Vc,max and m parameters (a,c and b,d, respectively).

3.2 Application of ET Partitioning Data to Vegetation Parameter Selection
	Results of ET partitioning into T and E are presented in Fig. 1. Data gaps arising from conditions when the FVS assumptions were not met are prevalent, especially in the pistachio sites. The percentage of data gaps in the partitioned ET data range from 55% at the ASH site to 80% at the PSH site. Most gaps are during the nighttime when flux partitioning is not attempted, or during periods of instrument failure. The observed T/ET ratios match expectations, ranging from 0.61 at the ASL site to 0.80 at the PSL site (Table 3). The T/ET ratio increases slightly during the growing season, when most annual ET occurs, ranging from 0.62 to 0.82. The annual T/ET ratio is higher at the pistachio sites than the almond sites (Table 3) despite having similar mean ET between almonds and pistachios. This difference is caused by both increased T and decreased E at the pistachio sites. We present mean ET per 30 minutes to allow an accurate comparison that accounts for data gaps, but the temporal distribution of the data gaps is expected to impact the values presented in Table 3. 

Table 3: Values of mean ET, T, and E, as well as the T/ET ratio during periods when ET partitioning was successful. 
	Site
	T/ET
	Mean T (mm/30min)
	Mean ET (mm/30min)
	Mean E (mm/30min)

	ASH
	0.70
	0.18
	0.26
	0.08

	ASM
	0.65
	0.17
	0.27
	0.09

	ASL
	0.61
	0.21
	0.34
	0.13

	PSH
	0.78
	0.21
	0.27
	0.06

	PSL
	0.80
	0.23
	0.28
	0.06



	We use the T/ET data to test if we can improve ParFlow.CLM parameterizations by partitioning ET to T and ET. Figure 5 displays the posterior distributions of parameter values selected with ET, T/ET, or ET + T/ET combined, using data at a weekly time step. These posterior distributions display the parameter values of behavioral simulations from each crop type; ASH, ASM, and ASL are all included in the almond plots, while PSH and PSL are included in the pistachio plots. The number of behavioral simulations (n) is determined with the optimum percentage method and varies depending on the observed dataset used to calculate the performance metrics. When T/ET data alone is used to select behavioral simulations for the almond sites, the posterior distribution of parameter values are not narrowed and remained close to the a priori uniform distribution (Fig. 5). At the pistachio sites, the T/ET data can better constrain the parameter sets than at the almond sites by skewing the posterior parameter distribution to higher parameter values. In both types of orchards, however, the T/ET data alone does not improve constraining of parameter values over the ET data. When both ET and the T/ET ratio are used as performance metrics, posterior distributions of parameter values are similar to distributions from the ET based performance metric. 
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Figure 5: Posterior probability distributions of Vc,max and m from the GLUE analysis (parameter selection method 2) for almond (a) and pistachio (b) vegetation classes. Behavioral parameter values are selected through comparison with observed ET, T/ET, or a combination of ET + T/ET data. The number of behavioral simulations in each case (n) is also displayed. 

	To explore if there are time periods throughout the year when T/ET data is more useful, Figure 6 displays time series plots of the information content (IC) throughout the year. The shaded region represents the range of IC on that day of year (DOY) throughout the 3-year simulation period. No seasonal patterns in the IC emerge. The IC is consistently low (~0.2 to ~0.5) for both ET and T data because we define the IC based on the full width of the posterior parameter distribution. As Fig. 5 illustrates, the posterior distributions may converge on a parameter value represented by the peak of the distribution, while the range of the distribution is not significantly narrowed. This is the case for the Vc,max parameter in particular causing the low IC values. 
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Figure 6: Daily minimum and maximum values of Information Content (IC) for the Vc,max parameter (a-e) and m parameter (f-j) at each of the 5 sites. IC is presented for both comparisons to ET and T data.
3.3 Uncertainty in Land Surface Simulations
3.3.1 Uncertainty in Simulated ET from Parameter Selection
	We assess uncertainty in land surface simulations that arise from model parameterization techniques. Figure 7 presents the uncertainty range of simulated daily ET from simulations that were deemed behavioral from the GLUE approach outlined in equation (4). At all 5 study sites, the calibrated parameters improve simulated ET upon the base case parameter values. The base case parameter values tend to underestimate ET, especially during the growing season at almond sites. At the pistachio sites, the base case parameters lead to simulated ET that is closer to the observed values, but prone to flashy responses to irrigation, particularly at the PSL site. The shaded grey region in Figure 7 represents the 95% confidence interval of the range of simulated ET arising from the behavioral simulations that have been weighted by their performance metric. Note that the gap filled observed ET is presented here so daily sums do not exclude data gaps for either the observed or simulated values. We calculate the sharpness and reliability, following Tang et al. (2019), and present them in Fig. 7. Reliability values are relatively low because of the difficulty in simulating daily ET processes. 
We assess the relative uncertainty using a metric analogous to the coefficient of variation calculated at each time step as the width of the 95% confidence interval of simulated ET divided by the observed value of ET. When using observed ET within a GLUE approach, the median value of the relative uncertainty ranges from 0.16 at ASL site to 0.34 at the PSH site, differences that are partially a result of the higher observed ET at the ASL site relative to the PSH site. These values suggest that the GLUE approach provides parameters that result in 16 – 34% uncertainty in the simulated ET at our study sites. We also calculate the uncertainty ranges when parameter ranges are selected using both T/ET and ET data and find that the relative uncertainty is reduced by an average of 2.8% across the 5 sites. We calculate this same relative uncertainty metric for the potential recharge beneath the root zone. As there is no observed value of potential recharge, we divide the width of the 95% confidence interval by the mean of the 600 parameter simulations. As with the ET, selecting parameters using both T/ET and ET data reduces the uncertainty by a small amount. The average uncertainty in potential groundwater recharge across the five sites is 63% when parameters are selected using ET data and 58% when selected using both T/ET and ET data. 
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Figure 7: Uncertainty in simulated ET arising from the GLUE parameterization approach at each of the 5 study sites. The black lines show the observed values, the red lines show the simulated values using the base case model parameters. The grey region illustrates the uncertainty range from the GLUE approach, method 2, using observed ET to calculate the performance metrics. The observed ET has been gap-filled, and daily sums include all data points for both the observed and simulated values. Reliability and sharpness values are also presented. 

3.3.2 Uncertainty in Simulated ET from Applying Vegetation Class Parameters to a Site
	As EC systems for measuring ET are not available in many locations, it is important to derive global vegetation class parameters. Table 4 presents the selected parameter values based on the ‘single best performance’ method for each of the 5 sites, as well as the parameter values that were selected as the vegetation type best performing parameters. At each of the 5 sites, we ran the ParFlow.CLM models using the site-observed forcing data and soil parameters, but with the vegetation type parameters. The optimum parameter values vary between sites and the  vegetation class parameter set. As expected, the parameter values for almond and pistachio orchards also vary. 

Table 4: Top-performing parameters using the single best performance method (1) with bias + MAE as the performance metric and the ET data from each site, as well as vegetation type parameters. 
	Site
	Vc,max
	m

	ASH
	99.38
	9.65

	ASM
	117.83
	11.44

	ASL
	118.38
	8.60

	Almonds
	117.42
	9.14

	PSH
	83.00
	10.02

	PSL
	103.53
	11.57

	Pistachios
	79.29
	10.06



	We compare the simulated ET, when using the site-specific vegetation parameters or the vegetation class parameters, with the observed ET. Figure 8 presents the daily and cumulative sum of the difference between the simulated and observed ET for the base case, site-specific, and vegetation class parameter values. For clarity, we only present values from the ASH site. As previously noted, the base case parameters perform poorly, with frequent daily deviations of 5 mm/day from observations, and maximum deviations approaching 10 mm/day. These daily differences result in a cumulative difference between simulated and observed ET values of almost 1,500 mm, or 500 mm/year at the ASH site. 
The vegetation parameterization approach results in simulations that perform better than the base case and results in deviations from observations that are generally less than 2 mm/day. The site-specific and vegetation class parameters have very similar simulated ET values. The cumulative difference between simulated and observed ET is 55 mm for the site-specific parameters and 61 mm for the vegetation class parameters, or 18 mm/yr and 20 mm/yr, respectively. Even though the vegetation parameter values for the ASH site and the almond class are different, the parameter combinations from each parameterization effectively simulate the ET. This pattern is consistent across all 5 study sites. This result highlights that the uncertainty caused by applying vegetation class parameters at different orchard sites is negligible. 
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Figure 8: Differences between simulated ET using the base case, site-specific best parameters, or the vegetation class best parameters and the observed ET from the EC tower at the ASH site. The differences between the simulated and observed values are presented at daily (a) and cumulative (b) time steps.

3.3.3 Uncertainty in Simulated ET and Recharge from Irrigation Application Method
	The accurate incorporation of irrigation is required to assess water budgets over croplands using LSMs (Ko et al., 2016). In Figure 9, we present monthly values of simulated ET when three different irrigation approaches are used, as well as the observed ET. At all 5 sites, the CI approach underestimates ET, while both the GS and the MI approaches result in simulated ET that matches observations relatively well. Misrepresentation of irrigation by the CI approach is not surprising, as nut orchards are dormant during the winter months. A constant irrigation application would overestimate winter water application and underestimate summer water application. At our study sites, the GS approach tends to overestimate ET during August and September when growers reduce irrigation rates to prepare for harvest. The MI approach captures this reduction and matches the observed ET better for those months. 
We also assess the uncertainty in groundwater recharge that arises from different irrigation approaches. Figure 9 f-j displays the simulated potential recharge (R) from each of the three irrigation scenarios, at each of the 5 study sites. As expected, the CI approach results in large peaks of R during the winter dormant months when irrigation is not normally applied. The MI and GS approaches have peaks in R during the summer months, depending on the year, from June – October. The MI approach results in higher recharge values consistent with the higher rates of applied irrigation than the CA DWR data suggests. This result indicates that better representation of the actual irrigation amounts is more critical when studying groundwater recharge than ET processes. 
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Figure 9: Monthly values of simulated evapotranspiration (ET) and potential groundwater recharge (R) at each of the 5 study sites under different irrigation schemes, as well as the observed ET. The three irrigation schemes are (1) the measured irrigation (MI), (2) the constant irrigation (CI), and (3) the growing season irrigation (GS). The CI and GS irrigation approaches both apply the amount of irrigation suggested by the California Department of Water Resources.
4 Discussion
4.1 Parameter Selection
Our results indicate that a simple approach to select parameter values results in the best model performance when evaluated at 5 EC sites. However, more robust approaches, such as GLUE, are required to estimate prediction uncertainty caused by model parameterization (Beven & Binley, 2014)). Nevertheless, the performance metrics of all parameter selection techniques are quite similar (Fig. 3), which is useful because hydrologists have been using many different techniques to select the optimal parameters.  
The base case CLM parameters performed poorly compared to the observed ET values. This result indicates that accurate parameterization of CLM is required to simulate specific crop types in a particular region, and default CLM parameters might be best suited for larger-scale applications (Ke et al., 2012). At the spatial scale relevant for most LSMs, parameter values based on EC measurements are unlikely to provide accurate estimates of ET because a single croplands pixel will include a mosaic of fields, roads, undeveloped lands, and other land cover types (Baldocchi et al., 2019). For example, the measured ET in the orchards used in this study ranges from 767 to 1266 mm/yr, while because of the mosaic of land cover, remote sensing observations in the San Joaquin Valley of California suggest that the annual ET is 374 mm/yr (Baldocchi et al., 2019). Because of this, the vegetation parameters developed here should only be applied in models with a spatial resolution that is fine enough to represent individual orchards.
Simulated ET in CLM is not solely a function of vegetation parameters; the available soil water also controls it. Our soil parameterization scenarios found that soil parameters do not play a large role in controlling the simulated ET. This is contrary to a recent study that found soil parameters were key to calibrating ET in the LSM Noah-MP (Yang et al., 2021), as well as similar studies that have found that both stomatal parameters and soil parameters were important in the accurate representation of ET (Egea et al., 2011; Keenan et al., 2010). We attribute this result to two factors. First, models like Noah-MP use an empirical water stress function to attenuate ET when soil moisture is low, and this approach overestimates the importance of water stress on ET. Second, our study sites are in semi-arid climate where drip irrigation is used to apply water at a low intensity. This slow irrigation rate limits deep infiltration and keeps soil moisture in the surface soils for plant water use, regardless of the soil parameters. Finally, recent results show that increasing the number of soil layers in LSMs improves the performance of simulated ET in semi-arid regions (MacBean et al., 2020). This conceptualization may account for the model’s ability to simulate ET even without in-depth soil parameterization. 
4.2 Value of ET Partitioning Data for Land Surface Models
Model simulation using the ET partitioning data did not significantly improve ET prediction from irrigated almond and pistachio orchards. Our results suggest that ET partitioning data is not particularly useful here. The parameter values selected when simulated ET is compared to observed ET are similar to those selected when T/ET data is included in the parameterization. Perhaps surprisingly, when T/ET ratios are used as a metric in the parameterization process, it does not improve performance of simulated T/ET values. This result might indicate that ET partitioning data is most useful for improving model physics, rather than simple parameterizations. The model struggled to accurately simulate the T/ET ratio, particularly its changes throughout the year. Previous studies have shown that LSMs often underestimate T/ET ratios (Lawrence et al., 2007). At the annual scale, our model captures the T/ET ratio relatively well. The T/ET values from the top-performing models range from 0.75 at the ASH site to 0.81 at the PSH site. This performance suggests that our model overestimates T/ET, particularly at the ASM and ASL sites (Table 3). But the model struggles to capture the trends in T/ET as demonstrated by NSE values lower than 0.5 at all five sites. The lower NSE suggests that a more in-depth parameterization or changes to the model physics are required to match observed T/ET ratios accurately. 
Estimates of T (or E) might be more beneficial for parameterization in settings where consistent irrigation is not applied, and atmospheric demand for water is not consistently high. For example, in non-irrigated dryland ecosystems where pulses of water are essential controls on ET, T/ET data may be more useful in improving model performance (Feldman et al., 2021; Noy-Meir, 1973). It may also be more useful in ecosystems where T/ET ratio is not tied to leaf area, such as corn crops, where the plants use different amounts of water in different growth stages. But, the IC metric is consistently low for any period during the year, suggesting that long-term datasets are most valuable to parameterize LSMs effectively, and this applies to both ET and T data. As some of the most widely used techniques to partition ET are often applied over a period of days (Tarin et al., 2014; Wang et al., 2010), this is an important consideration. 
A potential limitation of our study is that partitioning evapotranspiration from EC measurements is notoriously challenging (Kool et al., 2014). The FVS method, as well as Fluxpart software, have been validated in several applications and generally find good performance (Peddinti & Kambhammettu, 2019; Perez-Priego et al., 2018; W. Wang et al., 2016). The most important uncertainty in the approach has been identified as the estimation of leaf-level WUE (Palatella et al., 2014). We apply the ‘const_ratio’ approach within the Fluxpart software (Skaggs et al., 2018), which has been found to be the most promising approach in crops (Wagle et al., 2021). However, we expect considerable uncertainty in the T/ET ratio due to uncertainties in the WUE parameter. 
	
5 Conclusions
	We have used eddy covariance data from five agricultural orchards to parameterize crop classes in an integrated land surface – groundwater hydrology model, ParFlow.CLM. We apply flux variance similarity theory to partition observed ET into E and T components and quantify the added value of partitioned ET in model parameterization. We test several parameter selection schemes to see if best practices for using partitioned ET data to parameterize hydrologic models emerge. Compared to using the peak of the posterior distribution from a GLUE approach, or the median value of time-variable parameters from the DYNIA approach, selecting the single top-performing parameter set results in slightly better model performance when independent validation tests are run. As this approach is much simpler to apply, we conclude that it is the best approach in our application where only a small number of parameters are being calibrated. The partitioned ET data did not help us refine the parameter values. The selected parameter values do not change when both the T/ET ratio and total ET are used to calculate model performance metrics. However, the number of behavioral simulations selected using a GLUE approach is greatly reduced when the T/ET ratio is included as a performance metric. We attribute this to the high potential ET and irrigation management at the study sites. Irrigation is managed to maximize plant water use, making T/ET ratios high (up to 0.8), so the total ET is a good metric for understanding plant water use and further efforts to partition ET are less useful. This result suggests that although T/ET data did not alter the parameters selected in our study, it may be useful in other locations, especially sites with rain-fed vegetation and sites where T/ET ratios may be lower or more variable throughout the year. 
	We also quantified the uncertainty associated with different approaches to simulating crop practices in irrigated agriculture. Parameterizing the different crop classes is the step that results in the highest levels of uncertainty. At the 5 study sites, the range of behavioral simulations from the GLUE approach resulted in 16-34% uncertainty relative to the observed ET values. When T/ET data is used, this range is reduced by an average of 2.8 percentage points. The simulated ET is relatively unaffected when parameter values are assigned for overall vegetation classes, rather than selected specifically for each site (~2 mm/yr difference in simulated ET). This lack of sensitivity suggests that parameter values can be accurately estimated for a particular crop type based on a small number of sites. It is important to know how much water is input through irrigation to build representative crop parameters in irrigated settings. We have information regarding irrigation inputs at the study sites, but this is uncommon, especially at large scales. We test three approaches for adding irrigation to crops: measured irrigation, applying estimated irrigation throughout the year, and applying estimated irrigation during an estimated growing season. We find that irrigation application leads to considerable uncertainty in the simulated ET in this semi-arid conditions. The application of estimated irrigation during an growing season results in simulated ET that matches the ET from measured irrigation inputs well. Still, the groundwater recharge values are considerably different. Investigations into groundwater recharge in irrigated agriculture likely require improved estimates of applied irrigation.
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